
A CONVERGENT ADAPTIVE FINITE ELEMENT METHOD
FOR THE PRIMAL PROBLEM OF ELASTOPLASTICITY

CARSTEN CARSTENSEN∗†, ANTONIO ORLANDO†, AND JAN VALDMAN‡

Abstract. The boundary value problem representing one time step of the pri-
mal formulation of elastoplasticity with positive hardening leads to a variational
inequality of the second kind with some non-differentiable functional. This paper
establishes an adaptive finite element algorithm for the solution of this variational
inequality that yields the energy reduction and, up to higher order terms, the
R−linear convergence of the stresses with respect to the number of loops. Applica-
tions include several plasticity models: linear isotropic-kinematic hardening, linear
kinematic hardening, and multisurface plasticity as model for nonlinear hardening
laws. For perfect plasticity the adaptive algorithm yields strong convergence of
the stresses. Numerical examples confirm an improved linear convergence rate and
study the performance of the algorithm in comparison with the more frequently
applied maximum refinement rule.

1. Introduction

The efficient numerical treatment of problems with poor regularity of the solution
can be realized with adaptive mesh refinement techniques based on a posteriori error
estimators. An h−finite element adaptive algorithm consists of succesive loops of
the form

(1.1) SOLVE → ESTIMATE → MARK → REFINE

designed to produce with less computational effort more efficients meshes by targeted
local refinements. The use of the algorithm (1.1), however, is theoretically justified
if starting from any initial coarse mesh, one can insure its convergence and establish
also the convergence rate. In fact, from approximation theory, it is known that
given a separable Hilbert space V and a sequence of finite dimensional subspaces V`

dense in V , the Ritz projection of u onto V` (and hence the FEM in a typical linear
elliptic problem) can converge arbitrarily slow [9]. The convergence analysis of the
algorithm (1.1) is, therefore, neither trivial nor implied by the convergence of the
FEM but it depends on algorithmic details. In an adaptive finite element method
(hereafter referred to as AFEM) the mesh size can stay, in fact, bounded well away
from zero. This enforces novel arguments to prove the convergence of AFEMs based
on a posteriori error estimates.

The convergence analysis of (1.1) started with the pioneering work of [1] for a two-
point elliptic boundary value problem and with the step MARK realized by the max
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refinement rule. This marking rule currently employed in the engineering literature
consists in looking at the elements with the largest error and refining these in order
to achieve a better accuarcy. Let η2 :=

∑

M η2
M denote a typical reliable error

estimator with local contributions ηM associated with an edge, face, or element M
in the current mesh, the max refinement rule marks a subset M according to

(1.2) L ∈ M if and only if ηL ≥ Θ max
M

ηM

with 0 ≤ Θ ≤ 1. The analysis of [1], however, does not provide information on the
convergence rate and its extension to higher dimensions still remains unsolved. It is
only after the contribution of Dörfler [17] with the introduction of a new marking
strategy for error reduction (hereafter referred to as bulk criterion or fixed fraction
criterion) that the convergence analysis of AFEMs has experienced significant de-
velopment. With such criterion, one defines the set M of the marked objects using
the rule

(1.3)
∑

M∈M
η2

M ≥ Θ η2

with 0 ≤ Θ ≤ 1. The condition (1.3) together with local discrete efficiency esti-
mates, and the Galerkin orthogonality yields a linear error reduction rate for the
energy norm towards a preassigned tolerance TOL in finite steps for the Poisson
problem. In [17] the result was established under the additional condition that the
initial mesh was sufficiently refined to resolve data within a certain tolerance, called
‘mesh finess’. This condition on the initial mesh, however, is too restrictive since
it can produce an initial overrefinement, in contrast with computational experience
showing convergence of (1.1) also starting from an initial very coarse mesh. In a
series of papers [18, 27, 28, 29] it was realized that the condition on the initial mesh
could be removed provided that one can ensure data oscillation reduction. This
was achieved by refining with one interior node (rule bisec5(T) below) each ele-
ment marked for error reduction and refine possibly additional elements to enforce a
linear oscillation decay. Within the same framework, generalizations to the Raviart-
Thomas and to the Crouzeix-Raviart finite element for the Poisson equation have
also been considered in [12] and [13], respectively. The lack of conformity and of the
Galerkin orthogonality are therein resolved by means of new local discrete efficiency
estimates and a quasi-orthogonality condition expressed in terms of data oscillations.
In the extension of the analysis to the nonlinear Laplacian, the lack of orthogonality
is bypassed in [38] by expressing the problem as a minimization of a suitable energy
functional J that allows the discrete error on the energy J(w`) − J(w`+1) to be
related to the discrete error ‖w` − w`+1‖2 with w` and w`+1 conforming finite ele-
ment approximations on the triangulations T` and T`+1, respectively. The condition
(1.3) together with the reliability estimate, the boundeness of J from below, and
the observation that (J(w`))`∈N is a Cauchy sequence concludes the convergence of
the adaptive algorithm. This analysis, however, does not provide information on the
convergence rate. Based also on (1.3) [9] presents a thorough convergence analysis of
conforming adaptive finite element methods for uniformly convex and degenerated
(i.e. not strictly) convex differentiable minimization problems, with applications to
relaxed microstructures.
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In this paper we also adopt (1.3) and we aim at a proof of convergence of AFEM
with indication of the rate of convergence for the primal formulation of plasticity.
Applications include several plasticity models: linear isotropic-kinematic hardening,
linear kinematic hardening, multisurface plasticity as model for nonlinear hardening
laws, and perefct plasticity. Following ideas of [38, 9] the problem is transformed in
the minimization of a uniformly convex functional J . At variance of those works,
however, the energy functional J is not differentiable. Exploiting properties of J , the
bulk criterion (1.3), and the reliability of a new edge-based residual error estimate,
we obtain the following results:

(i) Energy reduction: for some data oscillations osc2
` ≥ 0 and positive constants ρE,

C with ρE < 1 there holds

J(w`+1) − J(w) ≤ ρE(J(w`) − J(w)) + Cosc2
` .

(ii) R−linear convergence for the stresses: up to oscillation terms there holds

‖|σ − σ`|‖C−1;Ω ≤ α` for ` = 0, 1, 2 · · · ,

with α` → 0 and linear convergent, and ‖| · |‖C−1;Ω the energy norm induced by the
Hook tensor C.

Unlike [27, 29] that consider an element-based data oscillation, we consider the node-
patchwise definition of the data oscillation proposed by [8]. Such definition arises
naturally from the reliability estimate and discloses the role of the data oscillation
on the error reduction. Using a criterion similar to (1.3) for the control of the oscil-
lations, we also establish the following result:

(iii) Oscillation reduction: there exists a positive constant ρ < 1 such that

osc2
`+1 ≤ ρ osc2

` .

The remaining part of the paper is organised as follows. Section 2 introduces the
primal problem of elastoplasticity. Each time step of the initial boundary value
problem results in a boundary value problem expressed as a variational inequality
and equivalently as a minimization of a uniformly convex nondifferentiable func-
tional for plasticity models with positive hardening. Section 3 presents a general
class of plasticity models that can be treated within the present framework. Section
4 describes the steps SOLVE and ESTIMATE with the introduction of the edge based
residual error estimate and proof of its reliability. The steps MARK and REFINE are
introduced in Section 5 together with the complete adaptive algorithm. The main
results of the paper on the energy reduction, the oscillation reduction, and the R-
linear convergence of the stresses are given in Section 6 together with the proof of
strong convergence of the stresses in the case of perfect plasticity. Numerical exam-
ples with applications to the two-yield multisurface plasticity and to a benchmark
problem with perfect plasticity validate our theoretical findings in Section 7 whereas
Section 8 concludes the paper with some final observations.

Remarks on the notation conclude this section. Let Rn×n
sym , n ∈ N, denote the set

of all real symmetric n × n matrices, τ : β =
∑n

i,j=1 τijβij = tr(τT β) represents the
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scalar product in Rn×n, and |τ | the corresponding norm. Given a definite positive
matrix A, |τ |A := (τ : Aτ)1/2 denotes a norm equivalent to |τ |. Given u, v ∈ Rm,
with Rm standing for either space of vectors or matrices, the symbol u ·v denotes the
inner product of the two elements of Rm. Let Ω be a bounded, open connected set in
Rd, for d = 2, 3 with a Lipschitz boundary ∂Ω, the Sobolev space H1(Ω; Rn×m) and
the Lebesgue space L2(Ω; Rn×m) with n,m ∈ N are defined in the usual way. The
space L2(Ω; Rn) is assumed equipped with the inner product (·, ·)L2(Ω;Rn) whereas
for u, v ∈ H1(Ω; Rn) there holds (u, v)H1(Ω;Rn) := (u, v)L2(Ω;Rn) + (Du,Dv)L2(Ω;Rn×d).

Given τ ∈ L2(Ω; Rn×n), set ‖|τ |‖A;Ω := (
∫

Ω
|τ |2

A
dx)1/2 = (τ, Aτ)

1/2

L2(Ω;Rn×n).

