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Summary

The aim of this thesis is the mathematical and numerical analysis of a multi-yield (surface)
model in elastoplasticity. The presented Prandtl-Ishlinskii model of play type generalizes the
linear kinematic hardening model and leads to a more realistic description of the elastoplastic
transition of a material during a deformation process. The unknowns in the quasi-static formu-
lation are displacement and (several) plastic strains which satisfy a time-dependent variational
inequality. As for the linear kinematic hardening model, the variational inequality consists of a
bounded and elliptic bilinear form, a linear functional, and a positive homogeneous, Lipschitz
continuous functional; hence existence and uniqueness of a weak solution is then concluded
from a general theory.

Our time and space discretization consists of the implicit Euler method and the lowest order
finite element method. For any one-time step discrete problem, the vector of plastic strains
(considered on one element) depends on the (unknown) displacement only. In contrast to the
linear kinematic hardening model, the dependence can not be stated explicitly, but has to be
calculated by an iterative algorithm. An a priori error estimate is established and shows linear
convergence with respect to time and space under the assumption of sufficient regularity of the
solution.

A MATLAB solver, which includes the nested iteration technique combined with an (ZZ-)
adaptive mesh-refinement strategy and the Newton-Raphson method, is employed for solving
the two-yield material model. Various numerical experiments support our theoretical results
and give more insight to complex dynamics in elastoplasticity problems.

Zusammenfassung

Das Ziel dieser Arbeit ist die mathematische und numerische Analyse eines adhikifi-
Modells in der Elastoplastizt. Das vorgestellte, so genannte "play type” Modell von Prandt-
Ishlinskii verallgemeinert das Modell der linearen kinematischen Verfestigung it Zu
einer realistischeren Beschreibung der elastoplastischen Verformung des Materials. Die Un-
bekannten in der quasistatischen Formulierung sind die Verschiebung und (mehrere) plastische
Verzerrungen, die alsdsung einer zeital@mgigen Variationsungleichung auftreten. Wie im
Problem der linearen kinematischen Verfestigung beinhaltet die Variationsungleichung eine
beschénkte, elliptische Bilinearform, ein lineares Funktional sowie ein positiv-homogenes,
Lipschitz-stetiges Funktional, so daf3 Standardaussagen der Variationsrechnung die Existenz
und Eindeutigkeit einer schwachebdung garantieren.

Die Diskretisierung in Zeit und Raum erfolgt durch ein implizites Euler-Verfahren und eine
Finite Elemente Methode niedrigster Ordnung. In jedem Zeitschritt des diskreten Problems
hangt der zu einem Element assoziierte Vektor der plastischen Verzerrungen nur von den Ver-
schiebungen ab. Im Gegensatz zum Modell der linearen kinematischen Verfestiganhgi¢h
diese Ablangigkeit nicht in einer geschlossenen Formel darstellen und muf? daher iterativ bes-
timmt werden. Eine a-priori Analyse zeigt lineare Konvergenz in Zeit und Raum unter hinre-
ichenden Regulaidtvoraussetzungen.

Ein MATLAB Programm, welches "nested iteration” Techniken mit adaptiven Netzver-
feinerungsalgorithmen kombiniert und ein Newton-Raphson Verfahren verwendet, wird zur



LOsung des "two-yield” Problems herangezogen. Zahlreiche numerische Experimente bele-
gen die theoretischen Resultate dieser Arbeit uitddn zu einem besseren Vérstinis des
Materialmodells.
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Chapter 1

Introduction

Elastoplastic material behavior is often exploited in many engineering problems for calculation
of permanent deformation of structures, stability in the structural and solid mechanics, metal
forming operations and other processes beyond elasticity. Mathematical and numerical aspects
of problems in elastoplasticity date back to works of Duvaut and Lions [DL76], a8kl et al.
[HHNL88], Johnson et al. [EEHJ95, Joh76], Han and Reddy [HR95, HR99], Simo and Hughes
[SH9E], Korneev and Langer [KL84], amongst others.
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Figure 1.1: Examples of stress-strain relations in material science: linear elasticity (left), linear

kinematic hardening (middle), and two-yield model (right) in elastoplasticity.

The theory of elastoplasticity models the behavior of every point in the deformed continuum
in terms of the stress and strain tenserande. A linear stress-strain relation, which describes
reversible processes, e.g., a small homogeneous (relative) elongatiarbeam with a density
of force o, is depicted in Figurg 1.1 (left). If the foree is withdrawn, the elongation goes
back to zero as in the beginning of the deformation (p@jnA typical ductile material (Figure
[1.7, middle) behaves elastically as long as the strains are small. For stresses beyond a yield
limit (point I), the material reacts irreversible and the plastic stpaappears. That is, after the
force is withdrawn, the material stays deformed (pdihi). The stress-strain relation follows
a hysteresis curve, which consists of three parallel lines/7, 17 — IV,V — VII and two
parallel lines/V —V, V11 — 1. Thetwo-yieldmodel (Figur¢ 1]1, right) generalizes the stress-
strain relation of théinear kinematic hardeninghodel introducing the third set of parallel lines
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I1—11,V —-VII, IX — X, which is modeled by splitting the plastic straimdditionally into
two internal plastic straing;, ps, i.e.,p = p; + p2. The mathematical and numerical analysis of
the two-yield model or more generally ofraulti-yield modelgeneralizes the situation for the
linear kinematic hardening problem and is the main interest of this thesis.

s = = E = o El 2 3 + ERT) ooz Zoo o oo 00z om  -o0s oot ooz o a0z 004 oo

Figure 1.2: Loading-deformation relation calculated for the problem of beam with 1D effects:
linear elasticity (left), linear kinematic hardening (middle) and two-yield model (right) in elasto-

plasticity.
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Figure 1.3: Loading-deformation relation calculated for the Cook’s membrane problem: linear
elasticity (left), linear kinematic hardening (middle), and two-yield model (right) in elastoplas-
ticity.

The construction of multi-yield models as well as more complicated hardening models in
terms ofrheological modelshas already been studied in works of Brokate, Kreyisintin,
Sprekels and others [Bro87, Bra98, BK98a, BK98b, B$S96, Kre96, Vis94]. We consider here a
multi-yield model that operates withl plastic strain®y, . . ., p); and an additive decomposition
of the straire,

e=e+pi+-+pu-

The presented multi-yield modelBrandtl-Ishlinskii model of play typiKre96]. We show
that a weak formulation of this model can be written agaational inequalityon a Hilbert
spaceH, The variational inequality consists of a bilinear for, -), a linear functional(-)
and a nonlinear functional(-) and has the following form: Seek(t) € H, such that, for all
z € H and almost all times € [0, 77,

0 < a(w(t),z—w(t)) +¢(z) —Y(w(t) — (L), z — w(t)). (1.1)

Variational inequalities such gs (IL.1) arise in many problem, such as the obstacle or contact
problems or the non-differentiable problems with constraints. For their mathematical analysis
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we refer to Glowinskii et al. [GLR&1]. As for the linear kinematic hardening madel [HR99] we
prove that terms(-, -), £(-),¢(-) in (1.1) satisfy sufficient assumptions to guararggistence
anduniquenessf a weak solutionu(t) € H.

20 25 30 Eg 40 45 o0 5 0 15 20 25 30 Eg 40 45 o0 5 0 15 20 25 30 Eg 40 45 =

Figure 1.4: Elastoplastic zones of the Cook’s membrane problem for purely elastic model (left),
single-yield (middle) and two-yield (right) models. Black color shows elastic zahes (P, =
0), darker and lighter gray color zones in the fir&f (2 0, P, = 0) and second plastic phase

(P2 # 0).

The time dependent variational inequallty (1.1) is discretized at each time stepibypiie
cit Euler scheme, usinginite element methoflHR99, Alb01,[ACZ99] Sut97]. This approach
leads to the minimization problem for a discrete approximatiomiof = (U', P},..., Pi;)
of the exact solution at the first discrete tim¢t;) = (u,p1,...,pn)(t1). If we denote by
W = (U° P, ..., PY) the discrete approximation af(0) = (u,pi,...,pa)(0), then the
incremental variabl&X = (U, P, ..., Py) = W' — W° minimizes a functional

FX) = 5a(X, X) +6(X) - L(X), (12)

over all X in a finite dimensional subspaceof H. The minimization probleni (1}2) with the
convexbut non smootHunctionaly is solved by the Newton-Raphson methiod §8&] and the
nested iteration method in a multilevel framework.

For a space discretization we ugecewise affindéunctions to approximate the displace-
mentU andpiecewise constaritinctions to approximate the plastic straifis . . . , Py, on the
same regular triangulation. Similarly as in the linear kinematic hardening cdse [ACO00], the
vector of incremental plastic straid® = (P, ..., Py;)? depends on every elemefitof the
triangulationZ on the displacemerif only, i.e., it is the minimizer of a functional

9Q) = 5E+MQ:Q -4 Q+[Qll. @=(@Qu... Q" (3

over all deviatoric symmetrié x d matrices)+, ..., Qs (d = 2, 3). The resulting matrix opera-

tor C + H is not diagonalizable and hence it is not possible to separate the minimiza of (1.3)
into M subproblems. In the two-yield cask] = 2, an analytical calculation of minimizing
(1.3) infers that, = || »|| is a root of a 8-th degree polynomial. Therefore, the minimizer of a
functional [I.8) can not be expressed exactly as for the single-yield miodel [ACO0Q], but has to be
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5 20 25 30 Eg 40 45 o0 5 0 15 20 25 30 Eg 40 45 = 5 =

Figure 1.5: Adaptive refinements of Cook’s membrane problem for purely elastic model (left),
single-yield (middle), and two-yield (right) models. The black color shows elastic zéhes (
P, = 0), darker and lighter gray color zones in the fir8f ¢ 0, P, = 0), and second plastic

phase P, # 0).

approximated by an iterative algorithm. The iterative algorithm belongs to the claismfat-
ing direction algorithmsnd converges to the minimizef;, P,) with the convergence rate'2.

By application of the arguments of the proof for the linear kinematic hardening model
[ACOQ], we show linear convergence in time and space for the implicit Euler scheme and the
lowest order finite element method under the assumption of sufficient regularity of the solution.

Numerical experiments for the calculationtafo-yield plasticityproblems support the theo-
retical results and give more insight to complex dynamics of elastoplasticity problems. We ob-
serve two-yield plastic effects that arise in addition to single-yield effects, like different hystere-
sis curves and the time evolution of elastoplastic zones. Figures 1[2 and 1.3 show the loading-
displacement relation (measured at one material point) for elastic, single-yield and two-yield
material models. For the material under the cyclic uniaxial tension (Fjgufe 1.2), the hystere-
sis relation is in agreement with the theoretically analyzed stress-strain relation. The typical
hysteresis curve (Figufe 1.3) is not sharp, but it is smoothened through two-dimensional defor-
mation effects and the non-homogeneous elastoplastic material behavior.

The developed MATLAB solver involves a nested iteration technique adtyptivemesh-
refinements and an adaptive time-stepping. The following properties have been observed in the
numerical experiments:

1. Adaptivemesh-refinement strategy is superioutoformmesh-refinement strategy.

2. The nested iteration technique performs efficiently (i.e, the direct calculation requires
more time). One Newton step in the nested iteration technique is usually sufficient; more
steps only increase computational costs without large improvements with respect to ac-
curacy.

3. Computations based on the two-yield material model require longer CPU time than com-
putations where the single-yield material or the elastic material models are used.

4. Adaptive time-stepping (controlled by the number of Newton steps in the previous time
step) is inefficient.
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The conclusions from this thesis are the following points: Generalization of the mathema-
tical and numerical analysis for the linear kinematic hardening model to the multi-yield model
is indeed feasible and seems to lead to more realistic numerical simulations. The numerical
discretization leads to the similar structure of the discrete problem; however the explicit rela-
tion between plastic strains and displacement can not be stated analytically and therefore the
practical calculation of a multi-yield plasticity problem is more expensive. The convergence of
inner-outer multilevel oriented algorithms has been observed, and elements of a priori and a pos-
teriori error control are established. Adaptive mesh-refinement is applicable and advantageous;
in contrast, the construction of adaptive time-stepping requires more sophisticated approach and
deserves further future research.

The thesis is organized as follows. The boundary value problem of linear elasticity which
leads to the Navier-Latnequations (Problem 2.1), is described in Chapter 2. This becomes a
part of the more complex elastoplastic material response laws as explained below. Chapter 2
also provides basic tools like Korn’s inequality and the Lax-Milgram Lemma and closes with
outlooks for nonlinear elasticity.

Chapter 3 introduces three rheological elements, the elastic, rigid-plastic and kinematic ele-
ment. Elementary results from convex analysis are recalled which yield equivalent formulations
of rheological laws for the rigid-plastic element (Lemmal 3.3 on gage 17). A combination of
the three rheological elements results in the linear kinematic hardening single-yield (surface)
model in elastoplasticity. The weak time-evolution formulation of the boundary value problem
of elastoplasticity (Problefin 3.1 on page 22) is derived in the form of an abstract variational
inequality.

Chapter 4 concerns the composition of more rigid-plastic elements, leading to the multi-
yield (surface) elastoplastic model, namely the Prandtl-Ishlinskii model of the play type. The
weak formulation of the boundary value problem of multi-yield elastoplasticity (Proplem 4.1)
on page 3[1) is also discussed here.

Chapter 5 is devoted to the mathematical analysis of the boundary value problem of multi-
yield plasticity (Problenj 4]1). Theorem 5.2 (on page 41) is a special case of a general theory
[HR99] and establishes existence and uniqueness of weak solutions. Its application is based on
the verification of the assumptions on the terms in the variational inequaliy (1.1): bounded-
ness and ellipticity of the bilinear forma(-, -) (Proposition$ 51, 5|2 on pages 85| 38) and the
Lipschitz-continuity of the nonlinear functional(-) (Propositiorj 5.3 on page $0).

The discretization of the boundary value problem of multi-yield plasticity (Proplein 4.1) is
described in Chapter 6. For the two-yield material model, the relation between plastic strains
and displacement can not be calculated explicitly (as in case of the single-yield material model
[ACO0]). Algorithm([Z (on pagé §0) establishes the elementwise computation of discrete plastic
stresses and Proposition 6.1 (on page 62) states its global convergence.

Chapter 7 studies convergence of the fully-discrete method. Propdsition 7.1 (op page 65)
establishes a priori error estimates and the linear convergence in time and space by assuming
sufficient regularity of the solution. Propositipn]7.2 (on page 71) formulates an a posteriori
error estimate for a one time-step problem and clarifies the residual error estimator which allows
adaptive mesh-refinement strategy.

The numerical algorithms of Chapter 8 include a nested iteration technique combined with
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adaptive mesh-refinement and adaptive time-stepping.

