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Abstract

Here we show that the discretization and linearization of Navier
- Stokes equations leads to an indefinite linear system of equations.
Such a system can be solved and preconditioned by iterative meth-
ods working on Krylov subspaces. The rate of convergence of one of
these methods, GMRES, is estimated by a max norm of a minimal
polynomial corresponding to a domain containing the spectrum of the
preconditioned operator. For the case of the real spectrum with both
positive and negative eigenvalues we introduce an approach that gives
an upper bound close to that for the minimal polynomial.

1 The formulation of the Navier-Stokes equa-
tions

Our first task is to derive the Navier-Stokes equations. This can be done
by using some basic continuum mechanics principles, and making concrete
for the case of a fluid (see [7] for more details).

The first principle is the conservation of mass, which can be expressed
by:
Dp
— +pV-u=0 1
oy TPV u=0, (1)
where p = p(x,t) is the density of the fluid, ¢ the time, u = u(x,t) the
velocity vector and



Dp _dp
Dt ot
is the material derivate of p.

The second principle is the balance of momentum (also equation of the
motion)

Du

"Dt

where o is the stress tensor (a matrix) and f = f(x, ¢) means external forces
(the body forces per unit mass, for instance the gravity force).

=pf+V-o, (3)

In order to take the friction in fluid into account we assume a Newtonian
fluid (otherwise we would obtain the perfect fluid equation):

1
o= —pl+2p (D—g(v-u)l), (4)
with
1 0u; Ou;
D=~ i j

D is the symmetrical part of the velocity gradient tensor, and u is the fluid
viscosity.

Substitution of (4) into (3) leads to the Navier-Stokes equations for a
compressible fluid.

PR = pf — Vp+ p [Au+ JV(V - u)]
%+pv-u:0.

(6)

These can be again simplified for the case of an incompressible fluid

(D—é’ = 0)and considering the steady phase of the fluid:

pu-Vu = pf —Vp+ pAu, (1)
V-u=0.
The Navier - Stokes equation can be written in dimensionless form by

scaling with characteristic quantities U (characteristic velocity) and L (char-
acteristic length) in the following way:
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Substituting of these quantities in the equation (7) and introducing the

dimensionless constant:

& =

o
=— 9
V=0T (9)

results in the dimensionless form of the Navier-Stokes equations (accents
are dropped):

u-Vu—vAu+Vp="~

V-u=0 (10)

2 The Oseen problem

Since we have a system of partial differential equations, we have to add
boundary conditions. We will restrict ourselves to Dirichlet boundary con-
ditions, in particular homogeneous. Its effect will be that, when using a
variational formulation ( Galerkin method ), boundary integrals vanish (See
chapter 3).

—vAu+u-Vu+Vp=£f .
V-u=0 in Q, (11)

subject to the boundary conditions on 4Q; Q C R3 or ; Q2 ¢ R3.

Since system (11) is nonlinear, we apply a fixed point (or Picard iter-
ation), which reduces it to solving a sequence of linear Oseen problems of
the form: given some (divergence free) velocity field, find the velocity u and
pressure satisfying:

—vAu+w-Vu+Vp=f

Vou=0 in £, (12)

with the same boundary conditions as for (11).



3 Obtaining the discrete version - FEM discretiza-
tion

Rewriting (12) component-wise, leads to 4 equations for 4 unknown functions

ui, u2, us3, p:
[2)
—vAu; +w-Vuy + a—fl = f1,
[2)
—vAus +w - Vug + 6_:; = fo,

—VA’LLg +w- V’LL3 + 5_53 = f3,

Qu; 4 Oup 4 Ouz _
o1 +6m2 +8m3 = 0.

Now we multiply these equations by arbitrary test functions, integrate
over the domain Q, apply partial integration (Gauss theorem, Green the-
orem) if necessary, and finally substitute the boundary conditions. If we
choose the basis functions of the approximations as test functions, then
we end up with the Galerkin equations. As test functions in first instance
v1, U3, v3 and ¢ are chosen. Because of the boundary conditions for w1, ug, us,
we assume that:

v1=vy=v3=0 on TI. (14)

The resulting equations are:

Jo (FvDuy + W Vuy + 22 )v1dQ = [ fro1dQ,
Jo (—vQAug +w - Vug + aan;)’Ude = [q fov2dQ,
Jo (—vAuz +w - Vug + %)’Ugdﬂ = [q fav3dQ,

o o a _

We now apply partial integration to the (15), and use the relations:



v;Au; = div(v;Vu;) — Vu, - Vg,

(16)
and together with Gauss theorem, we get:
Jo PVuy - Voy + (w - Vug)vy — p§21dQ = [, fiv1dQ,
Jo Vg - Vg + (W - Vug)vy — p§21dQ = [, f202d€,
(17)

Jo WVus - Vs + (w - Vusz)vz —pg—z’cz]dQ = [ favsdSd,

Jo (54 + G2 4 943)4dQ = 0.