2. Setting of the problem

In this section we formulate the primal problem of associative rate-indipendent plas-
ticity in small strain. We focus on one typical step of an incremental procedure
applied to the solution of the evolution of the elastoplastic body.

2.1. The strong and primal weak formulation. Let Ω ⊂ Rd, d = 2, 3, represent
the reference configuration of an elastoplastic body with boundary ∂Ω = ΓD ∪ ΓN ,
and ν the outer unit normal. The boundary ∂Ω is split into a closed Dirichlet part
ΓD with positive surface measure and into a Neumann part ΓN := ∂Ω\ΓD (possibly
empty) where traction forces are prescribed by g ∈ L2(ΓN ; Rd). The strong form of
equilibrium conditions states that the stress field σ ∈ L2(Ω; Rd×d

sym) satisfies

(2.1) div σ + f = 0 in Ω, σν = g on ΓN ,

where f ∈ L2(Ω; Rd) denotes the applied volume force. We suppose, for sake of
simplicity, homogeneous geometric boundary conditions for the displacement field u
and introduce the following space of admissible displacements

V := {v ∈ H1(Ω; Rd) : v = 0 on ΓD},
equipped with the H1(Ω; Rd)–norm and boundary values to be interpreted in the
sense of the trace theorem; V is a closed subspace of H1(Ω; Rd).
Assuming the linear strain

ε(u) := sym(Du) = 1/2(Du + DuT )

split into an elastic e and plastic part p, i.e.

ε(u) = e + p ,

and introduced additional internal variables α ∈ Rm, the linear elastic law is defined
by the isotropic elasticity tensor C such that

Cδ = 2µδ + λ tr δ I for δ ∈ R
d×d
sym ,

and λ, µ being the Lamé material constants. The elasticity tensor C is elliptic in
the sense of

(2.2) κ|δ|2 ≤ Cδ : δ with κ =
1

dλ + 2µ
.

Denoting by A ∈ Rm the thermodynamic forces conjugate to α, we assume the
hardening law in the form A = Hα with the hardening moduli H such that Hα ·α >
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h|α|2 for α 6= 0 and h > 0. Upon the condition that C and H are piecewise constant
over Ω, we set

(2.3) Λ = min
x∈Ω

κ(x) and h = min
x∈Ω

h(x) .

Rate-independent plasticity models are specified by assigning the dissipation func-
tion j = j(p, α) as lowersemicontinuous (hereafter abreviated as lsc), convex, and
positively homogeneous of degree one, resulting in its non differentiability at the
point (0, 0). Without loss of generality, considering initial conditions equal to zero
in the time discrete form of the evolution law, the latter is expressed as

(2.4) (p, α) ∈ ∂j∗(σ,A) or in the dual form (σ,A) ∈ ∂j(p, α) ,

with j∗ Legendre-Fenchel transform of j, and ∂f subdifferential of the convex func-
tion f [22].

Remark 2.1. Let E := ∂j(0, 0) ⊂ Rd×d ×Rm, which is convex and closed, then du-

ality theory shows that j is the Legendre-Fenchel transform of the indicator function

of E and is referred to as support function of E. The set E is called elastic domain

and defines the set of admissible generalised stresses (σ,A) [25].

The primal problem of elastoplasticity of [32] assumes (u, p, α) as primary variables.
Choosing Q := {q ∈ L2(Ω; Rd×d

sym) : tr q = 0 a.e. in Ω} as space of the plastic strains

and M := L2(Ω; Rm) as space of the internal variables, we define the Hilbert space
H := V × Q × M equipped with the inner product

(w, z)H = (u, v)H1(Ω;Rd) + (p, q)L2(Ω;Rd×d) + (α, β)L2(Ω;Rm)

for w := (u, p, α) ∈ H, z := (v, q, β) ∈ H and norm ‖ · ‖H.

Let σ := C(ε(u) − p) and introduce

a : H×H → R, a(w, z) := (σ, ε(v) − q)L2(Ω;Rd×d) + (Hα, β)L2(Ω;Rm)(2.5)

b : H → R, b(z) := (f, v)L2(Ω;Rd) +

∫

ΓN

g · v ds(2.6)

ψ : H → R, ψ(z) :=

∫

Ω

j(q, β) dx .(2.7)

The weak form of the primal problem is then given by the following variational
inequality [21], usually referred to as of second kind [20]: Given b ∈ H∗, the dual of
H, find w = (u, p, α) ∈ H such that there holds

(2.8) b(z − w) ≤ a(w, z − w) + ψ(z) − ψ(w) for all z ∈ H .

The functional b is linear and bounded on H; ψ is convex, lsc, positively homoge-
neous on H, and non differentiable, whereas the bilinear form a is symmetric and
continuous on H. For ease of the presentation, we consider plasticity models such
that a is elliptic all over the space H with constant K, i.e.

(2.9) K‖z‖2
H ≤ a(z, z) for every z ∈ H .

Under the above assumptions, (2.8) has solution and is unique. The reader is referred
to [21, page 168] for a discussion on the more general case with the ellipticity holding
only on a closed convex cone of H.
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By taking q = p in (2.8) and choosing once v = u + r and then v = u − r for every
r ∈ V , we deduce the weak form of the equilibrium equations

(2.10) (σ, ε(v))L2(Ω;Rd×d) = b(v) for every v ∈ V .

Let the energy functional J : H 7→ R be defined as

(2.11) J(z) =
1

2
a(z, z) − b(z) + ψ(z) .

It is a standard result of optimization theory [20] showing that the variational in-
equality (2.8) is equivalent to the minimization problem

(2.12) w = arg min
z∈H

J(z) ,

and to the stationariety condition

(2.13) 0 ∈ ∂J(w) .

Since J(·) is sum of the lsc and uniformly convex function φ(·) := 1/2a(·, ·) − b(·)
and of the lsc and convex function ψ(·), then J itself is lsc and uniformly convex,
i.e., with the constant K from (2.9), there holds for every z, y ∈ H

(2.14) J(z) ≥ J(y) + 〈s, z − y〉 +
K

2
‖z − y‖2

H for every s ∈ ∂J(y) .

Proof of (2.14). Under the above assumptions on φ(·) and ψ(·), with φ(·) being
continuous on H in particular, the subdifferential calculus rule [19, page 26] gives

∂(φ + ψ) = ∂φ + ∂ψ .

As a result, for any s ∈ ∂J(y) there holds

(2.15) J(z)−J(y)−〈s, z−y〉 = φ(z)−φ(y)−〈sφ, z−y〉+ψ(z)−ψ(y)−〈sψ, z−y〉
with sφ ∈ ∂φ(y) and sψ ∈ ∂ψ(y) . Since ψ is convex and φ is differentiable, for every
z ∈ H, there holds

ψ(z) − ψ(y) − 〈sψ, z − y〉 ≥ 0 and 〈sφ, z − y〉 = a(y, z − y) − b(z − y) .

As a result, (2.15) is bounded from below by

1

2
a(z, z) − 1

2
a(y, y) − a(y, z − y) =

1

2
a(z − y, z − y) .

Accounting for (2.9), one obtains (2.14). ¤

3. Examples of rate-independent plasticity models

This section introduces several rate-independent plasticity models. For each of them
we give the expression of the dissipation functional and specify the dependence of
the constant K from (2.9).

3.1. Plasticity with combined isotropic/kinematic hardening. Let m = 1 +
d(d+1)/2, identify Rm ≡ Rd×d ×R, and assume α = (ξ, a) where ξ, generally taken
to be the plastic strain p as in this case, is the kinematic–type internal variable
conjugate of the back stress tensor χ, and a is the accumulated plastic strain with
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R as its dual variable. Introduce the elastic domain

(3.1) E := {(σ, χ,R) ∈ R
d×d
sym × R

d×d × R |φ(σ, χ,R) ≤ 0, R ≥ 0},
where φ(σ, χ,R) is the continuous and convex von-Mises yield function

(3.2) Φ(σ, χ,R) := | dev(σ − χ)| − (σy + R),

and σy > 0 is a material constant referred to as the yield stress. The support
function of E is then defined as follows

j(q, a) =

{

σy|q| if |q| − a ≤ 0 and tr q = 0,

∞ otherwise .

Also, we assume a linear hardening state law in the form

χ = Hp and R = Ha ,

with H definite positive and such that Hδ : δ ≥ h|δ|2, H the isotropic hardening
modulus, and we set H = min

x∈Ω
H(x) > 0. Then, the bounds (2.3), and Young

inequality show, with d ∈ (2Λ/(2Λ + h), 1) and K = min{CkornΛ(1 − d), Λ(1 −
1/d) + h, H}[21], that

a(z; z) ≥ Λ‖ε(v) − q‖2
L2(Ω;Rd×d) + h‖q‖2

L2(Ω;Rd×d) + H‖a‖2
L2(Ω;R)

≥ Λ(1 − d)‖ε(v)‖2
L2(Ω;Rd×d) + (Λ(1 − 1

d
) + h)‖q‖2

L2(Ω;Rd×d) + H‖a‖2
L2(Ω;R)

≥ K(‖v‖H1(Ω;Rd) + ‖q‖2
L2(Ω;Rd×d) + ‖a‖2

L2(Ω;R)) .