Chapter 9 reports on the calculations of two-yield plasticity in MATLAB and presents hys-
teresis curves for single and two-yield material, evolutions of elastoplastic zones within the
deformed continuum and experimental convergence rates.

Conclusions and some open questions are summarized in Chapter 10. Finally, the Appendix
contains notation and MAPLE and MATLAB programs.



Chapter 2

Mathematical models in elasticity

This chapter introduces a mathematical model of linear elasticity and explains related concepts.
This is part of more involved elastoplastic stress-strain relations of the following chapters. A
model of nonlinear elasticity, whose studies leadado-convex analysiand are beyond the
range of this thesis, is also mentioned.

2.1 Model of linear elasticity

The elastic body is assumed to occupy a bounded dofaanR?, with a Lipschitzboundary

' = 092. The boundaryl” is split into aDirichlet boundaryl'p, a closed subset df with a
positive surface measure, and the remaining (relatively open and possibly é&eptyanrpart

'y :=T'\Tp. Applied volume and surface forces cause internal stresses within the body. This
is modeled by a symmetric second or@auchy stresgensoro : ) — Rg’yxn‘j. An equilibrium
between external and internal forces in tueasi-staticcase is expressed by the equation of
equilibrium of forces

dive+ f=0 forallxz e Q, (2.1)

where f : Q — R? denotes volumes forces (i.e., a gravity force) andodiine divergence

defined by(divo); := Zizl %‘;j: forall ; = 1,...,d. Every material point of the body moves

with respect to its position in a reference configuratibhy adisplacement: : Q — R9. The
deformation of the body is characterized for very small deformations through the linearized
Green strain tensor

e(u) = %(Vu +(Va)T).

In linear elasticity theory we assume a linear relation between the stiess the deforma-
tione, i.e.,
o = Ce. (2.2)

The linear operatof : R™*? — R9*4 denotes a symmetric, positive definite elastic tensor. For
Isotropic materials it holds that
Ce = 2ue + A(tre), (2.3)

where the (positive) coefficientsand) are called_ané coefficients. Her& denotes the second
order identity tensor (an identity matrix) and trR?¢ — R defines therace of a matrix,
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Figure 2.1: Material under deformation.

tre .= Zj:1 e;;, fore € R¥?, We pose essential and static boundary conditions, namely
c-n=g only,

u=0 onIp and
whereg is a given applied surface force anddenotes the outer normal to the boundary.
Substitution of|[(2.R) into[ (2]1) leads to the linear boundary value problem of quasi-static elas-

ticity in the space
HLH(Q) ={ve H(Q)v=00nTp}.
Problem 2.1 (Linear BVP of quasi-static elasticity).For givenf € L*(Q)?andg € L?(I'y)?,

findu € H},(Q) that satisfies
divCe(u)+ f=0 inQ,
u=0 onlp, (2.4)

Ce(u)-n=g only.

We multiply ) by an arbitrary € H}(Q), applyGreen’s theorenfrom vector analysis
and derive the weak formulation of the equation of equilibrium of forces
/g -vdr forallv € HL(Q). (2.5)

/a:g(v)dx:!f-vdx+FN

Q
Here: denotes a scalar product of matrices, and it is defined: ds = ZZ]’:I a;;bij.

Definition 2.1 (Weak formulation of BVP). For givenf € L?(Q)¢ andg € L*(T'y)4, find
u € H},(Q) that satisfies
a(u,v) = b(v) forallv € Hp(Q), (2.6)
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where the bilinear formy (-, -) and the linear functiondi(-) are defined by
a(u,v) := [e(u) : Ce(v) dz, (2.7)
Q

b(u):= [ f-udz+ [ g-uds. (2.8)
Q Tx

Before we state existence and uniqueness of the weak solution of Problem 2.1 we recall
Korn’s first inequalitythat is of central importance in linear continuum mechanics, cf. [Val88]
for a proof of the subsequent lemma.

Lemma 2.1 (Korn's first inequality). LetQ c R? be a nonempty, open, bounded, and con-
nected domain irR? with a Lipschitz boundary that consists of a Dirichlet parf', of a
positive surface measure. Then there exists a constani that depends only oft such that

sy < c/ le(u)|[2dz forall u € HL(Q). (2.9)
Q

With the help of Korn'’s first inequality we can prove that the bilinear farfm-) is elliptic
in H,(Q2) and the linear BVP of quasi-static elasticity has a unique solutidi}j2), owing
to theLax-Milgram lemma

Theorem 2.1 (Lax-Milgram). LetV be a Hilbert spaceg : V' x V' — R a bilinear form that
is continuous and V-elliptic, an: V' — R a bounded linear functional. Then the problem

a(u,v) =b(v) forallveV (2.10)
has a unique solution € V/, and for some constanat> 0 independent of,
[lull < c[b]]. (2.11)

Remark 2.1. The above assumptions,
fel* Q)% and ge L*(I'y)?
can be weakened. For instance in three dimensions{i-e.3, the assumptions
feLf5Q)P and ge LY3(Iy)3
already guarantee a uniqueness of solutiorsH1,, seel[Cia94].

If we are provided a sufficient regularity 6f) and f, one can prove even a higher regularity
of the solutionu [Cia94].

Theorem 2.2.Let) C R? be a domain with boundary of classC?, let f € LP(Q)3,p >
and letl' = T'p. Then the solutiom € H}(Q2) of Problen] 2.L is in the spadé’>?(2)3 a
satisfies

6
5!
n

div Ce(u)+ f=0 inQ.
Letm > 1 be a non-negative integer. Suppose the boundaig of classC™™ and f €
W ()3, The the solutiom € H}, of Problen] 2.1 belongs td/™*2#(2)3.

Proof. [Cia94]. O

Remark 2.2. The previous theorem can be extended to problems with nonzero Neumann boun-
daryI'y. The closures of'p, andI'y must not intersect, i.e., digty,I'p) > 0, and here
g € Wm=l/pp (T'y)3,
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Figure 2.2: Examples of domains with a positive (left) and zero (right) distance of Dirichlet and
Neumann boundaries.

2.2 Model of nonlinear elasticity

Problen] 2.]1 can be seen as a linearized version of nonlinear elasticitiavgéhdeformations
Then the (nonlinear) Green strain tensor is of the form

e(u) = %(Vu + (Vu)" + (Vu) V). (2.12)

For a description of the internal stresses,gbeond Piola-Kirchhof strees tenssr. 2 — R%x¢
is connected witl(u) through (a relation defined with the help of a given functign

S = Ce(u). (2.13)
An equilibrium of internal and external forces is expressed as

div ((1 + vu)s> Y =0 inQ. (2.14)

The term(1 + Vu) := F' is thedeformation gradientessential, and static boundary conditions
read
u=0 onIlp and (1+Vu)S-n=g only.

The equilibrium equatiorf (2.14) can be stated for a purely Dirichlet problem I(i;e -
092, 'y = 0) by an operator equation

Au) = f, (2.15)
with an operatod : V' — Y defined by
Afu) = —div (1 + Vu)(C(%(Vu (V) + (V) V). (2.16)
For a special choice
V={veW* Q)" v, =0} and Y = L?(),

A is a continuous mapping between spateandY (for appropriate smoothness and growth
conditions imposed off). It can be noticed, that = 0 satisfies the equatiof (2]15) for zero
external forceg’ = 0 . With the help ofimplicit function theorenfCia83], one can prove local
existence of solutions of the equatipn (2.15) for sufficiently srall
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Theorem 2.3 (Local existence theorem in nonlinear elasticity)Let O ¢ R be a bounded
Lipschitz domain with boundary,, of classC?. Let the mapping” of classC!(R%x¢ x RZx4)
satisfy

C(e) = Atr (¢) + 2ue + O(le]?)

for \, n > 0. (Here O(|¢]?) denotes the Landau-symbol such thatsup._, O(|¢|*)/|e]* <
c0.) Then there exists for evepy> d a neighborhood/ of 0 in X := W, ?(Q)? N W?27(Q)?
(with respect for the norm ifiV2?(2)) and a neighborhood’ of 0 in L?(Q)¢, such that for all
f € U there exist unique € Y that solves

~div ((1+ Vu)(C(%(Vu (V) + (Vu)"Vu)) = 1

The defined mappind~! : f — u, U — V is Fréchet-differentiable.
Proof. See[Cia83]. ]

For a more detailed discussion on nonlinear elasticity and the global existence technique,
which is based on the polyconvex energy densities due to J.M. Ball, we refer to [Cia83, Val88,
Car00b].






Chapter 3
Single-Yield Plasticity

This chapter introduces the classical concepts in small strain elastoplasticity with hardening.
The main focus is the linear kinematic hardening model, which belongs to the category of
single-yield models.

| c!
11
— 1
1/
A
/
P 0 £

Figure 3.1: The tensile test: an increasing stress P/ A is applied to the specimen (left), the
resulting stress-strain relation (right).

The simplest mechanical test to visualize a nonlinear material behavior is the tensile test: an
increasing tensile load is applied to a specimen and resulting changes in lengths are monitored.
A typical stress-strain relation is displayed in Figurg 3.1. At the beginning of the test the mate-
rial extends elastically in the regian — I , the straire is directly proportional to the stress
and the specimen returns to its original length on the removal of the stress. Beyond the elastic
limit (point I) the applied stress produces plastic deformations so that a permanent extension
remains after the removal of the applied load. The rafie continues to decrease with elon-
gation due to workhardeninguntil the ultimate tensile stresis reached. At this point a neck
begins to develop somewhere along the length of the specimen and further plastic deformation
is localized within the neck. After necking (poiff) has begun the nominal stress decreases
until the material fractures at the point of minimum cross-sectional area within the neck. In this
thesis we discuss models with a stress-strain relation iwthel I region: we omitsoftening
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effects inthel I — 111 region.

3.1 Rheological elements

The behavior of an elastoplastic material is described by a combination of the following rheo-
logical elements: the linear, the rigid-plastic and the kinematic elerment [Kre96]. Every element
Is characterized by its (internal) stress and strain tensors. We denote the stressidhyhe
strain bye for the simplicity of notation. For combinations of more elements, we distinguish
(internal) strains and stresses by introducing different indices, for insteheé or different
letters, for instance, p.

3.1.1 The linear elastic element

The linear elastic element is a rheological element with a linear stress-strain relation, which is
used in mechanics to characterize elastic material. The second order stress isrggeen by
an action of the elastic tens@ron the second order strain tensor

o = Ce. (3.1)

Forisotropic materialsthe action ofC is given as in the linear elasticity by (2.3).

3.1.2 The rigid-plastic element

We define a stress space as the space of symmetric t@ﬁgﬂnsThe basic concept in plasticity
is theyield surfacewhich is defined as the boundady’ of a convex closed sef C R%?. The

material remains rigid as long as € int Z (theinterior of Z). In this work we assume the
von-Misesyield condition, which specifies for somes? > 0 as

Z ={o € R¥ . ||devo||r < 0¥}, (3.2)

sym

4 2. Since the Frobenius

where||- || denotes the Frobenius matrix noffa| |3 = a:a = 37 ., a3,
norm is the only matrix norm being used, we omit the leffeaind write|| - || only. The matrix

operator dev is the deviator defined by dev= o — % (tr o)L, where tr denotes the trace of a
matrix, tro := S0 0y;.

Remark 3.1 (Tresca yield condition). The Trescayield condition is an example of another
yield condition:
Z={oc € R¥ . ¢ ... 4 & < o¥}, (3.3)

sym
where¢y, . . ., &, are the eigenvalues of
No deformation occurs, i.es, = 0 as long asr € intZ, The symbolk denotes the time
derivative ofs. The material behaves plasticafreaches the boundat)yZ of Z. Plasticity is
governed by following physical principles:
o€ Z,

3.4
(¢,q—0) <0 forallq € Z. (3.4)
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In this expression brackets denote a scalar product) := a : b. The volume change
is neglected during the plastic deformation. Thereforeititempressibility conditiorof the
plastic strain reads

tré =0. (3.5)

We introduce some elementary results froomvex analysithat are important in the follow-
ing. Itis convenient to work in the set of extended real numiigss;= RU{oco}, R_, := RU
{0}, Rin := RU{—00, 00} with operations, i.ez+ oo := 00, —00 —00 := —00,0-00 := 0
and so on. An expressiar — oo is not allowed. In all definitions( is a Banach space.

Definition 3.1 (convex set, convex functional)A subsety” C X is convexif
Ve,y e YA€ (0,1) : de+ (1 — Ny €Y.
A functional f : X — R, is a convex functional, if
Vo,y € Y, A€ (0,1): f(Ar + (1= A)y) < Af(x) + (1 = A)f(y).

Definition 3.2 (normal cone, indicator function, conjugate function).Let Y C X be a
convex sety € Y. Then

Ny(z)={z" e X*: ",y —2) <0 forally € Y} (3.6)

defines thenormal condo a convex seY” at pointz. For any setS C X, theindicator function
Is of S is defined by

0 if x €S,
Is(w) = { +oo ifzgsS. (3.7)
For a functionf : X — [—o0, oo] we define theonjugate functiory™ : X* — [—o0, 0o by
f*(a*) = sup({a*, ) = f(x). 38)

Definition 3.3 (subdifferential). Let f be a convex function oX. For anyz € X thesubdif-
ferential 0 f (x) of x is the possibly empty subset &f* defined by
Of(x)={z" € X"+ (", y —2) < f(y) — f(x) Vye X} (3.9)

Definition 3.4 (lower semicontinuity). A function f : X — [—o0, +00] is calledlower semi-
continuousf

{a}ae — @ = lim inf f(,) > f(a).

Definition 3.5 (proper function). A function f : X — [—o0, +o0] is calledproper if there
exists a pointr € X such thatf(z) < occ.

By using the definition of the normal cone the inequality[in(3.4) can be expressed as
€ € Ny(o). (3.10)

Is it possible to invert (3.10), precisely to express terms of<? In convex analysis it is
proved that normal cone to the convex &edit - is the subdifferential of the indicator function
1y of Z atuz,

0lz(z) = Nyz(x) forallz e Z.
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Lemma 3.1. Let X be a Banach spacd, : X — [—o0, o] be a proper, convex, lower semi-
continuous function. Then
x* € df(x) & xedf(z"). (3.11)

Proof. See|[Kos91]. O
We apply Lemma 3]1 to the inclusidn (3]10) and obtain

¢ €0Ilz(0) & o€ 0l (e). (3.12)

We define aissipation functiorD(x) by D(x) := I} (z). It means, that the indication and
dissipation functions areonjugatefunctions of each other. The following result characterizes
the form of the dissipation function for the von-Mises type yield function:

Lemma 3.2.For Z = {0 € Rx% : ||devo|| < 0¥}, the dissipation functioD(z) = I;(x)
satisfies
o¥||lz|| iftrz =0,

D(x) = { +00 otherwise (3.13)

Proof. By the definition, the conjugate function fo(x) is given as

I7(r) = sup ((z,y) — I2(y)).

yeRIxd

Since the indicator functiofy (.) only attains value8 or 4o it is sufficient to find a supremum
over the subsefy € R%<? : ||devy|| < 0¥},

sym

I7(z) = sup ((z,y) — Iz(y)) = sup (2,9). (3.14)
yERH yeRZXL: | devy||<ov

One of the following cases may occur:
(i) tr x = 0. We decomposg asy = devy + é(tr y)I and get

(x,y) = (x,devy) + (z, é(tr y)I) = (x,devy) + étrx try.