Oxo ox3

For the construction of the approximation of the solution, uq,u9,u3 and

p are written as the linear combination of basis functions (already only a
finite number of them):

N
ui(z) = ) uidi(z), i=1,2,3,
k=1

M
p(z) =Y peVi(z).
k=1
Now we will substitute (according to the Galerkin method):

v) =vy =v3 = P(z), k=1,2,...N, g=Vy(z), k=1,2,... M.
It yields:

N N M
0%,
/V(VZulk(I)k)-VCI)de+/ w-V(Zulkcbk)cbj—/ Zpkklfk—JdQ:/flcbde
Q= Q k=1 Q= 9z Q

N N M
09,
Q@ k= Q et Qi 0z Q



N N M
O
/V(VZU3kq>k)-v¢de+/ W-V(ZU3k‘1>k)‘1>j—/ Zpk\lfk—JdQZ/f;),‘I)de
L Q k=1 0 O3 Q

i=12,...,N

/ (3Z§V:1 u1;® YN ug;®; N oy, u3j®j)\md9 0
Q

o, 0zo 0z3

i=1,2,..., M.

This already represents a system of linear equations of the form:

vA+ N 0 0 B? U1 f1
0 vA+ N 0 BY ur | | fo
0 0 vA+ N B?T us - f3
Bl 32 Bg 0 P 0

where

A, §) = Jo V- V;dN

Bi(i,5) = Jo 522 0;dQ k=1,2,3

(18)
fe(@) = [q fr®idQ k=1,2,3
uf = [Uk1,-- -, UkN]
pl = [P1,---,PM]-
Remarks: By using the Gauss theorem, it follows that
/Q(W-VQZ-)deQ - —/Q(w-wj)cpidn,
which implies NT = —N, namely that N matrix is skew symetric. Also

obviously A = A" is positive definite, more precisely according to (18) it



is positive semidefinite matrix, it becomes positive definite if we impose
Dirichlet boundary conditions.
Denoting

A= A

fT:<f1 f2 f3>,

we obtain the desired system of linear equations:

(5t e)G)-(0)

where A = AT also a positive definite matrix, N is the matrix expressing
the convection operator and is skew symmetric, i.e. N = —N7T |, We further
assume that the the underlying velocity and pressure approximations are
(div-)stable, which means that there exist constants 7, I', independent of
the mesh size h, such that

—1pt
2<(PaBA BP)<F2

wan =L 20)

where is the pressure mass matrix (or Gramian matrix of basis functions
defining P,).
Later we will see that the validity of this condition will lead to finding

a preconditioner, for which the eigenvalues can be estimated independently
on the mesh size.



4 Preconditioning

Elman [1] proposed a block diagonal preconditioning matrix of the form:

F
(" 1) )

where F' = vA+ N and @ is the pressure mass matrix coming from FEM
discretization. Then the eigenvalues of the preconditioned system are the
solutions of the generalised eigenvalue problem:

(5o ()= (5 %) ()

These are given by A = 1, with eigenvectors of the form (u,0) so called
discretely divergence free, or

1+/14+4p
A E—
where p comes from the generalised eigenvalue problem for the Schur com-
plement system:

1
BF'B"p=y (—Q) p.
v
The following result provides bounds for the preconditioned operator.

Theorem 1 The eigenvalues of the discrete Oseen operator preconditioned
by (21), are A = 1 and eigenvalues enclosed in two rectangular bozes of the
form:

I:MTMM’ 1+S2maz] X [_t’t] and I:lfszma.m’ 1752mini| X [_t,t]
in the complex plane, where
2,2\1/2 1/2
Smin = (1 + (;lzfy_F—V,/Q) s Smax = [%(1 + 4F2 + 1+ 8’}’2 + 20)] s

T2 1 1
= . <o.
(1+§;i',/,22)1/2 where 6 > 0 such that p(A2NA2) <§

Proof : See [1]; recall that constants «, " are specified by (19).



