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Abstract

The quasi-static evolution of an elastoplastic body with a multi-surface
constitutive law of linear kinematic hardening type allows the modeling of
curved stress-strain relations. It generalizes classical small-strain elastoplas-
ticity from one to various plastic phases. This paper presents the mathe-
matical models and proves existence and uniqueness of the solution of the
corresponding initial-boundary value problem. The analysis involves an ex-
plicit estimate for the effective ellipticity constant.
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1 Introduction

Solid bodies undergo deformations when subjected to forces. Usually, the response
is elastic for sufficiently small stresses. Moreover, many materials begin to exhibit
plastic flow when the stresses reach a regime of critical values, given by the so-
called yield surface. The precise relation between stress and strain is specified by
the constitutive law. In mechanics, a large variety of constitutive laws has been
developed in order to describe the elastoplastic behaviour of solid materials in a
phenomenologically correct manner. We refer in particular to the books [LC90,
Mau92] and the surveys [Cha89, Cha94].

Many of those models feature certain nonlinearities in their defining equations,
and the solvability of the corresponding initial-boundary value problems are open
questions. On the other hand, several models can be transformed into a variational
formulation for which a mathematical existence and uniqueness theory is known.
This is true in particular for viscoplasticity, because the presence of viscosity regu-
larises the problem, and for models which attempt only to describe a purely increas-
ing loading (like Hencky’s model and its variants), because the situation becomes
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much simpler if one neglects the memory phenomena induced by cyclic loading. For
elastoplastic (that is, rate-independent) models which encompass cyclic loading, in
particular models of kinematic hardening, results are sparse. Basic results are due
to Johnson [Joh78].

In this two-part article we consider the quasi-static initial-boundary value prob-
lem for small strain elastoplasticity with a multi-surface constitutive law of linear
kinematic hardening type. The main goal is the construction and error analysis
of a discrete solution method which takes care of the multi-surface aspect of the
constitutive law. This will be done in the second part. In the first part, we present
the precise formulation of the initial-boundary value problem and prove existence
and uniqueness of its solution.

Indeed, the existence of such solutions in the quasi-static case has been obtained
by Visintin [Vis94], chapter VII, Theorem 2.3, using the theory of variational in-
equalities. He proves first that the dynamic problem has a unique solution, and
then considers the quasi-static case as a singular limit. Thus, he obtains existence
with regularity L∞(0, T ;L2(Ω)) for the strain ε = (Du+DuT )/2 (the strain rates εt
being Radon measures), but not uniqueness, the latter stated as an open problem
in [Vis94]. Our approach differs from his in that we use the functional framework of
[HR99] which has been already used extensively for numerical approximation and
analysis of problems in elastoplasticity [HR95, HR99]. For the case of a single yield
surface, it is shown there how to obtain unique solvability of the quasi-static problem
from a suitable variational inequality formulation, with regularity H1(0, T ;H1(Ω))
for the displacement u. We extend these results to the multi-surface case. In par-
ticular, we also derive an estimate for the ellipticity constant whose size is critical
for the performance of numerical methods based on the variational formulation.

2 The Constitutive Law

The constitutive law furnishes the relationship between the stress tensor σ and
the strain tensor ε. The classical law of kinematic hardening goes back to Melan
[Mel38] and Prager [Pra49]. It is local in the sense that any given material point x
it involves only the time histories σ = σ(t) and ε = ε(t) at that point. It is given
by the following system of equations and an evolution variational inequality:

ε = e+ p
σ = σb + σp (1)

σ = Ce (2)

σb = Hp (3)

σp ∈ Z, ṗ : (τ − σp) ≤ 0 for all τ ∈ Z. (4)

The equation (1) represents the additive decomposition of the strain ε into its elastic
part e and its plastic part p as well as of the stress σ into the backstress σb and the
plastic stress σp. The equation (2) denotes a linear elastic law, in the isotropic case
one has

Cε = 2µε+ λ(tr ε)I, (5)
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where the (positive) coefficients µ and λ are called Lamé coefficients. Here I denotes
the second order identity tensor (an identity matrix) and tr : Rd×d → R defines the
trace of a matrix, tr ε :=

∑d
j=1 εjj, for ε ∈ Rd×d, where d is the problem dimension.