Since trz = 0 we have(z, y) = (x, devy) and

I(x) = sup (r,y) = sup (x,devy). (3.15)

yeRE || devy||<ov yERS}:||devy||<ov

We applyCauchy-Schwarz inequality:, devy) < ||z|| - ||devy|| and bound[(3.15) as
I7(x) < o[]]
The substitution of) = T into @) yields

I;(x) = o||z|] (3.16)
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and the comparison df (3.115) with (3]16) deduces

I7(x) = o”||]|. (3.17)

(ii) tr = # 0. For allz € R4, arbitrarya € R and the choicg = ol we conclude from[(3.14)
that

I(x) > aftrz). (3.18)

After the substitutiormv = sign(tr z)n the inequality|(3.18) necessary impliBg ) = +oo. [

Lemmd 3.2 and the definition of the subdiferential of the dissipation fun@ioesult in

Lemma 3.3. For everyé, o € R¥4 7 = {5 ¢ R¥? . ||devo|| < 0¥}, the following state-

sym? sym

ments (a),(b),(c),(d) are pairwise equivalent:

(@) (¢,q—o0)y <0 forallqe Z.

(b) e € Nz(o).

o¥||z|| iftrz =0, (3.19)
+00 otherwise

(d)o:(q—¢) <D(q) —D(e) forall ¢ € R4

sym*

(c)o € 0D(¢), whereD(x) = {

The satisfaction of the incompressibility conditipn (3.5) leads to another simplified equiva-
lent statement with trace-free arguments.

Lemma 3.4. Let the assumptions of Leminal3.3 be satisfied and furthermdrelet 0. Then
the statement

(€)o:(q—¢) <D(q) —D(¢) forall g € devRE? .= {g € RY? :trq =0}.  (3.20)

sym sym

is equivalent to the statements (a),(b),(c),(d) in Lernmia 3.3.

Proof. Itis sufficient to prove the equivalence of statements (d) and (e). The implidation
(e) follows from the inclusion deR%x? C Rx<. The implication(e) = (d) can be proved by

contradiction. ]

Remark 3.2 (Trace-free arguments).Lemmg 3.4 states that under the conditiohif 0 is is
sufficient to consider only trace-free argumemnts denglng and the dissipation function in
the form

D(x) = o"|[«]]

in the statement (d) of Lemna 8.3.
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Figure 3.2: The elastic, kinematic and rigid-plastic element.

3.1.3 The kinematic element

We assume only the linear kinematic element, i.e. the element driven by the linear relation

o = He, (3.21)
whereH is a positive definite matrix. Typicallfl = hl, whereh > 0 is a hardening coefficient
andl represents the identical matrix.

Remark 3.3. The linear kinematic hardening element represents the simplest hardening ele-
ment. There exists a variety of rheological elements describing nonlinear kinematic hardening,
such as the Armstrong-Frederick model, the Bover's model, the model ot lsind others
[Bro9g].

3.2 Composition of rheological elements

A large variety of models for the behavior of materials can be obtained by the composition
of rheological elements. Le&t, G, be two rheological elements and o, let then be their
strains and stresses, respectively, corresponding to the elément 1,2. More generally, a
potential energy of each element is taken into consideratian in [Kre96], however the stress and
strain characteristics are sufficient for our purpose here.

The total straire and stresg are defined by the following relations (the sigmeans the
parallel combination of elements andis used for the serial combination)

G, G, parallel
E=E1 =&y
O =01+ 09

G4, Gy serial
E=2¢€1+ &9
0 =01 = 09

Now we explore constitutive relations for the simplest possible combination of the rheolog-
ical elements, namely| R ande — R. Let the linear elastic element be described by internal
stressr¢, internal straire and let the rigid-plastic element be described by internal streaad
internal strairp. Composed rheological rules then yield
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e, R parallel e, R serial

ce=e=p ce=e+p

o=o0°+ 0P o=o0°=cP

o =Ce o=Ce

ol ez ol e s

(£,q—0") <0 forallgez (p,q—0) <0 forallge Z

3.3 Kinematic hardening model

There is a very important model combining the linear elastic, the rigid-plastic and the kinematic
elements in the way — (K /R). The rheological rules yield

e=e+p

og=0°+o"

o =Hp

o=Ce

o e”Z

(p,q—0oP) <0 forallqge Z.

(3.22)

We call this rheological model kinematic hardeningnodel. Since the consider kinematic
element is linear, we speak bfiear kinematic hardening modell'his model consists of one
rigid-plastic element only and therefore can be classifiedsasghe-yieldmodel.

-]
G ,P
III| Aoh A A A
III|IIII III|III I'|III Ill'illl III'-'III W
G,e '
P
G .,P

Figure 3.3: Kinematic hardening model.

Theorem 3.1. LetH be a real separable Hilbert space endowed with a scalar product,,.
Let Z C H be a convex closed sét,c Z and letz® € Z be a given element. Then for every
functionu € Wh(0,T;H) there exists a unique € W1(0, T; H) satisfying the variational
inequality
(u(t) — x(t),z — x(t)),, > 0 foralmostevery: € Z (3.23)
and the initial condition
x(0) = 2°. (3.24)
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Proof. See [Kre96]. ]

Remarks 3.1. (i) The solution of [(3.2B) is expressed bjopandplay operatorsS, P : Z x
W0, T; H) — W1(0, T; H) that are defined as

S u) =2, P’ u):=u—Sa° u). (3.25)

(i) The stop and play operators represent hysteresis operators with many interesting properties
such as the rate independence, the semigroup property and causality [Kre96, BS96].

The important question is the — ¢ relation. More precisely, we may ask: dfis given as
the function of timef, o = o (t), is it possible to determine= ¢(¢) from (3.22)? The answer to
this question is positive [Kre96], namely we can rewtjieq — o) in the kinematic hardening
case as

(p.q—0") = (H'6% g —0") = (6 — 6", ¢ — )y
and therefore with the help of Theor¢m|3.1 we have

et)=Clo(t) +H 'ot(t) = Clo(t) + H 'Py-1(ah, 0)(t), (3.26)

whereo! = oP(t = 0) and the play operatdPy-: (., .) is the solution operator to the problem

with the scalar produdtr, ). = (H 'z, y). Figureg 3.4 and 35 illustrate an example of the
one-dimensional play operator and the stress-strain relation for the case of the prescribed cyclic
stresso = Asin(t) with an amplitudeA, an initial zero plastic stresg, = 0, and a yield set

7 = [—0o¥,g¥]. Note that foro (¢) growing from0 to A (for ¢t € (0,7/2)),

0 if o <oV,
o—o¥ if o> oY.

P(0,0) = { (3.27)

3.4 Boundary value problem

Rheological models describe the mechanical behavior of the material at one point. Let a situa-
tion at every point of our continuum be described by a system|(3.22). According to Lemma 3.4
we replace the inequality

(p,q—0oP) <0 forallge Z

in (3.22) by its equivalent form
of : (¢ —p) <D(q) —D(p) forall g € devRe*? (3.28)

sym

and integrate this ove? to show

/a” (g —p)dr < /D(q) dz — / D(p)dz forall ¢ € devL?(Q)2<d. (3.29)
Q Q Q

Now we can subtract the equilibrium equation

/cr:5(v—u)dx:/f~(v—d)dx—i—/g-(v—ﬂ)dx (3.30)

Q In
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D:l

Figure 3.4: The play operater = P(0, o) in case of the cyclic stregs= Asin(t).

Figure 3.5: Stress-strain relation in case of linear kinematic hardening model and the cyclic
stressr = Asin(t).
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from the inequality[(3.29) and obtain

[oicw -t [o: e —pdit [ o g-ps
/D dx—/D dx—/f v—udx—/r g-(v—1a)dz >0, (3.31)

forallv € H}(Q), q € devL? ()42,

sym
Sinces = C(¢(u) — p) ando® = Hp we denote
w=(u,p) and z=(v,q)
and rewrite[(3.3]1) as a variational inequality

(0(t), z —w(t)) < a(w(t),z—w(t)) + () —(w(t)) forall z € H. (3.32)

Here
H = HpH(Q) x devL?(Q)%xd

sym

and the bilinear forma(-, -), the linear functionaf(-) and the nonlinear functional(-) in (3.32)
have the form:

a:HxH-—R, a(w,z):/Q(C(s(u)—p):(5(1})—q)dx+/QHp:qu,
0t): H— R, (6(15),2}:/f(t)-vdx—i-/F g(t) - vdz, (3.33)
v:H—-R, Yz /D ) dx.

Now we can formulate a boundary value problem of quasi-static elastoplasticity.

Problem 3.1 (BVP of quasi-static elastoplasticity) For given? € H'(0,T; H*), ¢(0) = 0 find
w = (u,p):[0,T] = H,w(0) = 0, such that for almost € (0,7")

(), z —w(t)) < alw(t),z —w(t)) +1(z) —Y(w(t)) forall z € H. (3.34)

3.5 Analogies

So far we have described a behavior at one point of our elastoplastic body by a system of equal-
ities and inequalities directly derived from rheological laws. Such approach is used, e.g., in
works of Brokate, Krdji, Visintin [Bro97, Kre96, Vis94]. There exists another approach, based
on a theory ointernal variables used in works of Carstensen etlal [ACZ99], Han and Reddy
[HR99], Simo and Hughes [SHO8] and others. We mention some very basic information from
the theory of internal variables and show that a linear kinematic hardening model described by
(3.33) is a special case of a more general model.
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In the contents of small strain elastoplasticity, the total strain is split additively into two
contributions
e(u) =C o +p. (3.35)

ThePrandtl-Reul lavin a stress formulation, requirgeneralized stressés, x) € Rg;g x R™
to beadmissiblei.e.,

(o, x) < 0o a.e. inQ, (3.36)
for some functional which is convex and non-negative but may-pso such
(5,€) € Dp(0, x)- (3.37)
Due to the convex analysis, we equivalently reformulate {3.37) with the help of a dual functional
@ as :
(0, x) € 9¢"(p, &) (3.38)

In the case ofombined kinematic and isotrogi@rdening with the von-Mises yield function
a (generalized) stregs, y) is admissible ify = (o, ) € RxR%? = R™,m = 1+d(d+1)/2,
with o > 0 and
®(o,a, 3) := ||devo — devj|| — o¥(1 + Ha) < 0. (3.39)

Here,o? > 0 is the yield stress anf > 0 is the hardening modulus related to the isotropic
hardening. The characteristic functional of the admissible stresse€3.38) is for(o, o, 3) €
Rdxd x R % Rdxd

sym sym

_Jo if a>0AP(0,a,0) <0,
plos . f) = { +o0o otherwise (3.40)
and the corresponding dual functional: RZ*¢ x R x R%<? — RU {400} is
. [ a¥lpl| iftrp=0Ap=—-bAa+cYH||p|| <O,
#(p.ab) = { +oo  otherwise (3.41)
Variables¢ = (a,b) andy = («, () are connected in the relation
€= —H1y, (3.42)

whereH := diag(H,, H) represents a hardening matrix that consists of an isotropic hardening
matrix H; € R and a kinematic hardening matri%, € R%*¢. Further it was showri [HR99]

thatw = (u, p,§) satisfies the variational inequality (3]32) holding forall= (v, ¢, ) with
terms

a:HxH-—R, a(w,z):/ﬂC(s(u)—p):(5(@)—q)dx+/ﬂ§*Hndx

W) H—-R, ({t),z)= /Qf(t) -vde —i—/ g(t) - vde, (3.43)

'y

viH =R = [ olan)ds
Q
The star« denotes the scalar product definedasy := a-a +b: gforall £ = (a,b),x =
(o, B),a,a € R,b, 3 € Rﬁ;;{. There are discussed special cases, in dependence on the choice

of values ofH, , H,, H schematically displayed as
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H, H, H

Isotropic hardening| H; > 0 0 H>0
Kinematic hardening 0 Hy >0 0
Perfect plasticity 0 0 0

In particular, for the case of kinematic hardeniig = 0, H, > 0, H = 0 implies [3.42)
that the internal variablé atw = (u,p,£) can be omitted and it can be further shown that

w = (u, p) solves a variational inequalitly (3/32) with termis (3.33), wiigére: H,.



Chapter 4
Multi-Yield Plasticity

This chapter discusses the concept of multi-yield plasticity models as a natural generalization
of the single-yield plasticity model, which was introduced in the previous chapter.

o o! !

€ € €
Figure 4.1: Stress-strain relation in case of single-yield (left), multi-yield (middle) and realistic

model (right).

The model of linear kinematic hardening consists of only one rigid-plastic element and
belongs therefore to the categorysfgle yieldmodels. As it has already been seen, such a
model does not provide a satisfactory description of a real material behavior. The real relation
e —o is smooth. For this reason we introduuelti-yield modelsschematically shown in Figure
[4.3. Compared with a single yield model (left) the generalization with the multi-yield model
(right) to more plastic phases makes the relatieno smoother and more realistic.

4.1 Prandtl-Ishlinskii model of play type

The following model is the typical representative of a multi-yield model. We calPtiaadtl-
Ishlinskii model of play typthe rheological element defined by the formella”, ., (K, — R,),
where the sigrp | denotes the combination of elements in serfedenotes a measure space,
with a finite nonnegative measusieon I. We are basically concerned with two cases depending
on the structure of the index skt
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Figure 4.2: Prandtl-Ishlinskii model of play type.

1. [ is a finite set, say = {1,...,M}, M € N, and furthermore. is chosen to be a
counting measuteThen we speak aftandard Prandtl-Ishlinskii model of play typath
M rigid-plastic elements. Alternatively we use the termnndti-yield modelor M-yield
modelin order to emphasiz&/ rigid-plastic elements in the model structure.

2. Iis ameasurable set with a finite measurd hen we speak aheasure Prandtl-Ishlinskii
model of play type

Remark 4.1. If I = {1} then the standard Prandtl-Ishlinskii model of play type is reduced to
the linear kinematic hardening model. Sometimes in the following we use thesteghe-yield
model

Rheological rules yield in the standard cdse {1,..., M}:

E=e€e+Dp,
M
p=>_pr
r=1
o=o.+0f foralr=1,..., M, (4.1)
ot e Z,
(prygr — 0Py <0 forallg € Z.,r=1,..., M,
o = Ce,
or =H,p.,, r=1,...,M.