5 The minimal polynomial problem

5.1 GMRES

GMRES is one of the iterative methods for nonsymetric matrices, which
lead to the construction of solutions in the so-called Krylov subspace.
The Krylov subspace Kj(A,r) of order k generated by A and r is the
subspace spanned by 7, Ar, ---, AF=1r,
Given a linear system, Arz = b with a nonsingular matrix, then the
standard Richardson iteration

T = (I — A).Tk_l +b
generates an approximate solution in the shifted Krylov subspace
To + {TOa A’I‘(), Tt aAk_lTO}a

with 79 = Axyg.

Instead of the standard basis one usually prefers an orthonormal basis
Vg - Vg1, which can be computed as follows:

Start with vy = ro/ || 7o ||2 , assume that we have already an orthonormal
basis v1 ...v; for KJ(A;rg), then this basis is expanded by computing t =
Awj, and orthogonalizing this vector with respect to v1,...v;.

If we denote by V; the matrix with colunms v; up to v;, then it can be
showed that such a process of orthogonalization results in:

Amel = VmHm,mfla

where m by m — 1 matrix H,, ,,—1 is an upper Hessenberg matrix.

Here we will not give further details, there exists a lot of literature on
GMRES, see for instance [3], from which our information was extracted.

It is important for us that the residual corresponding to the solution
Ty = 20 + oqrg + ... g AF g, can be reformulated as:

ry = b—Azp=b—A(zo+airg+... akAk_lro)
= 19— Arg — ... — apAFrg
= (I—oA—...—apdhrg
= P(A)ro,



where P(§) =1 — a1€ — ... — ot.€¥, and note that P(0) = 1.

So the problem of solving a linear system on a shifted Krylov subspace
zo + K*(A;7p) by the minimum residual approach (the case of GMRES) is
equal to finding a polynomial of the k-th degree p;” *(A), such that

1 B (A)ro [I= minye pr || p(A)ro I, (22)

where P! denotes the space of polynomials of the k-th degree, satisfying
p(0) = 1.
5.2 The minimal polynomial problem on a general domain

Due to the matrix norm multiplicativity (we restrict ourselves to the euclid-
ian norm), we can bound:

I p(A)ro [I<]] p(A) ([l o | -

Further assuming that A is diagonalizable, i.e. J = T 'AT is diagonal
(containing the eigenvalues of A: A; ... Ay) for some nonsingular matrix T,
then we can calculate p(A) as:

p(A1)

p(AN)
Thus:

I p(A) [ISITT Il T | mazpeo(ayl(p(A)]-

Although the exact spectrum is often unknown a priori, very often by
some analysis (as in Theorem 1 or Theorem 3) we can locate a domain [ in
the complex plane, in which our spectrum is contained: o(A4) C I.

Then:

mazrco(a| (EN)] < mazser|(p(V)| (24)

After combination of this with (22), we obtain:

10



I 7 ll= minpeps | p(Aro | < (mingeps || (4) 1) 1o |
< Cp (minyeprmazeoray | P 1) Il 7o |
< Cp (minyepmazeer | p(©) ) 7o |l
(25)
or equivalently
b7l < cpenn), (26)
7o |l
where Cp =|| T ||| 7! || and
ex(I) = (min,epymazeer | p(€) |) - (27)
It gives a rise to a definition:
Definition 1 The polynomial p;n of the k-th degreee which satisfies
mazger|pmin(€)| = (minyepymazeer | p(€) |) (28)

is called a minimal polynomial of degree k with respect to 1.

From (26) one can see the importance of a minimal polynomial, namely
having found a ’'nice’ set I, which contains the spectrum of A and by know-
ing the minimal polynomial corresponding to I (in practice usually its upper
bound ), we can estimate the convergence of GMRES.

This basically introduces two problems:

1. Finding as small as possible a 'nice’ domaing I containing the spectrum
of A.

2. Construction of a convenient upper bound on the minimal polynomial
corresponding to I.

In this paper we only pay attention to question 1, our 'nice’ will be taken

from Theorem 1 and will be even simplified for our further considerations
(Theorem 3).

11



5.3 Some theoretical results concerning the minimal poly-
nomial problem

Definition 2 The polynomial defined by:
cos[kcos ()] if-1<z<1
Ti(z) = { cosh[kcosh™ ()] ifz>1 (29)
(—1)kcoshlkcosh™ (—z)] ifz < —1
is called the Chebychev polynomial of degree k.