(3.3)

3.2. Kinematic hardening. As special case of the model described in the previous
section, we assume as single internal variable ξ the plastic strain p with the conjugate
back stress χ. Considering, as before, Von Mises plasticity with

E := {(σ, χ) ∈ R
d×d
sym × R

d×d | dev(σ − χ) − σy ≤ 0},
one obtains for the dissipation potential the following expression

(3.4) j(q) = σy|q| for tr q = 0 .

Following the same arguments as in the previous model, one easily constate the
ellipticity of a(z, z) all over the space H = V × Q with K = min{CkornΛ(1 −
d), Λ(1 − 1/d) + h} for d ∈ (2Λ/(2Λ + h), 1).

3.3. Multiyield plasticity. Multiyield surface plasticity models are often used to
model nonlinear kinematic hardening by a set of nested surfaces, each of which only
exhibits linear hardening [30], and represent the adequate constitutive framework
for e.g. single crystal plasticity [24, 34]. The corresponding rheological model is
displayed in Figure 1.
The plastic component is assumed to be given by

p =
∑

r∈I

pr with I := {1, 2, ...,M}, pr ∈ Q .

Correspondently, for the stress σ = Ce is assumed the decomposition σ = σp
r + σb

r

depending on the hardening mechanism r that is activated. The position of the set
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Figure 1. Multisurface plasticity: Rheological model
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Figure 2. Multisurface plasticity: Evolution law for the plastic
strain pr associated with the hardening mechanism r ∈ I. NEr

de-
notes the normal cone to Er [22]

Er of the admissible stresses σp
r = σ−σb

r associated with the hardening mechanism r
is defined by the stress σb

r related to pr by the linear hardening law σp
r = Hrpr, with

Hr a positive definite tensor of the hardening moduli such that Hrδ : δ > hmin,r|δ|2.
The plastic flow of each pr is described by the associative flow rule (see Figure 2)

σp
r ∈ Er, pr : (τr − σp

r ) ≤ 0 for all τr ∈ Er, r ∈ I.

For single yield surface, σb is referred to as back stress and one obtains the model
of Melan-Prager of linear kinematic hardening described in Scetion 3.2. In the
applications of this paper, each yield surface is of Von-Mises type, with σr

y value
of the treshold for yielding with the mechanism r, i.e. the corresponding set of
admissible stresses is defined as follows

Er = {τ ∈ R
d×d
sym : | dev τ | − σr

y ≤ 0},
with support function given by equation (3.4), i.e.,

(3.5) jr(q) = σr
y|q| with tr q = 0 .
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The model is transformed into the primary form of plasticity in [3] with w =
(u, (pr)r∈I) ∈ H := V × ∏

r∈I Q, and considering the following definition of the
bilinear form

a(w, z) := (σ, ε(v) − q)L2(Ω;Rd×d) +
∑

r∈I

(Hrpr, qr)L2(Ω;Rd×d) ,

and of the convex functional

ψ(z) :=
∑

r∈I

∫

Ω

σy
r |qr| dx .

In [3], the ellipticity of a is shown to hold over H with

K = k min {λmin, hmin,1, . . . , hmin,#I} min {1, CKorn} ,

where k > 0 depends on the cardinality, #I, of I and CKorn is the constant in the
Korn’s first inequality.

3.4. Perfect plasticity. The model of perfect plasticity corresponds to the case
of absence of hardening. Next, we recall some properties that will be useful in the
analysis of Section 6.4. Using the elastic law in the primal form of the evolution law
(2.4), one obtains for given ε

(3.6) 0 ≤ (ε − C
−1σ) : (σ − τ) for each τ ∈ E.

By rearranging the terms in (3.6) as follows

(3.7) C
−1σ : (σ − τ) ≤ ε : (σ − τ) for each τ ∈ E ,

and using Von Mises plasticity, equation (3.7) defines σ = σ(ε) as [15]

σ = (λ +
2µ

d
) tr(ε)I + 2µz(| dev ε|) dev ε ,

with z(x) = 1 − max{0, 1 − σy

2µx
}. The mapping ε 7→ σ is monotone and Lipschitz

continuous with L = 1/κ, i.e., there holds

|σ(ε1) − σ(ε2)| ≤ L|ε1 − ε2| .
Given the following strain energy function

W (ε) :=
1

2
ε : Cε − 1

4µ
max{0, | dev Cε| − σy}2 ,

one can verify

σ =
DW (ε)

Dε
.

Hence, W is C1(Rd×d
sym) with Lipschitz derivative.

4. The SOLVE & ESTIMATE step in AFEM

In this section we describe the steps SOLVE and ESTIMATE of (1.1). We first establish
a two side bounds on the error of the energy, valid for any internal approximation
to the variational inequality, which is then specialized to the finite element approxi-
mations considered in the paper. The section concludes with an edge-residual based
a posteriori error estimate and proof of its reliability.
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4.1. Internal approximation. Internal discrete approximations to (2.8) are ob-
tained by solving (2.8) over a finite dimensional subspace Hh of H. The discrete
problem then consists in finding wh = (uh, ph, αh) ∈ Hh such that

(4.1) b(zh − wh) ≤ a(wh, zh − wh) + ψ(zh) − ψ(wh) for all zh ∈ Hh,

which is also equivalent to the following minimization problem

(4.2) wh = arg min
zh∈Hh

J(zh) .

Let σ = C(ε(u)−p) be the continuous stress field corresponding to w = (u, p, α) ∈ H
solution of (2.8) and σh = C(ε(uh) − ph) the discrete stress field associated with
wh = (uh, ph, αh) ∈ Hh solution of (4.1). Then we have the following bounds on the
error of the energies.

1

2
‖|σ − σh|‖2

C−1;Ω ≤ J(wh) − J(w) ;(4.3)

J(wh) − J(w) ≤ min
zh∈Hh

a(wh, zh − w) − b(zh − w) + ψ(zh) − ψ(w) .(4.4)

Proof of (4.3). From (4.1) with z = wh, since Hh ⊆ H, after some rearrangements
one obtains

1

2
a(w − wh, w − wh) ≤ J(wh) − J(w) .

Expressing a(x, y) from (2.5) in terms of σh and σ finally yields (4.3).

Proof of (4.4). Using the expression of J from (2.11), simple rearrangements show

(4.5) J(wh) − J(w) =
1

2
a(wh + w,wh − w) − b(wh − w) + ψ(wh) − ψ(w).

Since 1/2a(wh − w,wh − w) > 0, (4.5) is bounded from above by the term

(4.6) a(wh, wh − w) − b(wh − w) + ψ(wh) − ψ(w) .

For every zh, (4.6) is also equal to

a(wh, wh−zh)−b(wh−zh)+ψ(wh)−ψ(zh)+a(wh, zh−w)−b(zh−w)+ψ(zh)−ψ(w)

thus, accounting for (4.1), one obtains (4.4). ¤

4.2. SOLVE: Space discretization and the finite element method. For ap-
proximating (2.8) by the finite element method, we introduce a regular triangulation
T of Ω̄ ⊂ Rd in the sense of Ciarlet [16, 2] in closed triangles such that

⋃

T∈T K = Ω̄,
two distinct elements T and T ′ in T are either disjoint, or share the common edge
E, or a common vertex, that is, hanging nodes are not allowed. Let E denote the
set of all edges in T , N the set of nodes in T and K the subset of free nodes, i.e. the
set of nodes that do not belong to ΓD. The set of interior edges of Ω are denoted by
E(Ω), the set of edges of the element T by E(T ), whereas those that belong to the
Dirichlet and Neumann boundary are denoted by E(ΓD) and E(ΓN), respectively.
Also, we denote by ωE the patch of elements having in common the edge E. We
use the symbols mE and mT for the midpoint of the edge E ∈ E and of the element
T ∈ T , respectively. Given any edge E ∈ E we assign one fixed unit normal νE; for
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E ∈ E(ΓD)∪E(ΓN) we choose νE = ν. In relation to νE we then define the elements
T+ ∈ T and T− ∈ T , with E ⊆ ∂T− ∩ ∂T+, depicted in Figure 3.

T+

E
nE

T-

Figure 3. Definition of the finite element domains T+ and T− in
relation to νE

Furthermore, given E ∈ E(Ω) with unit normal νE and v a vector field defined in Ω,
we denote by [v]E the jump of v across E in the direction νE, i.e.

[v]E(x) = v|T+
(x) − v|T−

(x) for x ∈ E and E ⊆ ∂T− ∩ ∂T+.

For any subset ω (patch, triangle, or edge), K(ω) denotes the set of free nodes that
belong to ω, whereas Pk(ω; Rm) is the vector space of all algebraic polynomials with
values in Rd for m = d and in Rd×d for m = d × d, defined on ω of total degree at
most k ∈ N. Then,

Pk(T ; Rm) := {vh ∈ L∞(Ω; Rm) : ∀T ∈ T , vh|T ∈ Pk(T ; Rm)}
represent the set of piecewise polynomials of degree at most k where piecewise is with
respect to the shape-regular triangulation T ; in general, the functions in Pk(T ; Rd)
are discontinuous.