In the measure case, we have the same system of equalities and variational inequalities. The
only difference is thap = >- | p, in (4.1) is generalized as

p= [ podutr)

1
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and the condition- € {1,..., M} is replaced byr € I. Similarly as in linear kinematic
hardening cas¢ (3.26) we can expressctheo relation by using a play operator as

e=Clo+ /HT_IPHTI(CT@N o) du(r), (4.2)
I

whereP,.,r € I is a solution operator of the variational inequality
(u(t) —(t), z(t) — T)g+ > 0 for almost every: € Z,. 4.3)

Example 4.1 (One-dimensional measure Prandtl-Ishlinskii model of play type)Let us con-
sider the one-dimensional case, i@, H, € R,r € I. Then [4.2) reads

e=Clo+ /HZIPHrl(UgT, o) du(r). (4.4)
1
In the case of the interval index set= («, 5),« > 0 with Z, = (—r,r),0f. = Oforallr €

I, forallr € I,0(t) / oo, o(0)=0we further have:
Clo if o €(0,a)
e={ Clo+ [TH Y (o —r)du(r) ifoe(a,p) (4.5)
(C’lo—kffH;l(a—r)du(r) if o€ (5, 00).
Concavity of the curve — o (convexity of the curver — ¢) is than guaranteed by the condition
H, >0 forallrel (4.6)

and the monotonicity of both curves is ensured due to the condition
Ct+ / H- ' du(r) < oo. (4.7)
1

Example 4.2 (One-dimensional two-yield Prandtl-Ishlinskii model of play type).This model
represents the simplest multi-yield model and its modeling will be treated in the forthcoming
sections. We assume two rigid-plastic elements with yield sets
Zy=|-0l,0Y] and Z,=[-0dY, d}]
with 0 < ¢} < o¥. The stress-strain relation reads
e =C o +Hy "Py-1(0h1,0) + Hy  Pp1(00s, 0)- (4.8)

An example of the linear combination of two play operators is displayed in Figures 4.4 and
for a prescribed cyclic stress= Asin(t), A > o4 and initial zero plastic stresse§, =

oty = 0. In the time intervat = (0, 7/2) there iso — ¢ relation described by a piecewise affine
increasing function that consist of three affine parts (Figure 4.4). The values of angles.
between one of three lines andaxis (Figuré 4.b) are derived from relations

tana = C7 1,
tan 3, = C™' + H !, (4.9)
tan By = C™' + H; ' + H, '

ConditionsC, H;, H, > 0 ensure the concavity of the— o curve and also its monotonicity
with a relationa < 3 < By < 7/2.
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Figure 4.4: Stress-strain relation in case of two-yield model and cyclic stresd sin(t).
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Figure 4.5: Stress-strain relation described by anglesfor single-yield model (left) and by
anglesw, 3, (- for two-yield model (right).

Remark 4.2 (Generation of multi-yield model from single-yield model).Let us assume a
single-yield model specified by material parametéisH, c¥ > 0. To this single-yield model
we can construct corresponding two-yield model specified by parani&térs H,, 05 > of >

0 with similar stress-strain relation. If we require that

¢ the elastic tensdl is the same for both single-yield and two-yield models,
e the angles’ andj, are equal, i.ej = (5,
e the value ofv? is betweerv! ando?, i.e.,0 < 0! < 0¥ < 0} < 0,

than both models are identical fore (0,0¥) U (0%, 00), cf. Figure[4.5. The equalitg = 5,
yields the condition ofi;, H,

H=H"+H" (4.10)
Possible choice dil; andH., is for instance
H, = H, = 2H. (4.11)

The technique of the generalization of the single-yield model can easily be extended to the
multi-yield model and it reads for th&/-yield model

H, = =H = MH. (4.12)

4.2 The boundary value problem

Similarly as for the linear kinematic hardening model we can derive a variational inequality
(3.32) with more general terms. As a rheological model we take the standard Prandtl-Ishlinskii
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model of play type with two rigid-plastic elements, i.8/, = 2. According to Lemma 3]4, we
replace two inequalities if (4.1)

<I51,Q1 — O'f> <0 for all q1 € Zl,

4.13
(P2, 2 —03) <0 forall gy € Zy, (+.13)
by their equivalent forms
ol : (@ —p1) <Di(q1) — Di(py) forallg deVRj;ni, (4.14)
O'g : (QQ — pg) < DQ(C]Q) — Dg(pg) for all g € deng;n‘i .
The integration of{ (4.14) ove? gives
/ 0'11) : ((11 _pl) dz < / Dl(ql) dr — / Dl(pl) dz forall S deVLQ(Q)gl;,;ll,
“ “ “ (4.15)

/0120 1 (g2 — p2)dz < / Ds(ge) dz — / Dy(po) d forall g, € devL?(Q)&x:.
0 0 0

We subtract the equilibrium equatign (3,30) from both inequalifies [4.15) and obtain

[ —a—mia— [ o e —p-pde+ [ ot (0-pan

Q

n / 0% (g — o) do + / (Di(@r) + Dalga)) dz — / (Dy(jn) + Daljn)) dir—

/ f-(v—a)de — / g-(v—u)dz >0 forallve HL(Q),q1,q € devL?(Q)&<d.
Q I'n
(4.16)

Sinces = C(e(u) — p1 — p2), o = Hyp; ando§ = Hyop, we can rewrite[(4.16) as a variational
inequality [3.3P) for
w = (u7p17p2) and = <U7QI7q2>
in a space
H = H},(Q) x devL?*(Q)*¢ x devL?(Q)%xd

sym sym?

where a bilinear formu(., .), a linear functional(.) and a nonlinear functional(.) have the
form

a:HxH—-=R, a(w,z2) :/Q(C(s(u)—pl—pg) c(e(v) —q1 — q2) dx
—|—/H1p1 “q diC—i—/HzPQ D qpdz,

@ @ (4.17)

t): H—-R, (£(t),z) = /Qf(t)~vdac+/F g(t) - vde,

viH R, (z) = /Q(Dl(ql)+D2(q2))dm.
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The generalization to the standard Prandtl-Ishlinskii model of play typeMitigid-plastic
elements yields obviously again the variational inequdity (3.32) for

w= (u,p,...,pu) and z=(v,q,...,qu),

in a space
H = H5H(Q) x devL?(Q)d x ... x devL?(Q)¥xd

sym sym)
v

-~

Mm times
where a bilinear formu(-, -), a linear functional(-) and a nonlinear functional(-) have the

form M M
a:HxH—-R, alwz)= /Q (C(a(u) - Zpﬁ) : <8(’U) - qu> dzx

+Z/9Hipiiqid$,
(t): H—R, <€(7§),z>—/f(iﬁ)-vdx—i—/F g(t) - vda,

biHoR, (/ZD%

Problem 4.1 (BVP of quasi-static multi-yield elastoplasticity).For given! € H'(0, T}
H*),0(0) = 0findw = (u,p1,...,pm) : [0,7] — H,w(0) = 0, such that for almost all
te (0,7)

(l(t),z —w(t)) <alw(t),z—w(t) +1(z) —¢(w(t)) forall z e H. (4.19)

Similarly, for the measure Prandtl-Ishlinskii model of play type one analogically obtains the
variational inequality{(3.32) for

(4.18)

w=(u,p,) and z=(v,q.), rel

in a space
H={(v.q,),r € :v € HLH(Q),q € devL’(Q)ia}, (4.20)

where a bilinear formu(-, -), a linear functional(-) and a nonlinear functional(-) have the
form

@ HxH =R, alw) = [ (Cew) = [pdur): (c0) = [ann)do
//Hrpr-qrdu ) dz,

(4.21)
(t): H—-R, (t),2)= / f(@) -vdx+/F g(t) - vdz,

biH—R, //D%du

The boundary value problem of quasi-static multi-yield elastoplasticity in the measure case
reads:
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Problem 4.2 (BVP of quasi-static multi-yield elastoplasticity, measure caselor
givenl € H'(0,T;H*),£(0) = 0 findw = (u,p,),r € I : [0,T] — H,w(0) = 0, such that for
almost allt € (0,7")

(Ut), 2 — (1)) < a(w(t),z —w(t)) +(z) —w(i(t)) forall z € H. (4.22)



Chapter 5

Mathematical Analysis

This chapter is focused on the analysis of boundary value problems of quasi-static multi-yield
elastoplasticity. First, the standard problem (Probfem 4.1) is considered, and second the ob-
tained results are generalized for the measure problem (Préblém 4.2). We show that the varia-
tional inequality [(3.3R) has a unique solution by checking the validity of assumptions of a more
general theorem [HR99].

In the standard case, we search for a solutios (u,py,...,py) € H of the variational
inequality [3.32). The Hilbert spack is defined as the Cartesian product of Hilbert spaces
V, Qo

H=VXQX- % Qo,
~—_————
Mm times
where
V:=HhH(Q) and Q:={q:q € devR2 g, € devL*(Q)}.
A scalar product-, -)», and an induced norm - ||3; in the spacé{ are

(w,2)1 = (u,v)v + (p1,q1)g0 + -+ + (Par, qr) Qo
lwllf, = (u,u)} + (pbpl)zgo +oot (pM,pM)éO,
||ZH31 = (v, U)%/ + (a1, Q1)2Q0 + -+ (g, CIM)QQO.

In the forthcoming sections we prove that

e The bilinear form

awﬁzé@%w—fmn(mmfﬁ@m+iLEMMm

=1
Is bounded and elliptic in the spagé
e The functional

0@ = [ YD

IS nonnegative and positive homogeneous in the space
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5.1 Boundedness od(w, z)
By the definition of boundedness, it is to prove
|a(w, 2)| < col[w]|] 2], (5.1)

wherec, > 0. For simplicity of notation, only the case = 2 is analyzed. An extension to the
caseM > 2 follows automatically. By the triangle inequality,

ofw, )] <] [ e = pr—pa) () — s — a0 S|+ | [ B s 0+ B ) ]
(5.2)

The first term in the inequality (5.2) can be bounded by Cauchy-Schwartz inequality for the
scalar producta, b) = a : b, and the multiplicativity of the Euclidean norfh ||,

dx

| /QC@(“) —p=pa) () — a1 — ) | < /Q Cle(w) = pr = p2) : (0) — 01— )

SC/6u—p—p2dx2/5v—q—q2dx2.
ICI( | Nletw) = pu =l de) " ([ 1lo(0) = a1~ el dr)
By using the inequalitya + b + c|*> < 3(|al? + |b]? + |c[?) for all a, b, ¢ € R, we obtain
9 2
[l == palPde < [ 32 () =, —s,)
Q QT
<3 [ S5 () 4 (1) 4 (2, (53)
<3 [ (@I + I + 1l )
Q

Sincec(u) : e(u) = > 5(uiy; + uje)* < Youi,, it holds consequently, [|e(u)||* dz <
i, 1]

Hu“i]})(ﬂ)d’ which further implies

[ (1Ol + il + 1l ) € < e+ [ (1ol + el ) ke = [
Putting estimates (5.3) and (b.3) together, one obtains
1@ = =l o < sl (5.)
and for the same reason

/ o) = a — 2 de < 3|21, (5.5)
Q
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The second term i (5.2) is bounded as

‘/(Hﬂ?l cq1 + Hopr : qh) dl“ < / ‘Hlpl tqn +Hops @ qo| do
Q Q

< [ (Il ol + 1Bl - o)
Q
< maac{ . [Eelly | (1ol sl + lpe] - el ]) o
9 9 1/2 9 9 1/2
< max{lEL LAY | (P lpal?) - (llanl P+ llel ) o

1/2 1/2
< a2 L} (| (ol + il Py ) ([ lal + el ) )
Q Q
< max{|[ B ||, | [El} eollac] |21

Combining the estimatefs (5.4)), (p.5) ahd [5.6), we conclude the following propositidd fer
2.

(5.6)

Proposition 5.1 (Boundedness of the bilinear formu(-, -)). A bilinear forma(-, -) is
bounded in the spacK,

la(w,2)] < (M + DIICI + max [IB])lleollsel =1l (5.7)
Proof. The proof is a direct modification of the aforementioned situation\iot 2. O

5.2 H-ellipticity of a(w, z)
We aim to prove the existence of a constant- 0, so that
a(w,w) > c||w|[3, forallw € 'H.
Under the natural assumptions of symmetry of elastic and hardening tensors

E:CA=CE: N forall &, \ e RY,

i (5.8)
EHA=H¢: N forallE, N eRYi=1,...,M
and their positive definiteness
CE: &> cl|€||* forall & € RY, 5.9)
HE - € > h||€])> forallé eRYi=1,..., M '
we can bound the integrand in the scalar produat, w) as
Cle(u) =p1— -+ —pn) s (e(u) —=p1 — -+ = par) + Haipy cpr + -+ Hypas 2 pu
> clle(u) —p1— - = pul* + hallpal * + -+ + haa|lpa|[* (5.10)

> min{e b, har} (lle() = pr =+ = parl P+ ol + - + lparl ).
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Figure 5.1: Continuous functiofi(z) on the torusZ + z? = 1) in Lemmg5.2 forM = 1. Its
minimum is0.3819.

Lemma 5.1. Let D € RY*YN be a diagonal matrixD = diag(d,...,dy),d; # 0 for j =
1,...,N,leta € RY. Then there holds

det(D+a®a) = ([[d)(1+ ) _da’/d;). (5.11)

Jj=1 Jj=1

Proof. The proof consists in constructing similar matrice§ id+ a ® a) by equivalent op-

erations, that do not change the determinant. Firstly, the last co(@% of the matrix

(l; _a> is multiplied with —a; and added it to thg—th column forj = 1,..., N, and we
a

1
obtain
D+t+a®a —a
0 1)/
—Qa

Secondly, theg-th row of the matrix matri><(£ 1

> is multiplied with—a; /d; and added to

the lastone foy = 1, ..., NV, and we obtain

D —a
0 1+37 a2/d;)"

Thus, the following formula is derived

B D+a®a —a\ D —a\ _ D e
det(D+a®a)_det( 0 1>—det(aT 1>_det<0 1+Z§V1a?/dj>'
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SinceD is a diagonal matrix with détD) = H;.V:l d;, we have

oot (o1 azga,) - H “Z /)

which concludes the proof. O

Lemma 5.2. There exist& = k(M) > 0 such that, for allzg, x4, ..., 2y € R,

M , M ) M )
<x0—;xi> +Z;xi Zk;xi. (5.12)

Proof. Let us denotef(z) = (g — Yo, :)> + S0 a2, wherex = (g, -+, ) € RMFL
It is easy to check that is homogeneous of degrégf(rxz) = r?f(x) for all r € R. Thus

J@ et sk (5.13)

2€RMH1 220 ||2]|2 zeRMHL |jg]2=1

Sincef(x) is a continuous function on the compact §ete R¥*! . ||z||> = 1}, there exists
z € RM*1 such thatf(z) = mingegm1 % = k. Additionally, sincef(xz) > 0 forallz €
RM+1 satisfying||z||*> = 1, there holds: > 0. O

Remarks 5.1. (i) Lemma. holds also for matrices, z1, ..., zy € R when(-)? is re-
placedH H2 Ez] 1( )’L2j7 I e

M 9 M M
o = S|+ D lhaal? = 63 Nl (5.14)
i=1 =1 =0

(i) According to Lemmg 5]2, the valuk depends on\/ only. In order to calculaté as a
function of M explicitly, we rewrite

Mo, M
(xo—in) +fo:xTAx, x = (20, ...,2p) € RMH
i=1 i=1

with the matrix

A=(1,-1,...,-D)®(1,-1,...,—1) + diag(0, 1, ..., 1).