Remark: Chebychev polynomials posses many important properties, among
which we will need these two:

<1 if-1<z<1
Iﬂ@”{>1emMMm )
besides 1 1 1 1
1 Thw_tow, 1
Tk[2(y+ I/)] 2(1/ + I/k)' (31)

Chebychev polynomials will turn out to be very useful to estimate the
minimal polynomial corresponding to our domain I.Here we state the Meinardus-
Kaniel theorem concerning operators with positive spectrum. It should be
mentioned that the proof of it has a lot in common with our second approach
in chapter 6.

Theorem 2 Suppose o(A) C[A_, ;] CRT . Then

e(o(4)) < zexp<—%>, (32)

where C = ’\—f

Proof: We consider the shifted and scaled Chebychev polynomial

Ti( Ar—¢ E-A_ )

VI W Wit W

pe(€) = A (33)
T (350)
Since )\i‘:r:f_ — )\i:)‘;_ maps: M : [A_, ;] = [-1,1],

then according to (30):

12



A= €A
A — A Ar— A

T ( ) <1 VEe A, Ay

and we have:
1

A+
T (5557)

e(o(A)) < : (34)

In order to calculate Tk(tji: ), exploiting (31) we have to express:

1, 1. A +A

v +-)= PV (35)
which gives a solution: v = %ﬁ\‘_
That is how we obtain:
T3ty - LA VA ey VA VA g
Ay — A 27/ A — VA VAL VA
The last formula can be rewritten in terms of C' = i—f, as:
mQet ey - L O L (SO (36)
P eal T2 —1 T Vo +1
This can be again estimated by (since C' > 1):
A +Ao, 1 V/CO+1, 1 1 1 .
Ty(———) > (—)'=-[1+—4=) 1+ —...
k(A+_>\—)_2(\/E—1) 2[( C)( \/E )]
1 2 P! 2k
=-(1+-—=+. > = — 37
0+ =tz gem(TE) @D

And after substituting (37) into (34) we are ready. O

Remarks:

1. It can be proved [6] that the polynomial given by (33) is exactly the
minimal polynomial for the interval [A_, A4].

2. The Meinardus-Kaniel theorem can also be used in the case [A_, 4] C
R

13



3. One might think that the used method in the Meinardus-Kaniel theo-
rem can also be extended for the general case A_ < 0 < A;. However,
then we have: |§1f§:| < 1, which implies |Tk(iif§:)| < 1 and we
never get a better bound than: e¢(o(A)) > 1, which is apparently true
but useless. In chapter 6, we will discuss better approaches to find

convenient bounds, even for this case.

5.4 Our problem

According to Theorem 1, the spectrum of the preconditioned Oseen operator
can be contained in a domain I, that consists of the point 1 plus two rect-
angles in the complex plane, symmetric with respect to z = % The reason
why the spectrum is in general complex is that the matrix N, coming from
the discretization of the convection term, is nonsymmetric (see remarks next
to formula (18)).

In this report we only focus on the real spectrum for simplicity, which
can be obtained by neglecting the convection term in the Oseen equation.
Such an easier problem, the so-called Stokes problem, also often appears in
fluid mechanics:

—vAu+Vp=f

Con_g | in (38)

Then by using a similar technique as in chapter 3, for the Oseen operator,
it can be shown that the resulting discrete system is of the form:

(B0 e

and the spectrum of the matrix preconditioned by:

(VA lQ), (40)

can be located (similarly to Theorem 1 for the Oseen operator):

Theorem 3 The eigenvalues of the discrete Stokes operator preconditioned
by (30) are of A =1 and those enclosed in two intervals of the form:

14



bl

1+Smin  14+Smax 1—Smaz 1—Smin
[Figes, M| and [Logpn, 2]

where

Smin = (1+4v2)"% spmap = (1 +412)"/2.

Proof : See [2]; recall that constants 7, " are again specified by (19).

Although the constants -y,I" constants are more of a theoretical value,
Theorem 3 shows that our spectrum is located at both sides of a real axis
(indefinite problem).

Our problem will be to find some convenient estimates for the minimal
polynomial corresponding to such a domain, which is situated at both sides
of the real axis. We have already seen (remarks in paragraph (5.3)) that the
approach from the proof of the Meinkardus-Kaniel theorem fails in this case
(it does not give a suitable estimate).

In the next paragraph we discuss another approach for bounding the
minimal polynomial.

6 The minimalization on two disjoint intervals -
a novel approach

Our intention now will be to find a polynomial of the k-th degree, with the
condition p(0) = 1, for which its absolute value on I = (a,b) U (¢,a’) =
I' I € R, I' € R is sufficiently small (more precisely, converges to zero
as the degree k of the polynomial goes to infinity). In the following two
subsections two different approaches are considered.