For all the aforementioned definitions, whenever necessary, we will adopt the sub-
script ` to mean that they refer to the triangulation T` obtained after ` refinements.

For instance, let ω` be a patch of elements of T`, K`+1(
◦
ω`) denotes the set of free

nodes in T`+1 that belong to the interior of ω`.

The conforming finite element approximation of (2.8) is next obtained by considering
continuous piecewise affine functions

P1 := P1(T ; Rd) ∩ C(Ω; Rd) and V` := P1 ∩ V,

as approximation for the displacement field u, piecewise constant functions with
zero trace

Q0 := {q ∈ P0(T ; Rd) : tr(q) = 0}
as approximation of the plastic strain p, and the space of piecewise constant functions

P0 := P0(T ; Rd)

for the approximation of the internal variables α.

For future derivations, we need to know that there exists a quasi-interpolation op-
erator J : V 7→ V` as in [6, 11] with the following properties for all ϕ ∈ V and

11



f ∈ L2(Ω; Rd)

‖∇Jϕ‖L2(Ω;Rd×d) + ‖h−1
T (ϕ − Jϕ)‖L2(Ω;Rd) ≤ C‖∇ϕ‖L2(Ω;Rd×d) ,

‖h−1/2
E (ϕ − Jϕ)‖L2(ΓN ;Rd) ≤ C‖∇ϕ‖L2(Ω;Rd×d) ,

∫

Ω

f · (ϕ − Jϕ) dx ≤ C‖∇ϕ‖L2(Ω;Rd×d(
∑

z∈K
h2

z min
a∈Rd

‖f − a‖2
L2(Ωz ;Rd))

1/2 ,

(4.7)

where the constant C depends only on the shape regularity of the mesh T . In (4.7),
hT and hE denote the local mesh-sizes, with hT |T := hT := diam(T ) for T ∈ T ,
and hE |E := diam(E), whereas hz := diam(Ωz) defines the patch-size for each node
z ∈ K. As for the definition of Ωz for z ∈ K, for each fixed node z ∈ N \K we choose
a free node ζ(z) ∈ K and let ζ(z) = z if z ∈ K. In this way we realize a partition of
N in classes I(z) := {z ∈ N : ζ(z) = z}. Let (ϕz)z∈N denote the nodal-shape basis
of the space P1, we then set

(4.8) ψz :=
∑

ζ∈I(z)

ϕz and Ωz := {x ∈ Ω : ψz(x) > 0} ,

with ω̄ the closure of ω. Given z ∈ N , let

ωz := {x ∈ Ω : ϕz(x) > 0} = {T ∈ T : z ∈ T} ,

then for z ∈ K,

Ωz =
⋃

ξ∈I(z)

ωξ .

See Figure 4 for an illustration of ωz and Ωz. The functions (ψz)z∈K realize a partition
of unity on Ω and are used to define J . For further details on the construction of
J we refer to [6].

We conclude this section by highlighting some properties of the finite element so-
lution. Assuming H` := V` × Q0 × P0 ⊂ H as finite element space, and under the
additional assumption that C and H are piecewise constant with respect to T`, we
have

(4.9) J(w`) − J(w) ≤ (σ` − σ, ε(v` − u))L2(Ω;Rd×d) for all v` ∈ V` .

with w ∈ H and w` ∈ H` solution of (2.8) and (4.1), respectively.

Proof of (4.9). Given w = (u, p, α) solution of (2.8), consider z` = (v`, q`, β`) ∈ H`

with (q`, β`)|T := 1/|T |
∫

T
j(p, α) dx. Then Jensen’s inequality gives

j(q`, β`) ≤
1

|T |

∫

T

j(p, α) dx,

the integration over T and the definition of ψ from (2.7) yields

(4.10) ψ(z`) ≤ ψ(w) .

In the remaining terms of a(w`, w−z`) the differences p−q` and α−β` have integral
mean zero over each element. Hence, (σ`, p−q`) = 0 and (Hα`, α−β`) = 0 as C and
H are piecewise constant with respect to T0, and σ`|T , p`|T , and α`|T are constant
over each T ∈ T`. These arguments and (4.10) in (4.4) show finally (4.9). ¤
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GD

z

T
W

1

2

Figure 4. For the triangulation of Ω shown in Figure, by assigning
the fixed node 1 to the free node z, it is Ωz = Ω whereas ωz := {T ∈
T : z ∈ T} = Ω \ T .

4.3. Data oscillations. For the volume load f and mesh T`, we define for j ∈ K`

the patchwise oscillations of f as follows [8],

(4.11) osc2
`(f) :=

∑

j∈K`

osc2
j,`(f) with osc2

j,`(f) = h2
j,` ‖f − fj,`‖2

L2(Ωj,`;Rd) .

Here fj,` is the L2-projection of f onto the constant functions defined over Ωj,`,
that is fj,` = 1/|Ωj,`|

∫

Ωj,`
f dx with Ωj,` from (4.8). Whenever we need to point

out the domain of definition, we will use the notations oscj,`(f ; Ωj,`) for oscj,`(f)
and osc`(f ; Ω) for osc`(f). Furthermore, for T`+1 obtained as refinement of T` we
denote by osc`+1(f ; Ωj,`) the oscillations on the node patches of T`+1 contained in
the interior of Ωj,`, that is

(4.12) osc2
`+1(f ; Ωj,`) :=

∑

i∈K`+1(
◦

Ωj,`)

osc2
i,`+1(f ; Ωi,`+1) ,

with K`+1(
◦
Ωj,`) defined in Section 4.2.

For the boundary tractions g on ΓN we simply define

(4.13) osc2
`(g) :=

∑

E∈E(ΓN )

osc2
`,E(g) with osc2

`,E(g) := ‖h1/2
E (g − gE)‖2

L2(E;Rd) ,

where gE := 1/hE

∫

E
g ds.

4.4. ESTIMATE: A posteriori error estimator and its reliability. For each
E ∈ E`, let

(4.14) η` := (
∑

E∈E`

η2
E)1/2 with η2

E := ‖h1/2
E JE‖2

L2(E;Rd) ,
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and

(4.15) JE :=















[σ`νE] if E ∈ E(Ω),

0 if E ∈ E(ΓD),

g − σ`ν if E ∈ E(ΓN).

Then there exists a positive constant Crel depending on the Hook tensor C, hardening
moduli H, and regularity of the mesh such that there holds

(4.16) ‖|σ − σ`|‖C−1;Ω ≤ Crel(η` + osc`(f))

Proof of (4.16). Comparing (2.10) with the discrete counterpart shows that for J
defined in Section 4.2 and for all v ∈ V , it is

(4.17) (σ − σ`, ε(J (v)))L2(Ω;Rd×d) = 0 .

Combining (4.3) and (4.4), accounting for (4.9) and (4.17), after some rearrange-
ments and using the estimates (4.7) one obtains

1

2
‖|σ − σ`|‖2

C−1;Ω ≤
∑

T∈T

∫

T

f · (e − J e) dx +
∑

E∈E

∫

E

JE · (e − J e) ds

≤ C‖∇e‖L2(Ω;Rd×d)

(

(
∑

z∈K
osc2

z(f))1/2 +
(

∑

E∈E
‖h1/2

E JE‖2
L2(E;Rd)

)1/2
)

,

where e := u−u` and C is the interpolation constant from (4.7). The Korn inequality
‖∇e‖L2(Ω;Rd×d) ≤ CKorn‖ε(e)‖L2(Ω;Rd×d) with CKorn depending on Ω and ΓD, the
bound ‖ε(e)‖L2(Ω;Rd×d) ≤ CHC‖σ − σ`‖L2(Ω;Rd×d) from [23, 14] with CHC depending
on the hardening moduli and the Hook tensor, and the inequality

‖σ − σ`‖L2(Ω;Rd×d) ≤ 1/
√

Λ‖|σ − σ`|‖C−1;Ω

from (2.3) proves (4.16) with Crel = 2CCKornCHC/
√

Λ.

Remark 4.1. Explicit expressions for the constant CHC can be found in [14]. For

single yield surface with linear kinematic hardening, one obtains CHC = 1/(2µ)+2/k,

with k the hardening moduli.

5. The MARK & REFINE step in AFEM

This section presents the two basic ingredients of the adaptive algorithm (1.1): the
step MARK and REFINE, and then concludes with an example of an adaptive algorithm.

5.1. MARK: Marking strategies for error and data oscillation reduction.
Error and data oscillation reduction depend crucially on the strategy used to select
edges and node-patches to be refined. The idea is to give criteria that guarantee a
fixed reduction rate independent on the refinement level. In this paper we consider
the marking strategy introduced in [17] to enforce error reduction. Given Θ ∈ (0, 1),
we select a subset M` of E` in the current triangulation T` with

(5.1) Θη2
` ≤

∑

E∈M`

η2
E .
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For the control of data oscillations, following [27, 28], we consider criteria similar to
(5.1). For the oscillations of f , given Θf ∈]0, 1[, we therefore select a set of nodes

K̂` ⊂ K` such that for the associated patches there holds

(5.2) Θfosc2
`(f) ≤

∑

z∈K̂`

osc2
`,z(f) .