Then [5.1B) is reformulated as

2T Ax

xTx

That means that the maximalis the smallest eigenvalue of matrik All eigenvalues\ of
matrix A satisfy the condition

k<

det(A — X\I) = det(diag(—\, 1 —A,..., 1 =N+ (1,-1,...,-1)® (1,-1,...,—1)) =0.
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The application of Lemmla §.1 with = diag(—X, 1 — A,...,1 — ) anda = (1,-1,...,-1)
deduces under the assumptiong 0, 1,

1 M
M1 =M1+ =+ m) =0,

with the solution\; , = 1 + % + %\/4M + M?2. Sincek is the smaller value of; and\,, we
finally have

M 1
k(M) :1+7—§\/4M+M2. (5.15)
Table[5.1 displays some values/ofand M k. Meaning of the valuél/k will be given in
RemarK 5.]1. Note that(A/) \, 0 asM — co andMk — 1 asM — oo.

k Mk
0.3819 | 0.3819
0.2679 | 0.5358
0.2087 | 0.6261
0.1715 | 0.6862
0.1458 | 0.7294

10| 0.0839 | 0.8392

100| 0.0098 | 0.9804
1000 | 9.98 10e-4| 0.9980

arwN RS

Table 5.1: Values of and M k for different values of\/.

An application of Lemma 5|2 to the bourid (5.10) leads to another boundswofv),
aw,w) 2k min{e, ) [ (@I + P+ + lpul )b, (5.26)
According to theKorn’s first inequality
[ Vel de = Kllalliyo, forallu e ()
whereK > 0 depends only on the domaihwe finally obtain
Proposition 5.2 (Ellipticity of the bilinear form a(-,-)). A bilinear forma(-, -) is H-elliptic,
a(w,w) > (k‘ min{c, hy, ..., hy} min{1, K}) |wl[3,, (5.17)

wherek depends only on the number of multi-yields- £(1/) in (5.18), K on the domair2
and the dimension, i.e., K = K(£,d).
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Remark 5.1 (Meaning of the valueMk in Table [5.1). Let us assume thé/-yield model
generated from the single-yield model according to Rerfnatk 4.2. It means

hy=---=hy = Mh.

In the case of sufficientlgmall hardeningh, . .., hys < ¢, the ellipticity constant from Propo-
sition[5.2 reads

k min{c, hy, ..., hy} min{l, K} = Mk hmin{l, K},

where only the product/k depends on number of multi-yieldd. By comparing the values
ME in Table[5.1, it can be seen that replacing the single-yield model by the M-yield model
(with arbitrary M) does not significantly affect the ellipticity of the bilinear forrf, -).

5.3 Non-negativity, positive homogeneity, and Lipschitz con-
tinuity of ¢ (z)

SinceD;(¢;) = o||g;|| foralli = 1,..., M is a convex, nonnegative and positively homoge-
neous function,

P(z) = /Q <D1(Q1) + Da(qz) + -+ + DM(qM)> dz

is a convex, nonnegative and positively homogeneous functional. We show the Lipschitz conti-
nuity of ¢(z), i.e. the existence of a constant> 0 such that

(") — (%) < L||z" = 2%||y forall 2*, 2% € H.
Letus define! = (vl qi,...,q3,), 2% = (v%,¢%,...,q3). Then
(=) — (%) =
—‘/ D1 (a1) = Da(q7)) + +(DM(QJ1\/[)_DM(QJ2V[>)> dx’
| [ (otladll =gt + - + oty labll = llieI)) ke

<ma{of, oot | (Ul = )+ -+ el = Nl 1)) ]

(5.18)

Since(||al| — [1b]]) < |[lal| = [0]]] < ||la — b]| for all a,b € H, than it further holds

(=) — ()] < max{ol, o}, ... ,054}/9(||q; gl ek - ]l de. (5.29)

With the help of the Cauchy-Schwartz inequalityZif(Q2),

/qu—qz [1dz < /qu —qZ |dx (/1da:)
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foralli =1,..., M, itis possible to estimate
[W(zh) —9(2%)] <
<ma(of,.... o bmeas)} ([ llat = 1P do)t -+ ([ llaks — il do)t

=max{c?{,...,0%,} meas)2 (||¢} — qilloy + - + llans — @irll0s)-
(5.20)

The Cauchy-Schwartz inequality for vectors

hi+hot. . +hy < (R24+R2+.. +h3)2 Mzforallhy,... hy €R

yields further
1 1 1
(=) —v(*)| < max{of,... o}, Imeag)z M= (|lg; — 4ill3, + -+ llan — ailld,)?
< max{o?, 0¥, ... 0¥ meagQ)z Mz||z" — 23||x, (5.21)

which ends the proof of the Lipschitz continuity. We proved the following proposition:

Proposition 5.3 (Lipschitz continuity of the functional ¢ (-)). The functionak)(-) is a Lips-
chitz continuous functional in the spatéwith a Lipschitz constant

L =max{c{, oy, ... ,a%}measéﬁ)%M%. (5.22)

5.4 Existence and uniqueness

In order to formulate an existence and uniqueness result for the Prpblem 4.1 we use the analogy
with more general problefABS) [HR99].

Problem 5.1 (ABS).Findw : [0, 7] — H, w(0) = 0, such that for almostall € (0, T), w(t) €
Z and

(l(t),z —w(t)) < alw(t),z—w(t)) +P(z) — Y (w(t)) forall z € Z
The following existence result is proved in [HR99].

Theorem 5.1 ([HR99]). Let’H be a Hilbert spaceZ C H be a nonempty, closed, convex cone;

a : HxH — R be abilinear form that is symmetric, bounded, &teklliptic; [ € H'(0, T; H*)

with ¢(0) = 0; andvy : Z — R nonnegative, convex, positively homogeneous, and Lipschitz
continuous. Then there exists a unique solutioof Problem ABS satisfying € H'(0,T; H).
Furthermore,w : [0,7] — H is the solution to Problem ABS if and only if there is a function
w*(t) : [0,T] — H* such that for almost alt € (0,7")

a(w(t), z) + (w*(t),z) = (((t),z) forall z € H,
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All assumptions in Theoren 5.1 are satisfied for Proljlern 4.1. Symmetry of the bilinear form
a(-,-) is a consequence of symmetry propertiesCol; (5.§). Therefore the choic& = H
reduces ProblerfABS) to Problenij 4.]L and Theorgm b.1 infers the existence and the uniqueness
result for Problen 411.

Theorem 5.2.Let! € H'(0,T;H*) with £(0) = 0. Then there exists a unique solution=
(u, p1, - .., par)(t) Of Problen] 4.1L in the spacB (0, T; H).
5.5 Extension to Measure Problem

Application of the same technique as for Problen) 4.1 can also be generalized for Hroblem 4.2,
In Problem{ 4.2, we search for a solutien= (u,p,) € H,r € I satisfying the variational
inequality [3.3R). The Hilbert spadé is defined as the Cartesian product

H=VxL(I;Qo), (5.23)

where

LA1:Qo) = o € 1x Qo [ [fanlfy, dutr) < oc).

rel
A scalar product-, -)», and an induced nort - ||3; in the spacé{ are

(w, 2)y = (u,v)y + / /pr . qr du(r) dz,
QJI

mew=@th+/i/m:ndMMd%
QOJI

|mm:uww+//%wmmmm
QJI

M
The sum}_ in the forms ofa(-, -) and)(-) is formally replaced byf, dyu(r), i.e.,

a(w, 2) :/Q<(C(€(u) - /Ipr du(r)) : <5(v) - /Iqru(r)> dz+

+le@@mmma (5.24)
0@ = [ [ Dila) dutr) o

We repeat the same steps as for the boundednegs0f) in the case of the standard Prandtl-
Ishlinskii model of play type. Note that

et = [ et <2(lclf + 0D [pPe).  625)

[ [l = [ ot

which infers )
o < 2max {1, (1)} |l




42 CHAPTER 5. MATHEMATICAL ANALYSIS

For the same reason we get

/H /qrdu)2

We bound the term [, [, H,p, : ¢, du(r) dz| as

‘//]I—]Irp,, : g du(r) dx‘ < / /]Hrpr 2 qr| du(r) dz
oJr aJr

3sup||Hi|r//||pr||-||qr||du<r>dx
< sup [, ||/ /||pr||2du /||qr||2du d (5.26)

<sup (| 1Pty dr)’ //qullzdu o)

= sup ||| |[[w]|]] 2|

el

and obtain the following proposition:

{1 (D} 112113

Proposition 5.4 (Boundedness of the bilinear formu(-, -), measure case)A bilinear form
a(+,-) is continuous bounded in the spate

a(w, 2) < (2max {1, w1 YICI| -+ sup [BL]]) el ] e (5.27)

Ellipticity of the bilinear forma(-, -) can be proved in the similar manner as for the standard
model. Symmetry and positive definiteness assumption€ @md H; yield analogically to

G10)
€ (e(u) - / pedu(r) : ((u) - / pr dur / H,p, : p, du(r)

> min{c,%ghi}@‘e(u) —/Ip,, d,u(?“)H +/1Her2 du(r)). (5.28)

A slightly modified version of Lemmja 5.2 leads to the ellipticityadf, -).

Lemma 5.3. There existd = k(y(I)) > 0 such that for allzy, z, € R, r € I, [, 22 dp(r) < oo
it holds

(= [ Q)+ [atdutr) = ko + [ atauir), (5.29)

Proof. We show this result directly by rewriting:

(0 - /1 v du(r) + /1 ()2 dpu(r)

<(z0)?+ ( /1 x, du(m)Q—z(%)( /1 z du(r)) + /1 ()2 du(7)
(o) + ( /I x, du(r))2 — d(w)? — é( /l z, du(r)>2+ I(xr)zdu(m
<= ) + (1= D) 1] [ @ dutr)

I

(5.30)
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where we have used a well known inequalityy < da® + 1b* foralla,b € R,d € (0, 00) and
the Cauchy-Schwarz inequality

</[xr dM(T))2 < /Ild,u(r) : /I(x,.)2 du(r) = p(l) /I(IT)Q du(r).

We choosezl € (0,1), such thatmin{1 — d,1 — u(I)5%} = k > 0. Itis satisfied for all
de (D 1), O

L+p(I)’

Remarks 5.2. (i) The technique involved in this proof was previously used by Han and Reddy
in [HR99].
(if) A matrix version of inequality[(5.29) in Lemnja 5.3 reads

o - / £ ()| + / a2 i) > k(o] ? + / o lPdur).  (5.31)

(iif) The greatest value aof according to the proof is

1—
k= max min{l—d,l—u(])—d}.
de(24 1) d

1+u(I)’

The first Korn’s inequality with the constanit together with Lemmp 53 infer

Proposition 5.5 (Ellipticity of the bilinear form a(-, -), measure case)A bilinear forma(-, -)
Is H-elliptic with

a(w,w) > (k min{ec, mf{h }} min{1, K})HwHH, (5.32)

wherek depends only on the measure of the index sét= k(x(7)), K on the domairf2 and
the dimension, K = K(2,d).

The Lipschitz continuity fow)(z) = [, [, D,(¢,) du(r) dz follows from the estimate

() - \<//|qu D, dutr)
= [ [ortiatl - N auryae < [ [ ol - oty

<sup(ar) [ ([ 1) ([ Nt - 1P ()
rel Q I I
< sup{o?} (D) / ( / g} — 212 duu(r)) 2 de
rel Q I
sup{o?}u(1)*meas) / / g} — ¢2I1? dyu(r) da
rel QOJI

< Sulg{af}u(f)”zmeaﬁﬂ)”?!Izl — 2|,
re

(5.33)

IA

and it is formulated in the following proposition.
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Proposition 5.6 (Lipschitz continuity of the functional ¢(-), measure case)The functional
Y (+) is a Lipschitz continuous functional in the spdgewith a Lipschitz constant

L = sup{o?}u(I)"’meag)"/>. (5.34)
rel

For the same reason as for the standard model i a nonnegative and positive homo-
geneous functional. All assumptions of Lemmal 5.1 are also satisfied for Prpblem 4.2, and
therefore the choic& = H reduces ProblerABS) to Problenj 4.2 and Theorgm b.1 infers the
existence and the uniqueness result for Prolplein 4.2.

Theorem 5.3.Let! € H'(0,T;H*) with £(0) = 0. Then there exists a unique solutien=
(u,p,)(t),r € I of Problen] 4.2 in the spacd’ (0, T; H).



Chapter 6

Numerical Modeling

This chapter is devoted to the discretization of the variational inequfality| (3.32) with the implicit
Euler method in time and with the finite element method in space. We use capital letters for dis-
crete variables. For instanc®, = (U, P) denotes a discrete approximation:of= (u,p). The
discretization of Probler 4.2 consists in our approach of measure, time and space discretiza-
tions.

Measure discretizatiarie replace a measurable functipby the vectorP of M elements
(the continuous model is approximated by the discrete problem with M multi-yields) with state
variables
X = (U, P), whereP = (Py,..., Py),

Y = (V,Q), where@ = (Q1,...,Qm)
and approximate the integr@il P dy(r) as

M
[pedutr) =Y air, (6.1)
I i=1

where constants; are related to some integration rule, for instance the weights di¢weon-
Cotesformulae. Similarly, we derive discrete forms for the terms of the variational inequality.

3.32), i.e.,

a(X,Y) = /(C(E(U) — ZaiPi) c(e(V) — ZOéiQZ') dz,

Q

M
+ JH Py Q dz,
/Q;a Qide 6.2)

v(v) = [ Yo ami(@)de
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Note that for the choice; = 1 foralli = 1,..., M, we have the same form of term§, -), ¢ ()
as in Problem 4]2. In the following we consider only this case for the simplicity of notation.