6.1 Approach 1 - the product of two Chebyshev polynomials

Let us consider ps.x(§) as the product of two Chebyshev polynomials shifted
and scaled, to intervals I = (a,b) and (b',a’) = I*, respectively.
Thus we have:




It is obvious that such a scaled polynomial guarantees the condition
pax(0) = 1.

If we consider for instance I, notice that the first |Tk(—§ §_—)| attains
one of its maxima (always equal to 1 in absolute value) at the point z = b
and the second |T1€(bb’l—;§’ - %H is an increasing function on I. It together
implies:

ma$§61|p2k( )| - | (b+a)Tk(bc+an) (42)
b—a b —a’
For the same reason:
Tk(%_b, o I;)’—a)
mazecr|pak(§)| = — —a |, 43

’;;b’ _WV=a _q 2(@;5’) and Y=t _ b=’ _ g 2b=d) Lo

Y—ad Y—d — o —b

Rewriting:
have that

b’ b—ad’
mas(Ty(+ 2L IG5
T (5r) T (572)

mazeerur|pak(§)] =

To decide which of the polynomials in (44) is greater in absolute value
/
than the other one, we have to compare their arguments 1 + ﬁﬁ and

2(b—a’)

a'—b -

It can be shown that depending on the ratio of the lengths of the inter-
vals:

ratio of intervals relation of polynomials
b—a=d —b | |Te(l+ ;j”))|_T|(1+ 20-a))]
b—a>ad -V | Ty (1 + 2 ,‘,‘a )| < Tl (1 + 2= ‘;,))I (45)
b—a<d -V |Tk(1+ (a=t) )|>T|(1+ al: Z'))|

b—

~ g

For an illustration of the case b—a = a’ —b' (the same lengths of intervals
I,T'), see Figure 3. (for k =4,1 = (1.5,3),I' = (—2,—0.5)).

16



For instance, if a — b > a' — b’ (which we will assume from now) then:

+ 2(b7a'!)

o —b

1
T ()T (512 )

—a v —a'

mazecror|pax(§)| = (46)

which implies

(47)

6.2 Why the first approach often fails

Applying (37) to both Chebychev polynomials in the denominator of (47),
we can bound (47) by:

bl

!
whereng, =1t

a'

Up to now we have not approximated T} (1 + %l,’:—z,,l) which we do as

follows.

2(b—a')

Let us denote a = =7—

, and solve the equation

1+a=%(1/+%). (49)

It leads to:
v — (24 2a)v +1=0,

Vi = 1+Oz:t“04(0£+2).

Substituting back for a we get:

with solutions:

2b—a' —b +£2/(b—a)(b-V
= 200 ) (50)

Now we can already express (taking v, from (50)):

2b—a), 1, , 1
FECREE A

Te(1 + 5
1

17



Here, since v; > 1 we can replace Ty (1 + 23,’:2,’ )) by (for higher values of

k, asymptotically):

2(b—a) 1,26—d —b+2/(b—a)(b—-0)
a — b )NE( a -V ) : (51)
And finally substituting (51) in (48) gives (let us remind again this holds

for large values of k only):

Te(1 +

k
2b—a' — b +2/b—a)b-F) | (52)
(@ —¥) - exp?(\[§+/§)

Let us see what such estimates give for the case that: I = [1,b],I' =
[1—b,1—a], which is a spectrum typical for the preconditioned Stokes prob-
lem, note that instead of working with the isolated eigenvalue A = 1 and
the interval [a, b], we consider interval [1,b] straight forward.

EQ.k(IUII) <2

Iur upper bound on €., (I U I’
[-1,-0.1]U[1,2] 2+ (1.4524)%
[—3.75,—0.1] U [1,4.75] 2 - (2.0677)*
[—49, —4] U [1, 50] 2-(2.83)*
[—499, —1] U [1, 500] 2 - (4.8941)*

Results in the Table are calculated with the formula (52). Since our
bounds are always in the form of a geometric series with factor greater than
1 the first approach may seem not to work at all.

However, if calculated according to (47) (in terms of Chebychev poly-
nomials), we can get convergence sometimes. More precisely, formula (52)
approximates (47) well only in the case C > 1 (or equivalently a < b). In
order to demonstrate this the comparison between (47) and (52) has been
done for the spectra from the Table.