Equation (3) couples the backstress σb and the plastic strain p through a linear
mapping with a positive definite hardening matrix H. For this reason, the model
(1)-(4) is also called linear kinematic hardening. A typical choice will be H = hI,
where h > 0 is a hardening coefficient. Variational inequality (4) formalizes the
Prandtl-Reuß normality rule, also called the principle of maximal dissipation. The
set Z ⊂ Rd×d

sym describes the admissible (plastic) stresses, its boundary ∂Z is called
the yield surface. We will exclusively use the standard von Mises cylinder with yield
stress σy

Z = {σ ∈ Rd×d
sym : || dev σ|| ≤ σy}. (6)

Here,

||a||2 = a : a, a : b =
d∑

i,j=1

aijbij (7)

defines the (Frobenius) norm and the corresponding scalar product, and the deviator
of σ is defined as dev σ := σ − 1

d
(trσ)I. The decomposition

Rd×d
sym = XD ×XI , XD = {σ : trσ = 0}, XI = {tI : t ∈ R} (8)

is orthogonal with respect to the scalar product (7) and, according to (8),
dev : Rd×d

sym → XD represents the orthogonal projection. The following lemma refor-
mulates the variational inequality (4) as a variational inequality with a dissipation
function D (see [HR99], page 90).

Lemma 1. Let (ṗ, σp) ∈ Rd×d
sym × Rd×d

sym. Then

σp ∈ Z, ṗ : (τ − σp) ≤ 0 for all τ ∈ Z (9)

together with tr ṗ = 0 hold if and only if

σp : (q − ṗ) ≤ D(q)−D(ṗ) ∀q ∈ Rd×d
sym, (10)

where D : Rd×d
sym → R ∪ {∞},

D(q) =

{
σy||q|| if tr q = 0,
+∞ otherwise.

(11)

Proof. (⇒) We rewrite (9) as

σp : (q − ṗ) ≤ σp : q − τ : ṗ ∀q ∈ Rd×d
sym,∀τ ∈ Z.

Setting τ = σy ṗ
||ṗ|| if ṗ 6= 0, we obtain

σp : (q − ṗ) ≤ σp : q −D(ṗ) ∀q ∈ Rd×d
sym, (12)

which obviously holds also for ṗ = 0. Furthermore, if tr q = 0 then

σp : q = dev σp : q ≤ || dev σp||||q|| ≤ σy||q|| = D(q)
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Figure 1: Prandtl-Ishlinskii model of play type.

which together with (12) proves (10).
(⇐) From (10) it immediately follows that tr ṗ = 0. Setting q = 2ṗ in (10) it
follows that dev σp : ṗ = σp : ṗ ≤ D(ṗ), so for all q with tr(q) = 0 we have
dev σp : q = σp : q ≤ D(q), thus || dev σp|| ≤ σy, i.e., σp ∈ Z. On the other hand,
q = 0 yields −σp : ṗ ≤ −D(ṗ), so for any τ ∈ Z we get

ṗ : (τ − σp) ≤ τ : ṗ−D(ṗ) ≤ dev τ : ṗ−D(ṗ) ≤ (‖ dev τ‖ − σy)‖ṗ‖ ≤ 0 .

The standard model of linear kinematic hardening as described above introduces
essentially one additional internal state variable of tensor type, the plastic strain
p, whose evolution is governed by (4). In particular, ṗ(t) 6= 0 only if σp ∈ ∂Z.
More complicated models for the constitutive law involve additional surfaces and
internal state variables. We treat here a specific model which goes back in the 1D
case to Prandtl [Pra28] and Ishlinskii [Ish54] and in the multidimensional case to
Besseling [Bes58] and Iwan [Iwa66]. The model discussed here is the one called
Prandtl-Ishlinskii model of play type [Vis94, Kre96] with finitely many surfaces,
whose rheological structure is depicted in Figure 1. The plastic strain p is decom-
posed as

p =
∑
r∈I

pr, I = {1, . . . ,M}, (13)

we have backstresses σb
r,

σb
r = Hrpr, r ∈ I,

and plastic stresses σp
r

σ = σb
r + σp

r , r ∈ I

and a family of a variational inequalities

σp
r ∈ Zr, ṗr : (τr − σp

r ) ≤ 0 ∀τr ∈ Zr, r ∈ I, (14)
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with convex restrictions Zr, r ∈ I. If one wants to have infinitely many surfaces, a
natural way to do this is to replace (13) by

p =

∫
I

pr dµ(r), (15)

where µ is a (finite) measure on some set I. In that case, (14) represents an infinite
system of variational inequalities.