Time discretizationWe replace the continuous time interval 7') by the sequence of dis-
crete timeg, ..., ty With

O=to<m<hi<m<th< - <ty <7y <in=T,

with a time stepk; = ¢; —t;_1,7 = 1,..., N. Knowing the values o (¢) at timest, ...ty
one can interpolate
R t: — T
X(r)) = %X(m + X(t;_y) forj=1,...,N. (6.3)
j j

The time derivative is consequently approximated by

X(Tj) _ X(tj> _kTX(tj—ﬁ forj=1,...,N. (6.4)

Spatial discretization We divide a polygonal domaift € R? by aregular triangulation
7T (it means no hanging nodes, domain is matched exactly) into triangles and define the set of
T -piecewise constarftinctions by

SUT):={ac L*Q): forall T € T,a|lr € R} (6.5)
and the set of -piecewise affinéunctions that are zero dn, by
S(T):={ve H5Q): forall T € T,v|p € Py(T)%}. (6.6)
(P1(T) denotes the affine functions @n) We can replace

H=VxQqx-xQq
N e’
M times

by itsfinite elemensubspace (therefore we speak aonforming finite elements

S = SH(T) x devS®(T)%? x ... x devS®(7)%x4

sym sym *
o

M ti‘r,nes
The discrete problem is then posed in the space
S:={Xe€C(0,T;9): X(0) = X"and
t—t; t;—t
kj kj
fortj_l <t< tj7j = ]_,,N}

X(t) = X(t;) + X(tj—1) (6.7)
Problem 6.1 (5). SeekX € S that satisfies, foralf =1,..., N,

Ur)(Y = X(13)) < a(X(7),Y = X(7)) +9(Q) — ¢(P(;)) forally € 5. (6.8)



a7

We define fori =0, ..., N,
X':= (U, P =X(t),

substituteX! = £=X2 into (3.32) and deduce the inequality in the first discrete time

1_ yo0 1_ yo0 1_ po
)y = 5 <a(x Y = ) @)~ w(D ) forallY e 569
1 1 1
We define anncrementalariableX = (U, P) := X' — X% [ := {(t,), the linear operator
LY)=(Y)—-a(X")Y) (6.10)

and obtain a problem:
Problem 6.2 (S;). SeekX = (U, P) € S that satisfies

LY - X) <a(X,)Y = X)+9(Q) —¢(P) foralY = (V,Q) € S. (6.11)
Problen{ 6.2 is further equivalent to the minimization problem:
Problem 6.3 (Ms). For f(Y) = 1a(Y,Y) + ¢(Q) — L(Y') seekX = (U, P) € S with
F(X) = min f(Y). (6.12)
Lemma 6.1 (Equivalence of problemg.S;) and (M3)).
X is a solution of ProbleniS,) if and only if X is a solution of Probleni}\/,).
Proof. (M;) = (S3): (M,) implies, forallY,6 € (0, 1),
JX+0(Y = X)) = f(X).
Hence
fa(X,Y — X) + %e%(y — XY - X))+ (X +0(Y — X)) —(X) —0L(Y — X) > 0.
The convexity ofiy(-) : (X +0(Y — X) — (X) < 0((X) —(Y)) yields
o(X,Y — X)— LY — X) + %Qa(Y _ XY = X) > 0((X) — (V).
Dividing the last inequality by and taking the limi® | 0, we end up with the inequality (6.9)
in Problem(Ss).
(S2) = (M,): forall Y holds
fY)=f(X+ (Y = X)) =
:%a(x, X)+a(X,Y — X) +
+Y(P) +9(Q) —v(P) — L
=)+ 3 alY = XY = X) +a(X,Y - X) 4 9(@) — ¥(P) = LY — X)

@
>0 >0 (M2)

alY = X,Y — X)
X)— LY - X) =

N | —

—~

(6.13)

> f(X).
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The Problem(S,) can also be written as a problem with more inequalities.
Problem 6.4 (S;-more equations).SeekX = (U, P) € Swith P = (P, ..., Py) that satisfies

LY -X) = aX,)Y—-X) forall Y=(V,P)eS, (6.14)
LY;—X) < a(X,Y;—X)+(Y;) —¢(X) forall Y;eS,i=1,...,M, (6.15)

WhereY;’ = (U7 Q):Q = (le"apiflaQiaID’£+17"'7PM)-

The detailed form of[(6.14) andl (6]15) reads fordllc Sh(7),Q; € devS®(7),i =

1,.... M
/f(t)(V—U)dx+/ g(t)(V—U)dS:/C(e(U)—ZB):e(V—U)dx, (6.16)
Q I'n o i=1
/ ZPO —H,P) : (Q; — P)dz

(6.17)
<- / (C) - 3P ~HR) @0 Pydr + [ (D(Q) - D(R))a

We sum all inequalities (6.15) over= 1, ..., M, noticing that

M M

d (¥i-X)=>(0,0,...,0,Qi = P,0,...,0) = (0,Q = P) = (Y — X),

i=1 i=1

and conclude
LY = X) <a(X,Y = X) +¢(Y) — ¢(X),

whereY = Zf\il Y= (U,Q1,...,Qum) = (0,Q). It gives rise to another equivalent formula-
tion of Probleni&.14.
Problem 6.5 (S,-two equations). SeekX = (U, P) € S with P = (P4, ..., Py) that satisfies

L(V-U,0) = a(X,Y —X) forallY =(V,P) €5, (6.18)
LY —X) < a(X,Y —=X)+¢(Y)—(X) forallY = (U,Q)€S. (6.19)

The equivalence of defined problems can be written schematically:

(S2) & (M3) < (S, — more equations< (S, — two equation$
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The form ofa(-,-), L(-), ¢ (-) in (6.19), for the two-yield model witd/ = 2 (generalization to
the casel/ > 2 follows immediately), have the form

a(X,Y-X) = /Q<(C( (U)=Pi—=P5): (—Q1+P = Qo+ P)+H, Py : (Q1— P)

2 P : (Q2—P2)> dz
LIED (9 G
LY -X) = —a(X°)Y - X)
G- 96 @)@
o) = [t +atiulyar = [ 1 (8) e

where||(Py, P3)T||sv == ol||P1|| + oY|| || defines a matrix norm (sined, o4 > 0). With the
help of substitutions

C:= (g g) and H:= (Egl Hi),
- (2) and P = (g;) and Q= (g;) (6.20)
- (E0) (22) - om

we rewrite the inequality (6.19) as the inequality for@lie devs®(T)dxd x devS®(T)dxd

/Q(A —(C+H)P): (Q—P)dz < /(||Q||(,y —|P||ov) dz. (6.21)

Owing to our space discretizatioR,and A are constant matrices on every trianglef our tri-
angulation7. It enables to decompose the mequal. (6.21) elementwise. GlvéhH e
R4 we seekP = (P, )1, P, P, € R¥? trP, = trP, = 0 such that for allQ =

sym?

(@1, Q2)T,Q1,Q2 € RE trQ; = trQ, = 0 holds
(A= (C+H)P): (Q—P) < [|Qllov — [|P|los- (6.22)

The next two sections are addressed to the question, whether ineduality (6.22) has a unique
solution, separately for the single-yield and the two-yield models.

6.1 Single-yield modelM =1

The single-yield model is specified by one plastic strRiandC = C with CP = 2uP and
H = H with HP = hP, the matrix normj| P||,» = ¢¥||P|| andA = A = Ce(U) + C=(U°) —

(C +H)P°. The existence of the unique solutiéhof the mequallty-) on every eleménit
Is then guaranteed by the following lemma.
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Lemma 6.2 ([ACZ99)). GivenA € R{X¢ andg? > 0 there exists exactly one € RZ? with
tr P = 0 that satisfies

{A-(C+H)P}:(Q—P) <RI - [P} (6.23)

for all Q € R4 with tr Q=0. This is characterized as the minimizer of

sym

1
§(C+H)P:P—P:A+ay||P|| (6.24)
(amongst trace-free symmetricx d-matrices) and equals

(||devA|| — o¥), devA
2u+h [devA||’

(6.25)

where(-); := max{0, -} denotes the non-negative part. The minimal valu¢ of {6.24) (attained
for P asin (6.2h)) is
1
—§(|]devA\| —a¥)%/(2p+ h). (6.26)

Proof. Although the proof is given in_[ACZ99], we recall it here again, since it is useful for
understanding of cases with two- and more yield models. In the convex analysis, the inequality
states that

A—(C+H)P € dY0|| - ||(P), (6.27)

whered|| - || =sign denotes the sub-gradient of the norm, and only trace-free arguments are
under consideration. The functiop || is convex and so i$ (6.24). Identi 23) is equivalent
to 0 belonging to the sub-gradient ¢f (6]24)./f= 0 the inequality[(6.23) states

A:Q<d|Q]| (6.28)

for all Q € R%? with tr @ = 0. Hence,||devA|| < o¥. If ||devA|| > o we concludeP # 0

sym

and obtair|| - ||(P) = {P/||P||}. Hence[(6.2B) yields
devA — (C + H)P = o¥P/||P|]. (6.29)

Notice that ttCP = 0 as trP = 0, and only trace-free arguments are under consideration. Since
CP = 2uP we obtain
devA = (0¥ + (2 + h)||P|))P/||P]| (6.30)

and soj|devAl|| = oY + (2i + h)||P||, whence
1P]] = (l|devAl| = o*)/ (2 + h).
Using this in [6.3D) we deduce

~ (|/devA|| — oY), devA
b= 2u+h |[devAl||’ (6-31)

Formula [6.3]L) holds also for P=0. Takirlg (6.31) [in (6.24) we calculate the minimal value
©.28). O
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Figure 6.1: Values of quadratic functional Figure 6.3: Values of the functional with
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Figure 6.2: Values of the linear functional Figure 6.4: Values of the functiona(C+
P : A as a function ofc andy for argu- H)P : P—P : A+0Y||P|| as afunction of

mentP = (z,y;y, —x). x andy for argumentP = (x, y; y, —x).
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Remark 6.1. The minimizing functional4) consist of the quadratic teﬂﬁ +H)P : P,

the linear term dev : P and the term with the norm?|| P||. Since2u + h > 0 ando? > 0
represent the quadratic term and the term with the norm strictly convex functionals. As the
result of it is [6.24) also a strictly convex functional. Figyres[6.1],[6.2[ 6.8, 6.4 display a possible
form of the quadratic, the linear, the term with the norm and the functipnal](6.25), assuming
symmetric and trace free matrix argumeéhin the form

~62)

6.2 Two-yield model,M = 2

The two-yield model is specified by two plastic straifis P, that can be coupled in a plastic

. ~ 2IU<P1 + PQ) o hlpl

_ T _ _ _ Y
strainP = (P, P,)". FurtherCP = (2M(P1 +P2)>’ HP = (h2P2>’ | P|lov = o¥||P1]| +
; Ay Ce(U) Ce(U) PO
Y _ _ _ 0

o3||P|| and A = (A2) = ((Ce(U)) + (Ce(UO) (C+H)P.

Similarly as for the single-yield model we can show the existence and uniqueness of the
plastic strain® = (P, P,)T on every elemerif’ € 7.

Lemma 6.3. GivenA = (A, A,)7, Ay, Ay € R%4 there exists exactly one = (P, P,)T, P,

sym

P, € R¥>*4 with tr P, = tr P, = O that satisfies

(A= (C+H)P): (Q—P) < [|Qllov — ||P]ov (6.32)

forall Q = (Q1,Q2)",Q1, Q2 € R withtr@Qy = tr@Q, = O. ThisP is characterized as the
minimizer of

A

f(P) = %(C+H)P:P—P:A+!|Pl|gy (6.33)

(amongst trace-free symmetricx d matricespP;, P,).

Proof. The equivalence of (P) = mén f(@) and [6.32) is obvious. The functiof( P) is

strictly convex, continuous in the space of all trace-free symmetrit whatricesP;, P,

H@l\i\m f(Q) = +oo so it attains exactly one minimum. O

C 0
0 C
the variational inequality (6.22) into twd/ variational inequalities of typ¢ (6.23), use Lemma
[6.7 and express the exact minimizer [of (6.33) as a linear combination of them. In the next
subsection, we focus on an analytical approach for minimizing(6.33).

If C was in some block diagonalizable forth= , itwould be possible to separate
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6.2.1 Analytical approach
Lemma 6.4. Let B be a unit ball at the poind,B := {Q € R%*¢ . ||Q|| < 1}. Then

sym

{ai’BP,o%B} if P,=P =0,
{ol1py: 03B} if P #£0,P=0,
|| - oV P, P) = [P ]] . 6.34
|| llov(Pr, P2) {U§BP(;3||§;H} it P=0.P#0, (6.34)
{0%’\\P1H’02HP2H} it P #0,P#0.

Proof. By the definition, the convex functiofpP||,» is decomposed as two convex functions
a?||P1|| ando}|| P»||. Both functions have subdifferentials, namely

[ {o¥B,0} if P, =0,
LTSRS (5 SN 6.35)
and (0,075} f
0,07B if P,=0
Y _ 1 2 3
(o3| P[) (1, ) = { {07 3”1]32”} if P, 0. (6.36)

Both convex functiong||P;|| ando}|| ||, considered as functions of two variablBs P,
are continuous at the poidt, = P, = 0 in Banach spac®¥*? x Rx?  According to the

sym sym*

convex analysis (for instance Theorem 7.11 in [Bro97]), we can write
|(Pr, Py)llov) = 0o || P1l]) + O(o3 || P2l]),
which concludes the proof. O]

The last lemma divides the problem of minimizifigP) into four cases, depending of the
values ofPP, and .
Case 1:P, = P, = 0 with the following equivalences

P=FP=0 & AQgHQHo—y foraIIQ:(Ql,QQ)T,trQl:trQ2:0
& devd; : Q; < ||Q,~||Ug forall Q;, trQ; =0,i=1,2
|devA;|| <of,i=1,2. (6.37)

Case 2:P, = 0, P, # 0, which means

devA, 2u+h)I  2ul 0 B
(dEVAQ) : < 2ul (2/”@)]1) <P2) - ({U2IP2||}> (6.39)

We may write equivalently
devA; — 2uP; € 07 B, (6.39)

1 (6.40)

deVA2 — (2/L+h2>P2 = 0'?2J||P H
2

Elimination of P, from (6.40) yields

||devA,|| — of devA,
211+ hy  ||devAy|

P =
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and the substitution of this intp (6/39) gives finally the condition

||deVA1|| — O'g deVAQ
2,u + hy HdeVAQH

devA; — 2u( ) € o!B. (6.41)

Case 3:P, # 0, P, = 0. The same technique as in Case 2., only with the reversed indarss
2, gives
||devAs|| — o devA,

2,u—|—h1 ||deVA1||’

||[devAs|| — o} devA,
2,u+ hq ||deVA1||

P, =

devA; — 2u(

) € o¥B. (6.42)

Case 4:P, # 0, P, # 0 implies

deVAl _ (2/L + hl)]I 2M]I P _ 021J||P1H (6 43)
Applying substitutions?; = &, X;, where||X;|| = 1,7 = 1,2, (6.43) becomes the system of
nonlinear equations with positive parametérs= || P,||, & = It

<devA1> B ((aif + (2p+ h1)6)l 2p&l ) (Xl) (6.44)
devA4, ) 201 (08 + (2 + h)&)1) \ Xy )~ '

Another SUbStitUtiOﬂSl = 0'31/ + (2,& + hl)fl, My 1= O'g + (2,& + hg)fg, V= 2#51, Vo 1= 2#62
and the fact that .