In a similar manner, for the oscillations of the Neumann boundary traction, we
select a set Ê`(ΓN) ⊆ E`(ΓN) of edges E ∈ E`(ΓN) with

(5.3) Θgosc2
`(g) ≤

∑

E∈Ê`(ΓN )

osc2
`,E(g) .

5.2. REFINE: Refinement rules and closure algorithm. It is important that
the triangles (marked for refinement) are divided according to some rules that insure
that the angles remain bounded away from 0 and π. This is to avoid bad conditioning
of the stiffness matrix and large growth of the interpolation error, respectively [26,
33]. With each triangle T ∈ T` we therefore associate an edge RE(T ) referred to as
the reference edge of T , which can be the longest edge [33] or the one defined as in
Figure 5 according to how the element T is refined [7]. We then use the rule that
if the edge E ∈ T is marked, then one must mark also its reference edge RE(T ),
and the type of refinement depends on the number of edges that are marked, if not
specified otherwise by requiring bisec5(T).

red

blueLblueR

bisec5

green

Figure 5. Type of refinement rules for the triangular element T .
The bold line denotes the reference edge for the children elements
after refinement of T .

Finally, we call closure algorithm the procedure that enlarges the set of marked
edges so that using the above refinement rule we obtain a regular triangulation, i.e.
without hanging nodes.

5.3. Adaptive algorithm. Given an initial triangulation T0 with C and H constant
over each element T ∈ T0, we consider triangulations T` built according to the
following algorithm.
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Algorithm 5.1.
Input a coarse shape-regular triangulation T0 of Ω into triangles with set of edges

E0, 0 < Θ < 1, and repeat (a) − (g).

(a) SOLVE: Solve the nonlinear discrete problem,

w` = arg min
z`∈H`

J(z`) and set σ` := C(ε(u`) − p`) .

(b) ESTIMATE: Given any E ∈ E` with measure hE, compute

η2
E := hE

∫

E

|JE|2 ds for each E ∈ E` and η` = (
∑

E∈E`

η2
E)1/2 .

(c) MARK: Select a subset M` of E` in the current triangulation T` with

Θη2
` ≤

∑

E∈M`

η2
E .

(d) MARK: Control data oscillations osc`(f) and osc`(g) by selecting node- and edge-

patches according to (5.2) and (5.3), respectively.

(e) REFINE: Refine all the elements T with some edge in M` with bisect5(T)

[27, 9]; Red-refine the elements of the selected node- and edge-patches that have not

already been refined with bisect5(T).

(f) Run the closure algorithm with red-green-blue refinement [40]. Denote with T`+1

the resulting shape-regular triangulation with associated discrete space H`+1.

(g) Set ` := ` + 1 and go to (a).

Output discrete stress fields σ0, σ1, ...σ`, ... in L2(Ω; Rd×d
sym) as approximation to

σ = C(ε(u) − p).

Remark 5.1. Notice that the algorithm is the same as in linear elasticity, for the

estimate η is related only to the norm of the residual in the equilibrium equations.

6. Energy reduction, data oscillation reduction, and convergence

of stresses

In this section we present the main results of the paper: energy reduction, data
oscillation reduction, and the strong convergence of the stresses (σ`)`∈N produced by
the Algorithm 5.1.

6.1. Energy reduction. With the energy J defined from (2.11) and δ` := J(w`)−
J(w), the Algorithm 5.1 enforces a fixed rate reduction of the energy (up to control
of data oscillations). This means that for the family of triangulations T` generated
by the Algorithm 5.1 there exist positive constants ρE, C with ρE < 1, depending
on the regularity of the initial triangulation T0 and on the material parameters, such
that

(6.1) δ`+1 ≤ ρEδ` + C(osc2
`(f) + osc2

`(g)).

The proof of (6.1) relies on establishing first the following local discrete efficiency
estimates with positive constants C1, C2, and CM , with Ci, i = 1, 2 depending on the

16



mesh regularity and CM in addition on the smallest egeinvalue of the Hook tensor
C.

‖h1/2
E [σ`νE]‖L2(E;Rd) ≤ CM‖|σ` − σ`+1|‖C−1;ωE

+ C1min
a∈Rd

‖hE(f − a)‖L2(ωE ;Rd)(6.2)

‖h1/2
E (g − σ`ν)‖L2(E;Rd) ≤ CM‖|σ` − σ`+1|‖C−1;ωE

+ C1min
a∈Rd

‖hE(f − a)‖L2(ωE ;Rd)(6.3)

+ C2‖h1/2
E (g − gE)‖L2(E;Rd) .

This is possible provided that for the edge E ∈ E` that is bisected, the elements
T ∈ ωE are refined with bisect5(T).

Proof of (6.2). In the design of T`+1, the edge E ∈ M` ∩ E(Ω) is bisected with the
creation of the node mE ∈ N`+1 and of the inner nodes mT−

, mT+
∈ N`+1 (see

Figure 6(a)). We use the new scalar nodal basis functions φmE
, φmT+

, φmT
−

with

E
mE

mT-

mT+T+

T-
E
mE

mT

T
GN

(a) (b)

Figure 6. The inner node property for the elements T with the edge
E in the set M` defined by (5.1).

respect to T`+1 to define a function bE ∈ span{φmE
, φmT+

, φmT
−

} with the following
properties

(6.4)

∫

T+

bE dx = 0 ,

∫

T−

bE dx = 0 ,

∫

E

bE ds =

{

hE/2 if F = E ,

0 if F ∈ E` \ {E} .

Such function bE exists and has its support contained in

(6.5) ωE := {T ∈ T` : E ∈ E`(T )} .
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Given an arbitrary integer k, there are constants C1, C2, which only depend on k
and on the shape regularity of the triangulation, such that the following inequalities

‖bEv‖H1(ωE ;Rd) ≤ c1h
−1/2
E ‖v‖L2(E;Rd), ‖bEv‖L2(ωE ;Rd) ≤ c2h

1/2
E ‖v‖L2(E;Rd),

∫

E

bEv · v ds ≤ ‖v‖2
L2(E;Rd)

(6.6)

hold for all edges E ∈ E`, and all vector fields v with polynomials components of
degree at most k [39].
Define ψE := 2hE[σ`νE]bE ∈ V`+1 and since [σ`νE] is constant along E one has

(6.7) ‖h1/2
E [σ`νE]‖2

L2(E;Rd) =

∫

E

[σ`νE] · ψE ds.

Integrating by parts, observing that div σ`|T = 0 for T ∈ T`, bE vanishes over ∂ωE

and outside ωE, and accounting for (2.10) stated over V`+1 and (6.4), for any a ∈ Rd

one arrives at
(6.8)
∫

E

[σ`νE] ·ψE ds =

∫

ωE

σ` : ε(ψE) dx =

∫

ωE

(σ`−σ`+1) : ε(ψE) dx+

∫

ωE

(f −a) ·ψE dx ,

with no contribution from g, as ψE = 0 on ΓN for E ∈ E(Ω). Cauchy inequality, the
definition of ψE, the estimates (6.6), and (2.3) yield the following bound for (6.8)

(6.9) ‖h1/2
E [σ`νE]‖L2(E;Rd)

(

2c1√
Λ
‖σ` − σ`+1‖C−1;ωE

+ 2c2‖hE(f − a)‖L2(ωE ;Rd)

)

.

for every a ∈ Rd. Combining (6.9) with (6.7) concludes the proof of (6.2) with
CM = 2c1√

Λ
and C1 = 2c2. ¤

Proof of (6.3). For E ∈ M`∩E(ΓN), using φmE
, φmT

we define bE ∈ span{φmE
, φmT

}
upon the conditions

(6.10)

∫

T

bE dx = 0 ,

∫

E

bE ds =

{

hE/2 if F = E ,

0 if F ∈ E` \ {E} .

With bE meeting the estimates (6.6) we set ψE := 2hEbE(gE − σ`ν) with gE the
mean integral value of g along E ⊂ ΓN . Likewise the proof of (6.2), we write

(6.11) ‖h1/2
E (gE − σ`ν)‖2

L2(E;Rd) =

∫

E

(gE − σ`ν) · ψE ds .

Integration by parts,(2.10) stated over V`+1, and (6.10) yields for every a ∈ Rd

∫

E

(gE − σ`ν) · ψE ds =

∫

ωE

(σ`+1 − σ`) : ε(ψE) dx +

∫

E

(gE − g) · ψE ds

−
∫

ωE

(f − a) · ψE dx .

(6.12)
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Cauchy inequality, the estimates (6.6), combined with (6.11) give

‖h1/2
E (gE − σ`ν)‖L2(E;Rd) ≤ 2c1/Λ‖σ` − σ`+1‖C−1;ωE

+ 2c2‖hE(f − a)‖L2(ωE ;Rd)

+ 2‖h1/2
E (g − gE)‖L2(E;Rd) for every a ∈ R

d .