3 The Boundary Value Problem

The elastoplastic continuum is assumed to occupy a bounded domain Ω ⊂ Rd, with
a Lipschitz boundary Γ = ∂Ω. The boundary Γ is split into a Dirichlet boundary ΓD,
a closed subset of Γ with a positive surface measure, and the remaining (relatively
open and possibly empty) Neumann part ΓN := Γ\ΓD. We pose essential and static
boundary conditions, namely

u = 0 on ΓD and σ · n = g on ΓN , (16)

where g is a given applied surface force and n denotes the outer normal to the
boundary ΓN . Our analysis will be restricted to the study of a boundary value
problem defined in these functional spaces:

H1
D(Ω) = {v ∈ H1(Ω)d|v = 0 on ΓD},

Q = {q : q ∈ dev Rd×d
sym, qij ∈ L2(Ω)},

whereH1(Ω) and L2(Ω) are the usual Sobolev and Lebesgue spaces. The equilibrium
between external and internal forces in the quasi-static case is given by

div σ(x, t) + f(x, t) = 0, x ∈ Ω, t ∈ (0, T ), (17)

where σ satisfies the boundary condition (16). With the relation

ε(v) =
1

2
(
∂vi

∂xj

+
∂vj

∂xi

), (18)

the variational formulation of (17) becomes∫
Ω

σ : ε(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v dS(x), (19)

valid for all t ∈ [0, T ] and all v ∈ H1
D(Ω). According to Lemma 1, we express the

constitutive law by the form given in (10)

σp
r : (qr − ṗr) ≤ Dr(qr)−Dr(ṗr) ∀ qr ∈ Q , r ∈ I , (20)

where (note that we only consider arguments with zero trace here)

Dr(qr) = σy
r ||qr|| . (21)

5



The integral form of (20) over Ω is given by∫
Ω

σp
r : (qr − ṗr) dx ≤

∫
Ω

Dr(qr) dx−
∫
Ω

Dr(ṗr) dx. (22)

We equivalently replace v by v− u̇ in the force equilibrium (19), sum the inequalities
(22) over r and subtract (19) to obtain∫

Ω

σ : (ε(v)−
∑
r∈I

qr)) dx−
∫
Ω

σ : (ε(u̇)−
∑
r∈I

ṗr) dx

+
∑
r∈I

∫
Ω

σb
r : (qr − ṗr) dx+

∑
r∈I

∫
Ω

Dr(qr) dx−
∑
r∈I

∫
Ω

Dr(ṗr) dx

−
∫
Ω

f · (v − u̇) dx−
∫
ΓN

g · (v − u̇) dS(x) ≥ 0.

(23)

In the case of a single yield surface, i.e., I = {1}, this corresponds to the primal
variational formulation discussed in Section 7.1 of [HR99]. Next, we eliminate σ =
Ce = C(ε(u) − p), σb

r = Hrpr and collect the remaining unknowns as a vector of
functions

w = (u, (pr)r∈I) .

We consider w as an element of the Hilbert space (the scalar product will be defined
below)

H = H1
D(Ω)×

∏
r∈I

Q . (24)

Writing z = (v, (qr)r∈I), we define a bilinear form a(·, ·), a linear functional `(·) and
a nonlinear functional ψ(·) by

a : H×H → R, a(w, z) =

∫
Ω

C(ε(u)−
∑
r∈I

pr) : (ε(v)−
∑
r∈I

qr) dx+

+
∑
r∈I

∫
Ω

Hrpr : qr dx,

`(t) : H → R, 〈`(t), z〉 =

∫
Ω

f(t) · v dx+

∫
ΓN

g(t) · v dS(x),

ψ : H → R, ψ(z) =
∑
r∈I

∫
Ω

Dr(qr) dx.

(25)

From (23) we thus obtain the time-dependent variational inequality

a(w(t), z − ẇ(t)) + ψ(z)− ψ(ẇ(t)) ≥ 〈`(t), z − ẇ(t)〉 , for all z ∈ H. (26)

We assume zero initial conditions

w(0) = 0 . (27)

We thus have arrived at the following formulation of the boundary value problem
of quasi-static elastoplasticity.
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Problem 1 (BVP of quasi-static multi-surface elastoplasticity).
For given ` ∈ H1(0, T ;H∗) with `(0) = 0, find w ∈ H1(0, T ;H) with w(0) = 0, such
that (26) holds for almost all t ∈ (0, T ).

The case of infinitely many surfaces (15) again leads to Problem 1, see [Val02].
We set

H = H1
D(Ω)× L2

µ(I;Q), (28)

where

L2
µ(I;Q) := {f | f : I → Q,

∫
r∈I

||fr||2L2 dµ(r) <∞}.