7]1]1 VQ]:[ - o 1 ?72]:[ —VQ]I

nl nl mne — V12 2L

7’]2deVA1 — VQdeVAQ = (7’]1772 — 1/1V2)X1,
—1devA; + mdevA, = (mn, — 11e) Xo.

Sl

yield
(6.45)

Normalization of [(6.45) and the application of substitutionsifan,, v, v» give the system of
nonlinear equations for positivg, &

L) = (&1, &) = 0,

ia(E)ll - Ir(&, )] =0, (6.46)

where
l1<§1) = (O'y (2,& + hl) 1)deVA2 — 2M£1deVA1,
I2(&2) = (03 + (21 + hy)&z)devA; — 2u8,devA,, (6.47)
r(€1,&) = (0 + (2p 4 ha)&1) (03 + (2 + ho)Ea) — A& .

Instead of the solving (6.46) we prefer to solve the equivalent system of nonlinear equations

0
@1 (&1, &2) = L&) = (r(&1,€2))* = 0,
3

' 6.48
B (1, 6) = [[1a(&)|> = (r(&1, 62))? = 0. (6.48)
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Remark 6.2. There is a geometrical interpretation .48). For fixed 0, curved|l;(&)]|? =

a and||l5(&)]|? = « represent two pairs of parallel lines in the— &, coordinate system, that
are perpendicular to each other dhdé;, &;)||? = a is a hyperbole. The solution df (6}48) is
then the intersection point of two pairs of lines and the hyperbole, cf. Higure 6.5.

Is is possible to solvé (6.48) exactly? This question can partly be answered by the following
lemma.

Lemma 6.5. Givenoy, o3, hy, ha, 1, devA;, devA,. Then the solutiod, of the nonlinear sys-
tem [6.48) is a root of the 8-th degree polynomial of the form

JF?) 5+ (204T2F ) €]+ (2732 F+ %47 ) €5+ (22 F + 2%3%4) 3
21 F+2%2%4+ %3~ F(BJ +2IC)? ) &}

+(
+(= B(BJ+20C)2—2F (20G+BH)(BJ+21C)+2%1%4-+2%2%3 ) €
+(=D(BJ+21C) ~2B(2CG+BH)(BJ+21C)~ F(2CG+ BH)’ (6.49)

+2%1%3+ %2 )52
+(=2D(20G+ BH)(BJ+21C)~ E(20G+ BH)*+2%1%2) &

+(%1°-D(CG+BH)?) =0,

where

%1:=H*’D-CG*— AH?>-BGH —CD,
%2:=—BGJ—-2HJA-CE—-2ICG+H?*E—-IBH+2HJD,

6.50

%3:=—CF—-J*A+2HJE-IBJ+C+J*D+ H*F, (6.50)

%4:=2HJF+ J*E
and the coefficientd, B,C, D, E, F,G, H, I, J are specified in the proof.
Proof. We can rewrite

L (EDIP = 11((21 + hi)devAy — 2udevA, )&, + ofdevA,|)* =

= H(TldeVA2H2 +2(c¥devAy) : ((2u + hi)devA, — 2udevA,) &
A B

—i—U(2,u + hl)deVAQ — 2/1JdeVA1H21€% =A+ Bfl + Cf%,
<




56 CHAPTER 6. NUMERICAL MODELING

(&P = [1((2u + ha)devA, — 2udevAs)é, + oldevA, |2 =
= ||oYdevA,||* +2(c¥devA,) : ((2u + hy)devA, — 2udevA,) &

J

D E
+[|((2 + ho)devA, — 2udevA,)|® €& = D + E& + F&,
F
r(&,6)° = (ofoy + 20+ hi)og & + 2+ ho)o & + (2p(hn + ha) + hihs) £162)°

J

-~

G H I ’
= (G+ HE& + I& + J6&)?

Then®,, &, are polynomials of the second degree in two variables,.

®1(61,&) = A+ B& + C& — (G + HE + 16 + J616) =0 (6.51)
0y(E1,6) = D+ B& + F& — (G + Hé + 16 + J6i6)* = 0 (6.52)
Expressing; from (6.52),
—1&—GH\/D+E&+ FE
= 6.53
51 H+ J§2 ) ( )
the substitution of (6.33) int¢ (6.51), infers after some transformations (MAPLE 6) the polyno-
mial (6.49). O

Finding rootst, of the eight degree polynomial (6]49), one can substéuteto (6.53) and
determinate values @f. Since¢, generally attaing values, the solutiof¥;, ;) can even attain
16 different values.

Remark 6.3. Lemmd 6.5 states thatif, # 0 and P, # 0 then&, = || P is a root of the 8-th
degree polynomia[ (6.49). In some special cases the 8-th degree polynomial can be replaced by
some lower degree polynomial. This is demonstrated in the next example.

Example 6.1.Lety =1,0{ =1,0§ =2 h;y =1,hy = 1 and

20 0
b (20,

(104106 0
te 0 —10 — 10, )’

L _ (20— 10& 0
2 0 —20 —10&, )

r=5&6&+686 +38%+2
and the nonlinear system of equations (p.48) reads

The direct calculation shows

O =2004400& +200€2 — (24 3& + 68 +5& &)2 =0, (6.54)
By =800+800& +20062 — (2436 +6& +5& &) = 0. (6.55)
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K204 -

-10 " '.I
10 5 L_'J1 5 10
Figure 6.5: Geometrical interpretation of the soluti@p, &) of the nonlinear systenj (6.48):
(&,&) is the intersection point of two perpendicular lines and a hyperbole. In Exgmple 6.1,

& = 3.02,& = 2.02 and parametet = 3244.

Graph of the nonlinear systefm (6]54), (6.55) is displayed in F[guré 6,19solved from|(6.55)
with
6 - 1244568 + 3063 £ 20 V2 (12 + 168, + 563)

T2 (6 +5&)2
and the substitution of it (only the term, the+ term leads to different signs gf and¢,) into
(6.54) implies the equation

200—2553 — 16083 + (40v2 — 172)&3 + (432 + 160v/2)&, + 672 + 160v2 0
(6 +5&)? B
Since(6 + 5&;) > 0 itis sufficient to solve, from the4-th degree polynomial
2568 + 16063 — (40v/2 — 172)E2 — (432 4 160v/2)&, — 672 — 160v2 = 0.

Without this conditiong, could be calculated as the root of tB¢h degree polynomial (6.49).
The exact calculation shows that

& = {—4.428427124,2.028427124, —2, —2}

and only the positive solutiafy = 2.028427124 is admissible. Figurds §.6, 6[7, [.8,6.9 display
the form of the quadratic, the linear, the term with the norm and the functjona] (6.33), assuming



58

CHAPTER 6. NUMERICAL MODELING
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Figure 6.6: Values of the quadratic func-
tional £(C + H)P : P as a function of
r andy, whereP = (P, P)T, P, =
(iL‘, 07 0, —I’), Py = (y7 07 0, _y)'
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Figure 6.7: Values of the linear functional
P : A as a function ofr andy, where
P = (P17P2)T7P1 = (,I,O;O,—.T),PQ =
(y,0;0,—y).
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Figure 6.8: Values of the functional
with the norm || P||,, as a function of
r andy, whereP = (P, P)T, P, =
(CC,O;O, _'T)7P2 = (y70;07 _y)

B
\

Figure 6.9: Values of the function&(C+

A

H)P : P— P :A+||P||,, as afunction
of x andy, whereP = (P, )T P, =
(J}, 07 07 —l'), Py = (y7 07 07 _y)
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Figure 6.10: Graph of the nonlinear systém¢;, &) = 0, ®5(&1, &2) = 0 in Examplg 6.]L. The
intersection pointss, &) of the displayed branches are the solutions of the nonlinear system.

symmetric and trace free matric€g, P, in the form

P = (g _O$> and P, = (g _Oy) :

All figures in this example were produced by a Maple progranple.ms listed in Appendix
was used.

We end up with the algorithm for the calculation Bf, P;.
Algorithm 1 (Polynomial approach for calculation of Py, P). Givenp, hy, he,of, 0}
and devA,, devA,.
(@) If ||devA;|| < o and||devA,|| < oY then set

P =0 and P:=0

and output Py, P).

devAs||—od
(b) If ||devA; — 2u(L e;’ujgz 2 Hﬂgféu)ll < oY B then set

_||[devAy|| — o) devA,

P(case?) —0 and P(caseQ) : ‘
1 2 2+ hy  ||devAy]]
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devAq||—o?
(C) If ||devAy — 2 (19520 devan || < oF then set

P(case3) L ||deVA1|| - O'?f devA,
| =

and P .— .
25t by lldevAy] 2

(d) Find all¢&; > 0,& > 0 (either no solution or from 1 to 16 solutions) satisfyifhg (6.51) and
(6.52), then for alk
cased); i i cased); i i
Pl( = §iX7 and Pz( = £X15

where X and X} solve the linear systerh (6J44) with parametgrs:.
(e) Determing P, P,) from
f(PI’ PQ) _ min{f(Pl(caseQ)’ PQ((:CLse2)>7 f(P]_(CCL563), Pl(case?)))’ rniin{f(Pl(case4)i7 PQ(case4)¢>}

and output Py, P).

Remark 6.4. If the conditions in steps (b) or (c) of Algorithih 1 are not satisfiBg:s2, Pysc2
or Prese3 pease3 gre not defined and therefore their values are not considered in step (e).

6.2.2 Iterative approach

In order to avoid the solving of a polynomial of the eight degree in step (d) of Algofithm 1 we
introduce a numerical algorithm solving the minimization problem (6.33) iteratively.

Algorithm 2 (lterative approach for calculation of Py, ). Givenp, hy, h, o, 03,
devA,,devA, andtolerance > 0.

(a) Choose an initial approximatidi®’, Py) € devR%<¢ x devRe<?, seti := 0.

(b) Find P, € devR?*? such that

f(PL P = min  f(P],Qs).

QocdevRixd

(c) Find P/** € devR%*? such that

sym

FPH ) = min  f(Qu, 1)

Q1edevRixd

41 i i+1 i
(@) If A
- BRI
1+ i+
(Pl aP2 )

> tolerance seti := i + 1 and goto (b), otherwise output

Remarks 6.1. (i) Algorithm [2 belongs to the class @fternating directionalgorithms. The
minimization problems in steps (b) and (c) can be solved explicitly as

it (I[devA; — 2uPi|| — 03), devA; —2uP 7 (6.56)
20+ ho |ldevAy — 2uP]|

, devA, — 2uPH | — oY), devA, — 2uPit!
Plz+1 _ (H 1 1225 H ‘71)+ 1 1% 2+1 . (6.57)
20+ hy [devA, — 2P|
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(i) The choice of the parameteéslerance has significant effect of the computational complex-

ity of Algorithm [2. Theoretically, fortolerance = 0 the upgrade in steps (b) and (c) needs to
be performed infinitely many times. Rounding errors can cause thisforance > 0 as well.

If the rounding errors are neglected, one can show that Algofithm 2 converge to the minimizer
(Pl, PQ)

Lemma 6.6 (Uniform ellipticity and Lipschitz continuity). The functionals

® : dev(R¥Y) x dev(R¥*?) - R, &(P)= %(H +C)P:P-A:P (6.58)

sym sym

is Fréchet-differentiable an®® is uniformly elliptic and Lipschitz continuous with constants

1 . A
a = Zhun(C+H) and L=||C+H|, (6.59)

where,...,(C + H) denotes the minimal eigenvalue of the matfix+ H).

Proof. The direct calculation shows that for the symmetric maftix H, the functionalf is
Frechet-differentiable, o
D®(P)=(C+H)P — A. (6.60)

By the definition of uniformly ellipticity ofD®, there exists a constant> 0 such that for
all P,Q € dev(R%x4) x dev(RZxd),

sym sym

al|P = Q| + D®(P;Q — P) < ®(Q) — ®(P) (6.61)

The substitution off (6.60) int¢ (6.51) and an orthonormal transformagion T'Q)', P = TP’
such thatl'"(C + H)T = diag();) imply

al[P' = Q'] + diag(\) P’ : (Q' — P') < %diaQ(Ai)P' P %diag(/\i)Q/ Q' (6.62)

forall P/, Q" € dev(Ry;) x dev(Riy). Further we decompose the inequallty (§.62) as the
sum of inequalities

o (Pl — Q@”ﬂﬁh@%—ﬂ)<AP’ A@J@y (6.63)
overalli,j =1,...2d. Since for allz,y, A\ € R, A > 0,
aly —z)* + Mx(y —z) < %/\m2 — %)\yQ, (6.64)
for positivea < %)\, we estimate forall, j = 1...2d,
0y < 5N (6.65)

Therefore, the choice;; = o« = min,;{\;} finishes the part of the proof concerning the uniform
ellipticity. Lipschitz continuity of D® with a constant. = ||C + Hi|| follows immediately from
the multiplicativity of the Frobenius norf- ||,

I(C+H)P —(C+IQI < IC+E)II- 1P -Qll, (6.66)

for all P,Q € dev(R%*4) x dev(Rax%), O

sym sym
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Proposition 6.1 (Convergence of Algorithnj 2).Let (P, P») be the minimizer of and let the
sequencéP;, P3), be generated by Algorithin) 2. Defipe= ~/(1+7),7 := L*-a~2,Cy :==
2(1+7)-a~t- (F(PY, P§) — f(P1, P»)), wherea and L are given in Lemmp 6].6. Then, for any
i > 1 there holds

1P} = P[> + [| P = P2|]” < Cy - ¢ (6.67)

Proof. Let us decompose the spaceof= dev(R%*4) x dev(R¥4) asX = X; + X,, where

sym sym

Xy :={(P,0) : P e dev(R&)} and X, := {(0, P2) : P, € dev(R%s)}.
Let M; : X — X; andM, : X — X, be linear mappings defined as
My (P, ) := (P1,0) and My(Py, P2) = (0, P).

Then we can show that for all subséts” {1,2} and allP = (P, P») € X there holds

1Y My(P, Pl < 1-[[(P, Bo)l.
AEA

We decompose the functionglas the sum of functional® andv, where
1~ .
®(P):= 5 (H+C)P: P—A: P and ¢(P):=|P|ln = of|| Pl + || |

From Lemma 6J6 we know that the functioniais Fréchet-differentiable an®® is uniformly
elliptic Lipschitz continuous. The convex, lower-semicontinuous functignial additive and
independent with respect to the partitidn= X; + X,, i.e. in the sense that, for dlty, z5) €

X1 X XQ,
2 2
DO ) = ().
j=1 j=1

and, for allj € {1,2}, for all z; € X; and for ally; € Zi:m# X, there holds

U(x;+ Myy;) = ¢ (a;)-
Finally, the estimat€ (6.67) is the consequence of the Theorem 2.1 in [Car97]. O
Remark 6.5. Propositiorj 6.1 states that Algorittir 2 converges with the convergence/tate

The next example demonstrates the behavior of Algorjthm 2.