(6.13)

Using (6.13) in the triangular inequality

(6.14) ‖h1/2
E (g − σ`ν)‖L2(E;Rd) ≤ ‖h1/2

E (g − gE)‖L2(E;Rd) + ‖h1/2
E (gE − σ`ν)‖L2(E;Rd) ,

proves finally (6.3) with CM = 2c1√
Λ
, C1 = 2c2, and C2 = 3. ¤

Proof of (6.1). For the uniform convexity of J in H and since 0 ∈ ∂J(w), one has

(6.15)
K

2
‖w − w`‖2

H ≤ J(w`) − J(w) .

From (4.9) and Young inequality it is also

J(w`) − J(w) ≤ (σ` − σ, ε(u` − u))L2(Ω;Rd×d)

≤ 1

K
‖σ` − σ‖2

L2(Ω;Rd×d
sym)

+
K

4
‖w − w`‖2

H .
(6.16)

Using (6.15) to bound (6.16) from above, one arrives at

J(w`) − J(w) ≤ 1

K
‖σ` − σ‖2

L2(Ω;Rd×d
sym)

+
K

4
‖w − w`‖2

H

≤ 1

K
‖σ` − σ‖2

L2(Ω;Rd×d
sym)

+
1

2
(J(w`) − J(w)) ,

(6.17)

that is,

(6.18) J(w`) − J(w) ≤ 2

K
‖σ` − σ‖2

L2(Ω;Rd×d
sym)

≤ 2

KΛ
‖|σ` − σ|‖2

C−1;Ω ,

where we have accounted for (2.2) and (2.3). The reliability estimate (4.16) in (6.18)
yields

(6.19) J(w`) − J(w) ≤ 4

KΛ
C2

rel(η
2
` + osc2

`(f)) ,

and together with the bulk criterion (5.1) one obtains

(6.20) J(w`) − J(w) ≤ 4

KΛ
C2

rel(
1

Θ

∑

E∈M`

η2
E + osc2

`(f)) .

Using the discrete efficiency estimates (6.2) and (6.3), and the finite overlap between
patches one arrives at

(6.21) J(w`) − J(w) ≤ α1‖|σ` − σ`+1|‖2
C−1;Ω + α2(osc2

`(f) + osc2
`(g)) ,

with
α1 = 8C2

relC
2
MD/(ΘKΛ)

and
α2 = max{8C2

relC
2
2D/(ΘKΛ), 4Crel/(KΛ)(2C2

1D/Θ + 1)} ,
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where D ∈ N accounts for the overlapping of the patches. Given the inequality

(6.22) ‖|σ` − σ`+1|‖2
C−1;Ω ≤ 2(J(w`) − J(w`+1))

as a result of (4.3) with H`+1 in place of H, setting δ` := J(w`) − J(w), and
δ`+1 := J(w`+1) − J(w), from (6.21) one then obtains

(6.23) δ`+1 ≤ (1 − 1

2α1

)δ` +
α2

α1

(osc2
`(f) + osc2

`(g)) ,

which is (6.1) with ρE := 1 − 1/α1 and ρ = α2/α1. ¤

Remark 6.1. As for the possible values of ρE, from the definition of α1, it results

0 < ρE ≤ 1 with ρE → 1 for Crel → ∞, or CM → ∞, or K → 0. These conditions

are associated with ν → 1/2 and hardening moduli approaching to zero. The latter

condition corresponds to perfect plasticity that will be analysed in Section 6.4.

6.2. Data oscillation reduction. Equation (6.1) shows the convergence of the
energies provided that one can ensure for instance the data oscillation reduction, i.e.
the existence of positive constants ρf < 1 and ρg < 1 depending on the regularity
of the initial triangulation T0 such that

(6.24) osc2
`+1(f) ≤ ρfosc2

`(f) ,

and

(6.25) osc2
`+1(g) ≤ ρgosc

2
`(g) .

The conditions (6.24) and (6.25) follow, for instance, from the selection strategies

(5.2) and (5.3) along with red-refinement of the elements belonging to Ωj,` for j ∈ K̂`

and of those having an edge in Ê`(ΓN), respectively. Recall from Section 5.1 that

K̂` and Ê`(ΓN) denote the set of selected free node- and Neumann edge-patches
according to (5.2) and (5.3), respectively.

Proof of (6.24). The proof is given for steps.

1st step: Given j ∈ K̂` and the node patch Ωj,` of T`, we first relate the oscillations
on the refined patches osc2

`+1(f ; Ωj,`) to the coarse one osc2
j,`(f ; Ωj,`). Without loss

of generality, and to illustrate our arguments, we set j = 0 ∈ K̂` and consider the
patch Ω0,` with all the elements red-refined shown in Figure 7.
By a careful consideration of the overlapping between the patches in T`+1 and with
the notation of Figure 7 we can write

‖f − f0,`‖2
L2(Ω0,`)

=
6

∑

i=0

‖f − f0,`‖2
L2(Ωi,`+1) −

7
∑

i=1

‖f − f0,`‖2
L2(Ti,`+1)

− 2‖f − f0,`‖2
L2(Ω0,`+1) − ‖f − f0,`‖2

L2(T4,`+1) .

(6.26)

Noting that

‖f − f0,`‖2
L2(Ω0,`+1) +

7
∑

i=1

‖f − f0,`‖2
L2(Ti,`+1) ≤ ‖f − f0,`‖2

L2(Ω0,`)
,

‖f − f0,`‖2
L2(Ω0,`+1) + ‖f − f0,`‖2

L2(T4,`+1) ≤ ‖f − f0,`‖2
L2(Ω0,`)

,

(6.27)
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Figure 7. The node patch Ω0,` is red-refined with creation of new
nodes of K`+1. The segment AB is part of ΓD and the fix node A has
been assigned to the free node 0.

after combining (6.27) and (6.26) and some rearrangements we obtain

(6.28)
6

∑

i=0

‖f − f0,`‖2
L2(Ωi,`+1) ≤ 3‖f − f0,`‖2

L2(Ω0,`)
.

Since fi,`+1 is the L2 projection of f onto the space of constant functions defined
over Ωi,`+1 we have also

6
∑

i=0

‖f − fi,`+1‖2
L2(Ωi,`+1) ≤

6
∑

i=0

‖f − f0,`‖2
L2(Ωi,`+1)

that together with (6.28) yields

(6.29)
6

∑

i=0

‖f − fi,`+1‖2
L2(Ωi,`+1) ≤ 3‖f − f0,`‖2

L2(Ω0,`)
.

If we set hi,`+1 = α0h0,` for 0 ≤ i ≤ 6 and α0 ∈]0, 1[ to be chosen later, then we have

(6.30)
6

∑

i=0

h2
i,`+1‖f − fi,`+1‖2

L2(Ωi,`+1) ≤ 3α2
0 h2

0,` ‖f − f0,`‖2
L2(Ω0,`)

that is, for j ∈ K̂` we obtain the following bound

(6.31) osc2
`+1(f ; Ωj,`) ≤ 3α2

0 osc2
j,`(f ; Ωj,`) .

2nd Step: We now relate the oscillations osc2
`+1(f ; Ωj,`) to osc2

`(f ; Ωj,`) for the node
patches not selected for the control of the volume oscillation. Following arguments
similar to the previous step, it is not difficult to realize that for j ∈ K \ K̂` there
holds

(6.32) osc2
`+1(f ; Ωj,`) ≤ osc2

j,`(f ; Ωj,`) .
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3rd Step: Since only the node patches with j ∈ K̂` are refined for oscillation control,
using (6.31) and (6.32) we can write

osc2
`+1(f ; Ω) =

∑

j∈K`

osc2
`+1(f ; Ωj,`)

=
∑

j∈K̂`

osc2
`+1(f ; Ωj,`) +

∑

j∈K`\K̂`

osc2
`+1(f ; Ωj,`)

≤ 3α2
0

∑

j∈K̂`

osc2
j,`(f ; Ωj,`) +

∑

j∈K`\K̂`

osc2
j,`(f ; Ωj,`) .

(6.33)

Adding and subtracting
∑

j∈K̂`
osc2

j,`(f ; Ωj,`) on the right hand side of (6.33), the

bulk criterion (5.2) for volume oscillation control, and α0 ∈]0,
√

3/3[ so that 3α2
0−1 <

0 yield

osc2
`+1(f ; Ω) ≤ osc2

`(f ; Ω) + (3α2
0 − 1)

∑

j∈K̂`

osc2
j,`(f ; Ωj,`)

≤ (1 − (1 − 3α2
0)Θf )osc2

`(f ; Ω) .

(6.34)

Let ρf := (1 − (1 − 3α2
0)Θf ), we complete the proof by choosing α0 ∈]0,

√
3/3[

and Θf ∈]0, 1[ so that ρf < 1. This is, for instance the case, with α0 = 1/2 and
Θf = 1/2. ¤

Proof of (6.25). Apply similar arguments as for (6.24). ¤

6.3. Convergence of stresses. We recall that a sequence (yn)n∈N of real nonneg-
ative numbers convergent to zero is said to be R−linear convergent if it is bounded
from above by a Q−linear infinitesimal convergent sequence (zn)n∈N [31], that is,

yn ≤ zn

where for r ∈]0, 1[ it is

zn+1 ≤ rzn for all n sufficiently large .