The linear functional `(·) is defined as in (25). The bilinear form a(·, ·) and the
nonlinear functional ψ(·) are given by

a : H×H → R, a(w, z) =

∫
Ω

C
(
ε(u)−

∫
I

pr dµ(r)
)

:
(
ε(v)−

∫
I

qr dµ(r)
)
dx+

+

∫
Ω

∫
I

Hrpr : qr dµ(r) dx,

ψ : H → R, ψ(z) =

∫
Ω

∫
I

Dr(qr) dµ(r) dx.

(29)

4 Existence and Uniqueness

In this section, we will prove the unique solvability of Problem 1. We pose the nat-
ural assumption that the elastic and hardening tensors are symmetric and positive
definite,

ξ : Cλ = Cξ : λ for all ξ, λ ∈ Rd×d,

ξ : Hrλ = Hrξ : λ for all ξ, λ ∈ Rd×d, r = 1, . . . ,M,
(30)

and there exist constants c, hr > 0 such that

Cξ : ξ ≥ c||ξ||2 for all ξ ∈ Rd×d,

Hrξ : ξ ≥ hr||ξ||2 for all ξ ∈ Rd×d, r = 1, . . . ,M.
(31)

We now state the main theorem of this paper.

Theorem 1. Assume that (30) and (31) hold, let ` ∈ H1(0, T ;H∗) with `(0) = 0.
Then there exists a unique solution w ∈ H1(0, T ;H) of Problem 1.

We will prove that Theorem 1 is implied by the following theorem, which in turn
constitutes a special case of Theorem 7.3 in [HR99].

Theorem 2 ([HR99]). Let H be a Hilbert space, a : H × H → R be a bilinear
form that is symmetric, bounded, and H-elliptic; ` ∈ H1(0, T ;H∗) with `(0) =
0; and ψ : H → R nonnegative, convex, positively homogeneous, and Lipschitz
continuous. Then there exists a unique w ∈ H1(0, T ;H) with w(0) = 0 which
satisfies the variational inequality (26) for almost all t ∈ (0, T ).
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In order to prove Theorem 1, we have to prove that the assumptions of Theorem
2 are satisfied. As mentioned above, for a finite index set I = {1, . . . ,M} we set

H = H1
D(Ω)×

M∏
r=1

Q . (32)

The scalar product and the induced norm are given by

(w, z)H := (u, v)H1 +
M∑

r=1

(pr, qr)L2 , ||w||2H := (u, u)2
H1 +

M∑
r=1

(pr, pr)
2
L2 ,

where

(pr, qr)L2 =

∫
Ω

pr : qr dx , ‖pr‖2
L2 = (pr, pr)L2 .

Proposition 1 (Boundedness of the bilinear form a(·, ·)).
The bilinear form a(·, ·) is bounded in the space H,

|a(w, z)| ≤
(
(M + 1)||C||+ max

r=1,...,M
||Hr||

)
||w||H||z||H. (33)

Proof. We have∣∣∣∣∣∣
∫
Ω

(
C(ε(u)−

M∑
r=1

pr)
)

:
(
ε(v)−

M∑
r=1

qr

)
dx

∣∣∣∣∣∣
≤ ‖C‖ · ‖ε(u)−

M∑
r=1

pr‖L2 · ‖ε(v)−
M∑

r=1

qr‖L2 . (34)

Because (
∑M

r=0 ar)
2 ≤ (M + 1)

∑M
r=0 a

2
r in R, and because ‖ε(u)‖L2 ≤ ‖u‖H1 , we

have

‖ε(u)−
M∑

r=1

pr‖2
L2 ≤

(
‖ε(u)‖L2 +

M∑
r=1

‖pr‖L2

)2

≤ (M + 1)

(
‖ε(u)‖2

L2 +
M∑

r=1

‖pr‖2
L2

)
≤ (M + 1)‖w‖2

H , (35)

likewise for the rightmost term in (34). Moreover, we have

∣∣∣ M∑
r=1

∫
Ω

Hrpr : qr dx
∣∣∣ ≤ ( max

r=1,...,M
||Hr||

) M∑
r=1

‖pr‖L2‖qr‖L2 , (36)

and
M∑

r=1

‖pr‖L2‖qr‖L2 ≤

(
M∑

r=1

‖pr‖2
L2

) 1
2
(

M∑
r=1

‖qr‖2
L2

) 1
2

≤ ‖w‖H‖z‖H . (37)

Putting together (34) – (37), we obtain the assertion.