Figure 4 displays the case of a small spectrum (x axis presents the degree
of a Chebychev polynomial, y axis gives the values of bounds (47), (52)).
Here (47) converges, although (52) diverges. As the spectra are becoming
larger (figure 5,6,7), bounds (52) and (47) are getting closer and both give
divergence. (by convergence we simply mean e5.;x(I UI') — 0 as k — 00 ).

The fact that that for a larger spectrum the bound for our product of

two scaled and shifted Chebychev polynomial diverges (in the max norm) is
certain advantage of this first approach.

18



6.3 Approach 2 - a polynomial transformation

Suppose again that I = [a,b]U[V/,d'|=1', T€e R*,I'e R".

Now let us consider the polynomial p"™%(¢) of degree d, with the two
properties:

[prens(g)| <1 ifeerul, (53)
|pt7‘an3(0)| > 1. (54)

Then according to (30), |Tk(ptr@(¢)| < 1 and |Tk(p"*"$(0))| increases
as k — oo and consequently

Ty (p"*™ (€))
Pr-d(&) = mrrams oy 55
( ) Tk(ptrans (0)) ( )
is a polynomial of degree k - d satisfying pg.4(0) = 1, and
1

max 1|pg. <——— >0 ask— . 56

Eelul |pk d(£)| = T]g(ptra‘ns(())) ( )
Here arises the basic question, what kind of a polynomial p’"®** we can

identify that satisfies (53) and (54).

It is clear that the choice: P'%"%(¢) = af + b fails, since (53) and (54)
can not both be satisfied.

Here we will only show that selecting P2 (£) as a convenient quadratic
function may satisfy (53)and (54).
Suppose again, for instance, (it also holds for the Stokes preconditioned
spectrum)
b—a>d —V. (57)

trans

We select p as the polynomial of second degree satisfying:

ptrans(al) — 1’ ptrans(a) — 1’ ptrans(b) — _1’ (58)

We can prove (it can be also seen from Figure 8 for the case a = 1,b =
5,a' = —=3,b' = —1) that (53) and (54) are satisfied.
Such a polynomial is obviously (by Lagrange interpolation):

19



trans _ 1. . (§—a')(§—b) o ('5_ I)(é._ )
et M (Rt et B Crd o) B
with
trans _ ab (alb _ aa
PO =@ = T amae=b  G—ayo—a) 0
Finally, according to (27) we can write:
ern(IUT) < ! (61)

a’b a'a )

ab
Tila=ay@=n + @D ~ o)

The denominator of (61) can be bounded again by an exponential func-
tion (as in (49),(50),(51)). To demonstrate how the second approach works,
see Table below (for the same spectra as for the first approach):

Iur upper bound on €., (I U I
[-1,—0.1JU[1,2] 2 - (0.6485)*
[—3.75,—0.1] U [1,4.75] 2 - (0.8623)*
[—49, —4] U [1,50] 2+ (0.9252)*
[—499, —1] U [1, 500] 2 - (0.9920)*

In general, no matter what spectrum we have (as long as it is contained
inTUI',I € R*,I' € R™) with the second approach we are always able to
to bound €x(I U I') (and consequently the rate of convergence of GMRES)
by some convergent geometrical series.

Another property of the second approach is that the conditions (53) and
(54) do not determine the transformation polynomial p!™"%(£) uniquely.

For this second approach there are still many open questions, such as:

1. In the class of all quadratic polynomials satisfying (53) and (54), find
pf);%mal (&) for which the value in 0 is maximal. Then our estimate on
e€x(I UI') can be sharper.

2. Does the use of a polynomial transformation of degree d > 2 lead to
any improvement in the e (I U I') estimate ?
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7 Conclusions

We have seen that the preconditioning of the Oseen problem leads to an
indefinite operator with, in generall, a complex spectrum. If neglecting the
convection term, we obtain an easier problem, the so-called Stokes problem,
for which the preconditioned operator has a real spectrum. We have pro-
posed two methods for estimating the max norm of the minimal polynomial
associated with a domain that contains the spectrum. Although the first ap-
proach turns out not to be always useful (it may only work in cases of a small
spectrum), the second approach, using a quadratic polynomial transforma-
tion is applicable for any real domain of the type ITUI',1 € RT,I' € R™, its
further development needs further research.
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Figure 1: Example of the spectrum in Theorem 1

Figure 2: Example of the spectrum in Theorem 3
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Figure 3: Symmetry of |ps(§)|,for the case I = (1.5,3),1I' = (—2,—0.5)
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