From (4.3) and (6.1), after some rearrangements, by induction we obtain

(6.35) ‖|σ − σ`|‖C−1;Ω ≤ 2(
√

ρE)`
√

δ0 + 2C(` − 1)ρ`−1 osc0,

with 0 < ρ = max{√ρE,
√

ρf ,
√

ρg} < 1 and osc2
0 = osc2

0(f) + osc2
0(g). Equation

(6.35) shows the error on the stresses being bounded from above by the sum of two
linear convergent sequences, proving so the R−linear convergence of the stresses
with respect to the numeber ` of refinements.

6.4. Perfect Plasticity. As pointed out in Remark 6.1, for vanishing hardening
moduli ρE → 1. As a result, one cannot conclude neither the energy reduction nor
the R−linear convergence of the stresses. Furthermore, neither the primal formu-
lation nor the displacement formulation are well posed using the Sobolev space V
for the deformation u, but one must use the space of the bounded deformations,
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i.e. the space of the vector functions that are integrable and with the corresponding
strains being bounded measures [35]. Using a standard result of convex analysis
for W convex, C1(Rd×d

sym), and with Lipschitz derivative, the energy density W for
perfect plasticity meets the following inequalities (see [22, Exercise 2.7] and [9] for
a direct proof of the inequality)

1

2
|σ1 − σ2|2C−1 ≤ (σ1 − σ2) : (ε1 − ε2)(6.36)

1

2
|σ1 − σ2|2C−1 ≤ W (ε1) − W (ε2) − σ2 : (ε1 − ε2) ,(6.37)

with σi := DW/Dε|ε=εi
i = 1, 2.

Strong convergence of stresses obtained by the displacement formulation can be
however established under the assumption that u ∈ V . Under this condition, then
we can state

(6.38) u = arg min
v∈V

∫

Ω

W (ε(v)) dx−b(v) and u` = arg min
v`∈V`

∫

Ω

W (ε(v`) dx−b(v`) ,

and it is also

(6.39) (σ − σ`, ε(v`))L2(Ω;Rd×d) = 0 for all v` ∈ V` .

Integration over Ω of both sides of (6.36) with ε1 = ε(u) and ε2 = ε(u`), and (6.39)
yield

(6.40) ‖|σ − σ`|‖2
C−1;Ω ≤

∫

Ω

(σ − σ`) : (ε(u − J (u))) ,

with the quasinterpolation operator J defined in Section 4.2. Following similar
arguments as in Section 4.4 we then obtain the following estimate

(6.41) ‖|σ − σ`|‖2
C−1;Ω ≤ C(η` + osc`(f)) ,

where we employ the boundeness of ‖Du‖L2(Ω;Rd×d).

Remark 6.2. Notice the loss of the exponent in the reliability estimate (6.41) com-

pared to (4.16).

The bulk criterion (5.1) and the local discrete efficiency estimates (6.2) and (6.3),
together with the bound

(6.42) ‖|σ`+1 − σ`|‖2
C−1;Ω ≤ J(u`) − J(u`+1) ,

yield in (6.41) the following

(6.43) ‖|σ − σ`|‖2
C−1;Ω ≤ C((J(u`) − J(u`+1))

1/2 + osc`(f) + osc`(g))

The bound (6.42) is obtained using twice (6.37) with ε1 and ε2 as ε(u`) and = ε(u`+1)
and integrating over Ω.
Since δ` := J(u`) − J(u) is a monotone decreasing sequence of non negative real
numbers, it is a Cauchy sequence, that is

lim
`→∞

(δ` − δ`+1) = 0 ,

that together with (6.43) delivers the convergence of the stresses provided that
osc` → 0 as ` → ∞.
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7. Numerical examples

For vanishing data oscillations such as in the case of f = const and g = const
considered in the numerical examples of this section, the Algorithm 5.1 can be
simplified as follows

Algorithm 7.1.
Input a coarse shape-regular triangulation T0 of Ω into triangles with set of edges

E0, 0 < Θ < 1, and repeat (a) − (f).

(a) SOLVE: Solve the nonlinear discrete problem,

w` = arg min
z`∈H`

J(z`) and set σ` := C(ε(u`) − p`) .

(b) ESTIMATE: Given any E ∈ E` with measure hE, compute

η2
E := hE

∫

E

|JE|2 ds for each E ∈ E` and η` = (
∑

E∈E`

η2
E)1/2 .

(c) MARK: Select a subset M` of E` in the current triangulation T` with

Θη2
` ≤

∑

E∈M`

η2
E .

(d) REFINE: Red-refine all the elements T with some edge in M`.

(e) Run the closure algorithm with red-green-blue refinement [40]. Denote with T`+1

the resulting shape-regular triangulation with associated discrete space H`+1.

(f) Set ` := ` + 1 and go to (a).

Output discrete stress fields σ0, σ1, ...σ`, ... in L2(Ω; Rd×d
sym) as approximation to

σ = C(ε(u) − p).

The main and substantial difference consists in removing the inner node property,
i.e. the use of bisec5(T) for the elements marked for error reduction. An adaption
of the proof of (6.2) and (6.3) using the edge based discrete function φmE

shows the
following local discrete efficiency estimate

‖h1/2
E JE‖L2(E;Rd) ≤ CM‖|σ` − σ`+1|‖C−1;ωE

with ωE from (6.5). Following the arguments used for proving (6.1) and (6.35), one
can easily obtain the energy reduction and R−linear convergence of the stresses for
the Algorithm 7.1.

Remark 7.1. In the implementation of the step MARK, we first sort the edges in

decreasing order according to the value of their contribution ηE to the estimate η`

and then pick the first one that realize the condition (c).

The reliability constant that enters the estimate (6.41) depends on the regularity
of the initial mesh, and the material properties. Since the adopted refinement rules
preserve this regularity also for the refined meshes [7], and the material constants are
constant during the refinement process, in the examples of this section we compare
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the convergence rate of η from (4.14) with respect to the number of degrees of
freedom and of refinement loops for uniform and adaptive refinements according to
Algorithm 7.1 and Algorithm 7.2 given below. The latter uses the max refinement
rule (1.2) as step MARK and is defined as follows.

Algorithm 7.2.
Input a coarse shape-regular triangulation T0 of Ω into triangles with set of edges

E0, 0 < Θ < 1, and repeat (a) − (f).

(a) SOLVE: Solve the nonlinear discrete problem,

w` = arg min
z`∈H`

J(z`) and set σ` := C(ε(u`) − p`) .

(b) ESTIMATE: Given any E ∈ E` with measure hE, compute

η2
E := hE

∫

E

|JE|2 ds for each E ∈ E` .

(c) MARK: Select a subset M` of E` in the current triangulation T` with

(7.1) Θmax
F∈E`

ηF ≤ ηE for all E ∈ M` .

(d) REFINE: Red-refine all the elements T with some edge in M`.

(e) Run the closure algorithm with red-green-blue refinement [40]. Denote with T`+1

the resulting shape-regular triangulation with associated discrete space H`+1.

(f) Set ` := ` + 1 and go to (a).

Output discrete stress fields σ0, σ1, ...σ`, ... in L2(Ω; Rd×d
sym) as approximation to

σ = C(ε(u) − p).

Remark 7.2. We recall that the issue of convergence for the Algorithm 7.2 remains

still unsolved for higher dimensions for elliptic problems [1].

In the first two examples of this section we consider the model of multiyield plasticity
described in Section 3.3. For the algorithmic details of the solution of the incremental
constitutive value problem by an alternating direction algorithm we refer to [3]. The
last example describes the AFEM for a benchmark problem with perfect plasticity.

7.1. L-shape domain.
We consider the L-shape domain Ω = (0, 1)2 \ (0, 0.5)2 with vanishing volume force
f , boundary conditions, and material properties depicted in Figure 8 together with
the coarse mesh T0.