8



We now turn to the problem to find an ellipticity constant ce > 0 satisfying

a(w,w) ≥ ce||w||2H for all w ∈ H.

We first determine the largest constant k(M), M ∈ N, such that

(
x0 −

M∑
r=1

xr

)2

+
M∑

r=1

x2
r ≥ k(M)

M∑
r=0

x2
r (38)

holds for all x0, x1, . . . , xM ∈ R. Indeed, we have

(
x0 −

M∑
r=1

xr

)2

+
M∑

r=1

x2
r = xTAx, (39)

where

A = D + a⊗ a , D = diag(0, 1, . . . , 1) , a = (1,−1, . . . ,−1) . (40)

Thus, the optimal constant k(M) in (38) is equal to the smallest eigenvalue of A,
which we will compute with the aid of the following Lemma.

Lemma 2. Let D ∈ RN×N be a diagonal matrix, D = diag (d1, . . . , dN), dj 6= 0 for
j = 1, . . . , N , let a ∈ RN . Then there holds

det(D + a⊗ a) = (
N∏

j=1

dj)(1 +
N∑

j=1

a2
j/dj). (41)

Proof. The assertion follows from the identity

det(D + a⊗ a) = det

(
D + a⊗ a −a

0 1

)
= det

(
D −a
aT 1

)
= det

(
D −a
0 1 +

∑N
j=1 a

2
j/dj

)
.

(42)

To see that the second equality holds, for j = 1, . . . , N we multiply the last column(
−a
1

)
of B :=

(
D −a
aT 1

)
by −aj and add it to the j-th column of B. Similarly, we obtain the third inequality
in (42), if for j = 1, . . . , N we multiply the j-th row of B by −aj/dj and add it to
the last row of B.

We now determine the smallest eigenvalue λmin of A in (40). By (39), we obvi-
ously have λmin > 0. By Lemma 2 we have, if λ 6= 0, 1,

det(A− λI) = −λ(1− λ)M(1 +
1

−λ
+

M

1− λ
). (43)
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M k
1 0.3819
2 0.2679
3 0.2087
4 0.1715
5 0.1458

10 0.0839
100 0.0098

1000 9.98 10e-4

Table 1: Values of k for different values of M .

Besides 0 and 1, the zeroes of (43) are given by λ1,2 = 1 + M
2
± 1

2

√
4M +M2. Thus,

k(M) = λmin = 1 +
M

2
− 1

2

√
4M +M2. (44)

Table 1 displays some values of k. Now we prove the ellipticity of the bilinear form
a(·, ·). By Korn’s inequality,∫

Ω

||ε(u)||2 dx ≥ K||u||2H1 for all u ∈ H1
D(Ω) (45)

holds for some constant K = K(Ω, d).

Proposition 2 (Ellipticity of the bilinear form a(·, ·)).
The bilinear form a(·, ·) is H-elliptic,

a(w,w) ≥
(
k(M) min{c, h1, . . . , hM}min{1, K(Ω, d)}

)
||w||2H, (46)

where k(M) is given in (44) and c, hr are given in (31).

Proof. We can bound the integrand in the scalar product a(w,w) from below as

C(ε(u)−
M∑

r=1

pr) : (ε(u)−
M∑

r=1

pr)+
M∑

r=1

Hrpr : pr ≥ c||ε(u)−
M∑

r=1

pr||2 +
M∑

r=1

hr||pr||2

≥ min{c, h1, . . . , hM}
(
||ε(u)−

M∑
r=1

pr||2 +
M∑

r=1

||pr||2
)
. (47)

The assertion now follows from (38) and Korn’s inequality. Note that, if (38) is valid
for all scalars xr ∈ R, it is also valid for all tensors xr ∈ Rd×d.

The functional

ψ(z) =
M∑

r=1

∫
Ω

Dr(qr) dx , Dr(qr) = σy
r ||qr|| , (48)

is a convex, nonnegative and positively homogeneous functional, because Dr has
those properties.
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Proposition 3 (Lipschitz continuity of the functional ψ(·)).
The functional ψ(·) is a Lipschitz continuous functional in the space H with the
Lipschitz constant

L =
(

max
r=1,...,M

σy
r

)
meas(Ω)

1
2 M

1
2 . (49)

Proof. Let us define z1 = (v1, q1
1, . . . , q

1
M), z2 = (v2, q2

1, . . . , q
2
M). Then

|ψ(z1)− ψ(z2)| =
M∑

r=1

∣∣∣ ∫
Ω

σy
r (||q1

r || − ||q2
r ||) dx

∣∣∣
≤
(

max
r=1,...,r

σy
r

) M∑
r=1

∫
Ω

||q1
r − q2

r || dx. (50)

Moreover,

M∑
r=1

∫
Ω

||q1
r − q2

r || dx ≤ meas(Ω)
1
2

M∑
r=1

‖q1
r − q2

r‖L2

≤ meas(Ω)
1
2M

1
2

(
M∑

r=1

‖q1
r − q2

r‖2
L2

) 1
2

. (51)

Putting (50) and (51) together, the assertion follows.

