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1 Introduction

Plasticity models have a long history in the engineering and mathematical community. The
rigorous mathematical and numerical analysis of different elasto-plastic models has been a topic
of mathematical research during the last two decades, see e.g. [2], [6], [7], [8] and the literature
cited there. The method presented in this paper is based on the approach proposed by C.
Carstensen [1]. In contrast to [1], we introduce some regularization of the local minimization
problems making the nonsmooth cost functional differentiable. We develop an adjusted multigrid
preconditioned conjugate gradient (PCG) method for the Schur-complement problems arising at
each incremental step. Moreover, we prove that the elastic multigrid preconditioner is sufficient
for an effective and robust solving of large scale elasto-plastic problems.

2 Elasto-plasticity

The stress field σ of a deformed body Ω in Rn (n = 2, 3) with a Lipschitz-continuous boundary
has to fulfill the symmetry and equilibrium equations

σ = σT in Ω, (1)

−div σ = b in Ω, (2)

with b being the vector field of given body forces. The linearized strain tensor ε is appropriate
in the case of small deformations,

ε(u) =
1

2
(∇u + (∇u)T ) a. e. in Ω, (3)

where u denotes the displacement vector. The strain is split additively into elastic part C−1σ
and plastic part p with the local elasticity tensor C:

ε(u) = C−1σ + p a. e. in Ω. (4)

Purely elastic material behavior is characterized by p ≡ 0. In order to describe the time devel-
opment ṗ = ∂p

∂t
, the generalized stress variables (σ, α) are introduced, their values are restricted

by a convex dissipation functional ϕ:

ϕ(σ, α) < ∞ a. e. in Ω. (5)

Then, the Prandtl-Reuß normality law states

ṗ : (τ − σ) − α̇ : (β − α) ≤ ϕ(τ, β) − ϕ(σ, α) ∀(τ, β) a. e. in Ω. (6)
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The hardening parameter α describes the memory effect of the deformed body. Its structure
and dimension depend on the hardening law [1]. The scalar product of matrices is defined by
A : M =

∑n
i,j=1

AijMij for all A,M ∈ Rn×n.

We now are in the position to define the initial value problem: Find the displacement field u,
the plastic strains p, the stress σ and the hardening parameter α such that (1) - (6) together
with appropriate initial and boundary conditions are satisfied.

Using functional-analytic techniques, (1) - (6) can be combined in one time dependent variational
inequality. Then, an implicit Euler scheme in time is applied and results in an equivalent
minimization problem for each time step. In the case of isotropic hardening the minimization
problem in one time step reads:

f(u, p) :=
1

2

∫

Ω

C[ε(u) − p] : (ε(u) − p)dx +
1

2

∫

Ω

(α0 + σyH|p − p0|)
2dx

+

∫

Ω

σy|p − p0|dx −

∫

Ω

b u dx −→ min

(7)

under the constraint tr (p−p0) = 0. Here, the yield stress σy > 0 and the modulus of hardening
H > 0 are material parameters. The deviator is defined by dev A := A − 1

n
tr(A)I, where

tr(A) :=
∑n

i=1
Aii is the trace of a matrix and I is the identity matrix.

The structures of the optimization problems are similar for all hardening models. Thus the basic
ingredients of the algorithm are presented for the isotropic hardening case as model case.

For given variables (with index 0) of an initial time step t0, the upgrades of the variables at the
time step t1 = t + ∆t have to be determined. In addition to the time discretization the spatial
discretization is performed by the finite element method.

3 Algorithm

The basic idea for solving the problem (7) at each time step presented by [1] is iterating until
the minimizers (u, p) are determined with sufficient accuracy. Additionally, the norm function
|p| is smoothed as follows:

|p|ε :=

{

|p| if |p| ≥ ε,
1

2ε
|p|2 + ε

2
if |p| < ε,

with a small regularization parameter ε > 0. Another simplification is defining the incremental
variable p̃ = p − p0, and using it as an argument of the objective (7) instead of p. The spatial
discretization is carried out using triangular or tetrahedral finite elements. The minimization
problem (7) now reads:

1

2
(Bu − p̃)T C(Bu − p̃) +

1

2
p̃T H(|p̃|ε)p̃ + (−BT Cp0 − b)T u −→ min (8)

under the local constraint tr (p̃|T ) = 0 on every element T of a triangulation τ . Here, Bu denotes
the discretized strain ε(u). H depends on |p̃|ε and is computed locally as H = (σ2

yH
2 + 2σy(1 +

α0H)/|p̃|ε) Q. Since the local constraint tr (p̃|T ) = 0 is linear, the problem (8) is projected onto
a hyperplane, where the constraint p̃ = P p̄ is satisfied exactly:

1

2

(

u
p̄

)T (

BT CB −BT CP
−P T CB P T (C + H)P

) (

u
p̄

)

+

(

−b − BT Cp0

P T Cp0

)T (

u
p̄

)

−→ min . (9)
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H is computed in every iteration step using the current p̃. Apart from this dependence on p̃,
(9) is quadratic with a positive definite matrix. Thus the minimizer (u, P p̄) has to fulfill the
sufficient condition of first kind:

(

BT CB −BT CP
−P T CB P T (C + H)P

)(

u
p̄

)

+

(

−b − BT Cp0

P T Cp0

)

= 0. (10)

The Schur-Complement system in u

BT (C − CP (P T (C + H)P )−1P T C)Bu = b + BT (C − CP (P T (C + H)P )−1P T C) p0 (11)

is solved by a multigrid preconditioned conjugate gradient method. The minimization in p̃
is done locally for each element, since no connections over several elements (e.g. derivatives)
occur. Furthermore, the nested iteration approach is applied. For various 2D and 3D testing
geometries the algorithm behaves linearly with respect to the number of unknowns, i.e., it has
linear complexity, see [4].

4 Robustness Analysis

Numerical tests indicate that it is not necessary to use the multigrid preconditioner (see [3])
arising from the elasto-plasticity problem (11). The preconditioner for the related elasticity
problem with the stiffness matrix K = BT CB is sufficient and much faster.

Indeed, the spectral equivalence constants c1 and c2 in the spectral inequalities

c1〈Ku, u〉 ≤ 〈Su, u〉 ≤ c2〈Ku, u〉 ∀u ∈ Rn, (12)

with the Schur-Complement matrix S of (11) can obviously be determined as the smallest and
largest eigenvalues of the generalized eigenvalue problem

Su = λCu. (13)

S = C−CP (P T (C + H)P )−1P T C and C are block diagonal matrices with blocks corresponding
to local systems. Consequently, it is sufficient to calculate the generalized eigenvalue problems
for the single blocks in (13) only.

In the two-dimensional case, each block in (13) has three eigenvalues λ1 < λ2 < λ3 of the form

1

1 + β
<

1

1 + β
4

< 1, (14)

with β depending on the hardening law. In the three-dimensional case, we obtain the same
eigenvalues with geometric multiplicity: λ1,2 < λ3,4,5 < λ6 = 1. The upper bound in (12)
is therefore c2 = λmax = 1, and the lower bound c1 = λmin can be further analyzed with
respect to its behavior in the regularization parameter ε. We computed the solutions of the
generalized eigenvalue problem for different kinds of hardening laws (isotropic hardening, perfect
plasticity, kinematic hardening, and the two-yield kinematic hardening case [5]) using symbolic
computation codes.

Table 1 shows the spectral equivalence of the elasto-plastic and elastic matrices for all hardening
laws. Surprisingly, the spectral equivalence even holds in the perfect plasticity case (which
corresponds to the isotropic hardening case with H = 0). Only in the limit case ε → 0 in perfect
plasticity the preconditioner fails.
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Table 1: β for various hardening laws and their limit case

Hardening law β β(ε → 0)

isotropic, H > 0
E|p|ε

(1 + ν)σy(2(1 + α0H) + H2σy|p|ε)

E

(1 + ν)H2σ2
y

perfect plasticity
E|p|ε

2σy(1 + ν)
∞

kinematic
E|p|ε

(1 + ν)(|p|ε + 2σy)

E

1 + ν

2-yield, kinematic
2E(|p2|εσ

y
1

+ |p1|ε(|p2|ε + σy
2
))

(1 + ν)(|p1|ε + σy
1
)(|p2|ε + σy

2
)

2E

1 + ν

5 Conclusions

In this paper the theory of elasto-plasticity is combined with the nested iteration approach
and a multigrid preconditioned conjugate gradient solver. A solution algorithm is designed and
analyzed. The elastic multigrid preconditioner is robust for all considered hardening laws except
for the limit case of the regularization in perfect plasticity.
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