For this problem the exact solution is not known. For linear elastic behaviour singu-
larities of the solution are localized at the reentrant corner and at the discontinuity
of the type of boundary conditions, that is, at the points (1, 0) and (2, 0). We there-
fore expect a similar behaviour also in the case of incremental plasticity, with first
plastic loading in the neighborhood of the singular points, and then spreading over
the other parts of the domain that have remained elastic. Given the non uniform
distribution of the strain, we want to investigate the adaptive finite element algo-
rithms described in this section as tool to capture the singular zones and by product
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Figure 8. Example 7.1: Geometry for the L-shape domain with
Dirichlet boundary conditions uD = 0 on ΓD and applied load gy = 5
on the boundary ΓN at y = 2. The reentrant corner, and the discon-
tinuity points (1, 0) and (2, 0) represent singularity points.

to improve the convergence compared to uniform refinements. With this regard,
Figure 9 compares the convergence rates of η for uniform and adaptive refinements
based on (1.3) and (1.2). We notice that the uniform mesh-refinement converges
only sub-optimally due to the poor regularity of the solution, as expected, while
the adaptive mesh-refinements realised both by the Algorithm 7.1 and Algorithm
7.2 recover optimal convergence rates, also on occurrence of plastic deformations.
Figure 10, on the other hand, compares the performance of the two algorithms in
terms of the number of refinement loops necessary to reduce the error of a fixed frac-
tion. Here we notice the better performance of the adaptive algorithm based on the
bulk criterion. Furthermore, the Algorithm 7.1 shows a Q−linear convergence rate,
despite our theoretical findings of R−linear convergence rate. Finally, Figure 11 de-
picts the triangulations generated with the Algorithm 7.1 superimposed to the plot
of the plastic zones showing a local higher refinements towards the reentrant corner
where also the second yield surface is activated and at the discontinuity points of
the type of boundary conditions. Figure

7.2. Cook’s membrane problem.
The problem consists of a trapezoidal plate clamped on one end and loaded by a
uniformly distributed in-plane bending load on the other end, as shown in Figure
12. We consider the same material model as in the previous example, with material
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Figure 9. Example 7.1: Convergence history of η` for uniform and
adaptive finite element refinements based on the bulk criterion (1.3)
computed by Algorithm 7.1 with Θ = 0.5, and on the max refinement
rule (1.2) computed by Algorithm 7.2 with Θ = 0.5. Each adaptive
algorithm performs with a convergence rate with respect to the num-
ber of degree of freedom of about 0.5 in contrast to 0.3 for uniform
refinement. This corresponds to the empirical convergence rate of 1
and 0.6, respectively, with respect to a (uniform) mesh size h.

parameters reported also in Figure 12. The applied load is such that the two yield
surfaces are activated.
Likewise the previous example, we test the performance of the adaptive finite element
Algorithms 7.1 and 7.2. Both the algorithms lead to a slightly better order of
experimental convergence displayed in Figure 13 compared to uniform refinement.
Figure 14, on the other hand, compares the convergence rate with respect to the
number of refinement loops displaying a linear convergence rate for Algorithm 7.1 as
opposite to the one displayed by the AFEM based on the max refinement rule. The
triangulations generated by the Algorithm 7.1 based on η, reported in Figure 15,
show local mesh refinement towards the upper left corner where a change of the type
of boundary conditions causes a singularity, and at the right end where point loads
are applied.

7.3. Finite strip with a hole: perfect plasticity.
In this example, we consider the benchmark problem with perfect plasticity de-
scribed in [36]. The geometry and material properties are shown in Figure 16.
Since the applied load p is lower than the critical load pcr in correspondence of which
slip lines can occur, we can formulate our problem in the functional setting of the
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Figure 10. Example 7.1: Convergence history of η` with respect to
the number of refinement loops for the adaptive finite element refine-
ments based on the bulk criterion (1.3) computed by Algorithm 7.1
with Θ = 0.5, and on the max refinement rule (1.2) computed by Al-
gorithm 7.2 with Θ = 0.5. The AFEM based on (1.3) performs with a
linear convergence rate which is better than the one displayed by the
AFEM based on (1.2).

Sobolev spaces. Convergence rate of η` for uniform and the adaptive finite element
refinements based on the bulk criterion (1.3) and on the max refinement rule (1.2)
are displayed in Figure 17. Both the adaptive algorithms improve the convergence
rate in contrast to uniform refinement. Figure 18 compares the convergence rate
for the two Algorithms 7.1 and 7.2 with respect to the number of refinement loops,
showing the better performance of the Algorithm 7.1 based on the bulk criterion.
Though not implied by our theoretical findings, the Algorithm 7.1 displays a linear
convergence also in the case of perfect plasticity.

8. Concluding remarks

In this paper we have established an adaptive finite element algorithm (Algorithm 5.1)
based on the bulk criterion introduced by [17] for the solution of a variational in-
equality of second kind. The latter serves as model of one time step of the primal
probem of elastoplasticity with positive hardening and perfect plasticity. Our main
theoretical findings can be summarized as follows:

(i) node-patch oscillation reduction: With the oscillations defined by (4.11) and
(4.13), there exist positive constants ρf < 1 and ρg < 1, depending on the regularity
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of the initial triangulation T0, such that

osc2
`+1(f) ≤ ρfosc2

`(f) and osc2
`+1(g) ≤ ρgosc2

`(g) .

(ii) energy reduction: There exist positive constants ρE, C with ρE < 1, and
ρ = max {ρE, ρf , ρg} < 1, depending on the regularity of the initial triangulation
T0 and on the material parameters, such that

δ` ≤ ρ`
Eδ0 + C(` − 1)ρ`−1osc2

0 ,

where we have set osc2
0 = osc2

0(f) + osc2
0(g).

(iii) R−linear convergence of the stresses: With the previous notations, there holds

‖|σ − σ`|‖C−1;Ω ≤ 2(
√

ρE)`
√

δ0 + 2C(` − 1)ρ`−1 osc0 .

For perfect plasticity, we prove only the convergence of the stresses, though our
numerical results display a linear convergence rate also in this case.

In comparing numerically the performance of the AFEM with the step MARK based
on (1.2) and on (1.3), we verify for both the algorithms an improved convergence
rate with respect to the number of degree of freedom compared to the uniform
refinement. In evaluating the convergence with respect to the number of refinement
loops, on the other hand, we observe that the AFEM based on (1.3) displays a better
convergence rate than the one displayed using the max refinement rule, currently
used in the engineering literature.
In conclusion, the theoretical analysis given in this paper together with our numerical
experiments suggest the better performance of the AFEM with the step MARK based
on (1.3) compared to the one using (1.2), frequently adopted in practice. The
implementation of (1.3) also does not incure additional efforts compared to the use
of (1.2).
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Figure 11. Example 7.1: Adapted triangulations
T0, T1, T4, T6, T8, T12 for the L-shape domain generated by the
Algorithm 7.1 with Θ = 1/2. Notice the local higher refinement
towards the reentrant corner and at the the points (1, 0) and (2, 0)
where change of type of boundary conditions occur. The second
yield surface is activated in the neighborhood of the reentrant corner
and around the point (1, 0). For visualization reason, T12 does not
visualize the underlying mesh. Color legend: black=elastic, dark
gray=first yield activated, light gray=second yield activated.32



0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

GNGN

GD
uD=0

g=(0,gy)
g=(0,0)

GN
g=(0,0)

x

y

(0,0)

(0,44)

(48,60)

(48,44) gy = 7.5

λ = 1000, µ = 1000

σ1,y = 5, h1 = 100

σ2,y = 7, h2 = 50

Figure 12. Example 7.2: Geometry for the Cook membrane with
uD = 0 on ΓD and applied load g = (0, gy) on the part of ΓN with
equation x = 48.
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Figure 13. Example 7.2: Convergence history of η` for uniform and
adaptive finite element refinements based on the bulk criterion (1.3)
computed by Algorithm 7.1 with Θ = 0.5, and on the max refinement
rule (1.2) computed by Algorithm 7.2 with Θ = 0.5. Each adaptive
algorithm performs with a convergence rate with respect to the num-
ber of degree of freedom of about 0.5 in contrast to 0.3 for uniform
refinement. This corresponds to the empirical convergence rate of 1
and 0.6, respectively, with respect to a (uniform) mesh size h.
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Figure 14. Example 7.2: Convergence history of η` with respect to
the number of refinement loops for the adaptive finite element refine-
ments based on the bulk criterion (1.3) computed by Algorithm 7.1
with Θ = 0.5, and on the max refinement rule (1.2) computed by Al-
gorithm 7.2 with Θ = 0.5. The AFEM based on (1.3) performs with
a linear convergence rate that is better than the one displayed by the
AFEM based on (1.2).
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Figure 15. Example 7.2: Adapted triangulations
T0, T1, T4, T6, T7, T9 for the Cook’s membrane generated with
the Algorithm 7.1 with Θ = 1/2. Notice a local higher refinement
towards the upper left corner where change of boundary condition
soccur and at the right end where point loads are applied. For
visualization reason, T9 does not visualize the underlying mesh.
Color legend: black=elastic, dark gray=first yield activated, light
gray=second yield activated. 36
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Figure 16. Example 7.3: Geometry for a rectangular domain with
a hole under plane strain condition and using perfect plasticity [36].
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Figure 17. Example 7.3: Convergence history of η` for uniform and
adaptive finite element refinements based on the bulk criterion (1.3)
computed by Algorithm 7.1 with Θ = 0.5, and on the max refinement
rule (1.2) computed by Algorithm 7.2 with Θ = 0.5. Each adaptive
algorithm performs with a convergence rate with respect to the num-
ber of degree of freedom of about 0.5 in contrast to 0.25 for uniform
refinement. This corresponds to the empirical convergence rate of 1
and 0.5, respectively, with respect to a (uniform) mesh size h.
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Figure 18. Example 7.3: Convergence history of η` with respect to
the number of refinement loops for the adaptive finite element refine-
ments based on the bulk criterion (1.3) computed by Algorithm 7.1
with Θ = 0.5, and on the max refinement rule (1.2) computed by Al-
gorithm 7.2 with Θ = 0.5). The AFEM based on (1.3) performs with
a linear convergence rate that is better than the one displayed by the
AFEM based on (1.2).

39