We now have shown that all assumptions of Theorem 2 are satisfied in Problem
1. Thus, Theorem 1 is proved.

5 The Case of Infinitely Many Surfaces

The main existence and uniqueness theorem (Theorem 1) can be extended to the
case of infinitely many surfaces given by (28) and (29). We present the results
corresponding to Propositions 1, 2 and 3 and sketch the changes in the arguments,
more details are given in [Val02]. Firstly, note that the estimate (35) in the proof
of the boundedness of a(·, ·) can be modified to

||ε(u)−
∫
I

pr dµ(r)||2L2 ≤2
(
||ε(u)||2L2 + µ(I) ·

∫
I

||pr||2L2 dµ(r)
)

≤2 max{1, µ(I)}(||ε(u)||2L2 + ‖p‖2
L2

µ(I;Q)) .

(52)

and consequently the constant (M+1) in Proposition 1 is replaced by 2 max{1, µ(I)},
i.e., the following proposition holds.

Proposition 4 (Boundedness of the bilinear form a(·, ·), case of infinitely
many surfaces).
The bilinear form a(·, ·) is bounded in the space H,

a(w, z) ≤
(
2 max

{
1, µ(I)

}
||C||+ sup

r∈I
||Hr||

)
||w||H||z||H. (53)
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Secondly, in order to prove the ellipticity of the bilinear form a(·, ·) we will
determine a constant k(µ) such that(

x0 −
∫
I

xr dµ(r)
)2

+

∫
I

x2
r dµ(r) ≥ k(µ)

(
x2

0 +

∫
I

x2
r dµ(r)

)
. (54)

holds for all x0, xr ∈ R, r ∈ I,
∫
I

x2
r dµ(r) <∞. Indeed, applying the argument from

[HR99], page 168, the left side of (54) can be bounded from below as follows,(
x0 −

∫
I

xr dµ(r)
)2

+

∫
I

x2
r dµ(r)

= x2
0 +

(∫
I

xr dµ(r)
)2

− 2x0

(∫
I

xr dµ(r)
)

+

∫
I

x2
r dµ(r)

≥ x2
0 +

(∫
I

xr dµ(r)
)2

− dx2
0 −

1

d

(∫
I

xr dµ(r)
)2

+

∫
I

x2
r dµ(r)

≥ (1− d)(x0)
2 +

[
(1− 1

d
)µ(I) + 1

] ∫
I

x2
r dµ(r).

(55)

Here d ∈ (0, 1) is arbitrary, and we have used the inequality 2ab ≤ da2+1
d
b2 for all a, b ∈

R and the Cauchy-Schwarz inequality(∫
I

xr dµ(r)
)2

≤
∫
I

1 dµ(r) ·
∫
I

x2
r dµ(r) = µ(I)

∫
I

x2
r dµ(r).

Now, for all d ∈ ( µ(I)
1+µ(I)

, 1) we have min{1−d, 1−µ(I)1−d
d
} > 0. Consequently, (54)

holds if we set

k(µ) = max
d∈(

µ(I)
1+µ(I)

,1)

min

{
1− d, 1− µ(I)

1− d

d

}
=

1

2

(√
(µ(I))2 + 4µ(I)− µ(I)

)
.

(56)

The following proposition holds.

Proposition 5 (Ellipticity of the bilinear form a(·, ·), case of infinitely many
surfaces).
The bilinear form a(·, ·) is H-elliptic,

a(w,w) ≥
(
k(µ) min{c, inf

r∈I
{hr}}min{1, K(Ω, d)}

)
||w||2H, (57)

where k(µ) is given in (56) and c, hr are given in (31).

The extension of the proof of Proposition 3 is straightforward.

Proposition 6 (Lipschitz continuity of the functional ψ(·), case of infinitely
many surfaces).
The functional ψ(·) is Lipschitz continuous on H with the Lipschitz constant

L = sup
r∈I

{σy
r}meas(Ω)1/2µ(I)1/2. (58)
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