Example 6.2. We consider parameters of Example]6tdlerance = 10712 and the initial
approximation

o ||devAs|| — oy devA,
> 2u+hy ||devAy]

20+ ha |ldevA, —2uP||"

and P =

Algorithm[2 generates approximatiof$, P;,i = 1,2, ... in the form

r=(y 0 e m= (4 5
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Figure 6.11: Example 6.2: The approximatiaRs= (z*,0;0, —z%), Pi = (y%,0;0, —y"),i =
0,1,... of Algorithm|(2 displayed as the points‘, y*) in thex — y coordinate system.

wherezx, y € R and terminates after 34 approximations at the final approximation

214142 0 143431 0
34 _ 34 __
A= ( 0 —2.14142) and F;" = < 0 —1.4343) '

Note that the valug PJ*|| = 2.02842712474404 is coincident with the value df, calculated by

Algorithm[1 in Examplé 6]1. Figufe 6.1 displays the approximatig®js P3),i = 0,1,2, ...
as the pointgz?, y%) in thex — y coordinate system.






Chapter 7

Convergence analysis

This chapter is devoted to the analysis of the space and time discretization errors for Problem
(S). The arguments of the proof are partly based on the paper [AC00]. The first section con-
centrates on the derivation of the discretization error, the second section specifies results for
the problem with one discrete time step and introducesigualrefinement indicator as a tool

for the space discretization error control. Throughout this chapter,(u, p1, ..., par) solves
Problen]{ 4.l and = (U, P,, ..., Py) solves ProblenfS).

7.1 Convergence of the discrete problem

Let the discretization error be
ej = x(t;) — X(1;)
and let a piecewise affine functiarnt) € C(0,7'; H) be defined by
t; —1
x(t]) + ]k

J

t—1t,_
i(t) == — .

J

.T(tj_l), (71)

Wherelj = (tj—la tj), k’j = tj _tj—l- Sete :=7—X € C(O,T7 H) Lettj_l/g = (tj ‘|—tj_1)/2
and recallt;_,,, <t < t;. Through a symmetric and positive definite bilinear fartn -) we
can define the energy norm

- 1= al-, )2

Proposition 7.1. Forall Y3,...,Yy € S,t;_1/2 < 7; < t; there exists, € {0,1,..., N} such
that

1/21£§§N lledl|* <lleol |* + 19/2| [k |21 0.1,
+ ) 2k{a(X (1), Y; — () — L) (V; — (7))} (7.2)
j=1 .

+ D 2k {u(Y;) = v(a(m)}
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wherek € L>(0,T) is defined by:(t) = k; if t;_y < 71,4 <t;, and

n

> (0= 1/2)lle; — ejal P < [leol” +1/2 Jmax_leil|* +19/2[[kE |71 0,r)

.....

= (7.3)
+ D 2k {a(X (7)Y — i (7)) = Ur) (¥ — (1)) + 0 (Y)) = v(a(r;))}
j=1
In case thatk = k; = T/N and1; = t;_y, forall j = 1,...,N, we have some ¢

{0,1,..., N} such that
1/2  max leq| |2

-----

<lleo |!2+/f4/2(|!93|!il o)+ 7/8l1E L 01,))

+ Z% {a(X (tj-12), Y — @(tj-1/2)) — Utj—1/2)(Y; — E(tj-1/2))} (7.4)

+Z2k{¢ (@(tj-1/2))}

[

Proof. [ACOQ], Proposition 5.1.

Definition 7.1 (ChoosingY;). Supposer = (u,pi,...,pn) Solves Problem 4|1 and
(U, Py, ..., Py) solves Problem (S). Then I&t; € S},(7) be a fixed approximation ta(¢)

and let
QJ = (Mpl(Tj)v"'vMpM<Tj>)7 (75)

whereM : L'(Q2) — S°(7T) denotes a mean operator defined by
(Mo |y = / ode/measT) (T eT) (7.6)
T

and, forallj =1,..., N, set
Y, = (W;,Q,) € S. (7.7)

For a special choice df;,j = 1,..., N from the Definitiorf 7.]L we can prove the following
lemma.

Lemma7.1l.Forall j =1,..., N we have
(Y;) < 9(a(r)). (7.8)
Proof. By a definition ofi(-),

P(Y;) = /Q (Dl(Mpl(Tj)) +- 4 DM(MPM(T]-))) dz

and

0G7)) = [ (Prlrya)) + -+ Durlir(,2) b
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The Jensen inequalitfor convex function®D;(-) = o7|| - ||,i = 1, ..., M yields for every
triangleT” € 7 the inequality

Di(Mis(r,)) = D /T pilry. ) dr/measT)) < /T Di(pi(75, 7)) dz/measT)

and after the integration of this ovérit holds for alli = 1, ... M that

| DiMim) dr < [ D) (7.9

T T

We sum inequalities (7.9) over= 1, ..., M and all element§’ € 7 and deduce the inequality
9. O

Lemma7.2.Forall j =1,..., N we have
a(X(7;),Y; — &(75)) = Um)(Y; — a(7)) = /Q(U(Tj) = X(75))  e(ilr;) = W;)dz. (7.10)

Proof. [ACOQ], Lemma 5.5. O

Now we are in the position to prove
Theorem 7.1.a) If t;_;» < 7; < t;forall j =1,..., N, we have for allW; € S,,(T)

.....

M
jmax {1/4][C72(0 = D)(t)[[72(0) + 1/2 3 I[H (5 = P) ()70}
i=1

M
< |ICT2(0 = D)) 7o) + Y [ (p - P)(0)]Iz2() (7.11)
=1 -

+19/2[|k(C26, 1, by, . Y Ban) 1 o2

N
+1/2/[K*C%5 320 1120y + (1/2 + 4T) Z ki |IC e (i(m5) = Wi)l 720

and, withd; := (1, — t;_1)/k;
Z(% - 1/2){|IC‘1/2{(0 = E)(t;) = (0 = D) (t-1)}H[72(0)

£ 3 {0 = P (1) = (01—~ Pt} e |

M
_ 1/2
< 3|2 {(0 = D)) H 32 +3 > IH(pi — P)(O)| 320
=1
_ . 1/2.. 1/2.. _ .
+57/2||k(C 1/207H1/ Py 7H1\4 pM)H%l(o,T;m(Q)) +3/2|[k*C 1/2U‘|%2(0,T;L2(Q))
N
+(3/24127) Y kyl|C72e(is(7)) — W))|[72 (-

j=1

(7.12)
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b)If k =k; =T/N andr; =t;_ypforall j =1,..., N, we have for allV; € S,,(7)

M
(max {1/4|C7%(0 = 2)(t)l[72@) +1/2) [ (pi = ) ()72}
=1

77777

M
— 1/2
< |IC72(0 = £)(0)ll72@) + D IH (9 = P)(O)l| 720

_ . 1/2 .. 1/2
+ 1/2(|K*(C7V26, 1 *py, . HY Ban) 2o o220
—{—7/8”]{2(@_1/20,]1‘]1}/2171, s 7H1/2pM)HL1 OTL2(Q)))

(7.13)

+1/2||K*C726 |72 0,112y + (1/2 + 4T) Z k|ICY e (i(r5) — W)l [720y-

7=1
Proof. According to the definition of, we have
M
— 1/2
e = a(z — X,z — X) = ||[C2(0 — 2)||r2(0) + Z ||Hj/ (p; — P)lli2y  (7.14)
Hence, with Lemma 7}1 ad 7.2, the estimate|(7.2) implies
M
1/2
1/2 max (IC7*(0 = 2)(t)l[F2) + Y IH (i = P)(t)|[Z2(0))
1=1
M
— 1/2
<|IC™%(o = B)(to)l 720y + Z L2 (s = P)(t0)22(0)

(7.15)
+19/2||k(C 25, H}/Qpb e H}\fPM)H%l(o,tn)

+ ZZ k; /(a —X)(7y) : e(u(r;) — W;) da.

Q

Define the continuous, piecewise affine functioiy the nodal interpolation, far;_; <
t<t;j=1,...,N

5'(t) = %JU(%‘) + (t ;‘tj)O'(tj_l). (716)

J

A simple one dimensional interpolation error estimate [AC00] yields

tj
IC2(0 — &) (7})|| 1o S/ ICY (6 = )||r2o it

<k;/2||CT%5 ||,y ap120))-

(7.17)
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The last term in[(7.15) is then bounded

23"k [ (o= D)) lidr) - W) da

Q

N
<2) KlICT (0 = Z)(m)lla [IC e (i(ry) — W)l 2o
7j=1

Z( B2IC 200 = 8) sz ) (K1 (i) = W)l

”i(nc—l/%a_m(fpup )) (B 11C 22 i) = Wi )

N
§2Zk’j|!<C’”2( &) ()220 + 1/2Zk: ICY2e(i(r;) — W))ll72(q) (7.18)

7=1

+1/4ZI|C‘1/2(5— 2) ()l +4zk‘2l|@/2 (i(75) = Wi)ll120)

7j=1

<1/2 Z k?"Cil/z&l‘%1(t]-_1,t]-;L2(Q)) +1/4|C72(6 — )(7)l 220

j=1

+(1/2 +4T) ancl/? (i(75) = WillZ2(o)

j=1

<1/2||k*C 1/20||L2(0TL2 +1/4|IC72(6 = D) (1)l 20y

+ (1/2 +4T) Zk ||C e (i(ry) — WillZ2o

j=1

Substitution of[(7.18) intd (7.]5) and the absorption|6fF1/2(6 — ¥)(t;)||2(q) together with
the estimate

IC72(6 = D) ()llre < max T30 = B)(0)l2@, (7.19)

,,,,,

infer the estimatg (7.11).

Similarly, an assertion (7.3) due {o (7.1) ahd[7.2) implies

n

> (05 =1/2)llej = ejall? <lleol* +1/2 max_|ler][* +19/2[ kil 710 r)
=t

n (7.20)
#2300k [ (0= D)) i) - W) de

Q
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Here, we can bound the ter?nf: ki [((o — ) (1)) : e(d(r;) — W;) da by the inequality
=1 Q
(7.18). Besides

..........

< 2{right-hand side off7.11))},

i=1

(7.21)
which infers an assertiofi (7]12).

The same arguments as fpr (7.2) yield for [7.4) the claimed higher convergence estimate in
time (7.13). O

7.2 One time step convergence

Let us analyze one discrete time step only, e+ 1. We recall the erroe; is defined as
ei=(u—Unpr—Pi,....,pm — Pur)(ti),
fori =0, 1. (7.15) reads for the (energy) normef
1/2 [[ex|* < lleol I + 19/2][ky (CT/26, HY *fy, . . Y Ban) 710,

2k, /(a — ) () : eli(m) — W) da.

(7.22)

With the choicéV; = U(m)—J(é(m1)), wheree(r; ) represents the displacement ewr@r, ) :=
u(m) — U(m) andJ is an approximation operator defined/in [CB0O], one obtains the estimate

/(U(Tl) —3(m)) e(u(m) — Wh)dz < /(0'(7'1) —X(m)) :e(é(n) — Jé(m))de. (7.23)

We omit the time argument for simplicity of notation. Sincer — X is a symmetric matrix, we
have
(c—=%):e(i—Wy) =(0c—%):V(t—Wp)

and an elementwise integration by parts shows

/(U—Z):E(é—jé)dm:/(erdivTE):(é—jé)dx—/[E-n]:(é—jé)dx, (7.24)
Q Q UE

whereU€ is the skeleton of all edges 1A, divy is the elementwise divergence apd- n|
L?(U€) denotes gumpof X defined on every edgg € £ by

(S|, — X|n) -n if E=TyNT, Ty, T, € T,n points out ofT},
X-n], =< 0 if £EeTp, (7.25)
glg —2|r-n if £ €T ynNoT,n points out of7.



SECTION 7.2. ONE TIME STEP CONVERGENCE 71

SinceX is elementwise constant matrix, gif22) = 0. Introducing the local mesh-size and the
edge-size denoted by andhg, the Cauchy-Schwartz inequality yields

/ fn): (6 —Teyde < [hrfllallhe € — T, (7.26)
Q

/[Z-n]:(é—jé)dx <

1022 - 0]l e weyl1he (6 — T €2 we-
(GF

(7.27)

We notice that = (e(t1) — e(ty))/k; and apply Theorem 2.1 ih [CB0O] concerning approxi-
mation properties of functions on finite element spaces,

177 (€ = Ty < (Ca/kIIV(e(tr) — e(to)) 220,
—1/2,. . (7.28)
|lhe "7 (6 = Tl r2wey < (Cs/k1)[[V(e(tr) — e(to))l] 2@,

where (hr, he)-independent constants,, C5; > 0 only depend orf), 'y, T'p and the shape

of the element§” € 7 and patches (not on their size). Ellipticity of the bilinear fodfn, -),
formulated in Proposition 5.2, implies for= 0, 1,

[Ve(ti)llz2@) < Csllell,

where the constartts > 0 depends on the number of plastic straiis elastoplastic material
parameter€ H;, ..., H,, and the domaif). TakingC; := Cs max{Cy, C5}, we obtain

Q

2k /(U =) e(e—Jé)dr < Cr(|leol| + ||€1||)£Hh7f||L2(Q) + 1R 215 - 0]l r2we)),

- (7.29)

whereng represents gesidualrefinement indicator, established in [JH92]. The substitution of
well-known inequalities for altv > 0,

leollnn < —2—1leoll + Z%02
[ (& _—
0 77R_207a 0 9 UieD)
1 C-o
leallng < e

20704H€1H T 5 R
into (7.29) and into[(7.22) deduces

a—1

1 . .
s lleal” < (14 S ) leoll” + aCF i +19/2] ki (C V25 HY2py, L HY

)||%1(t0,t1)'
Takinga = 2 andC3 := 8C?%, we have proved the following proposition.

Proposition 7.2 (One time step discrete error) Letey be the discretization error in the initial
discrete time,. That the discretization error in the first discrete timesatisfies

[le|[* < 5l[eo|[* + CF mf, + 38| k2 (C/26, HL v, - 500|131 - (7.30)






Chapter 8

Numerical Algorithms

8.1 FEM

Let 7 be a regular triangulation in triangles 9fin R? and let\ be the set of all nodes in
7,N = cardN). Fori = 1,..., N, let ; be a hat function on the i-th node [CarDOc]. As
it has been show in Chaptelr 6, the discrete problésafo equations) involves the nonlinear
equality coupled with the minimization problems posed on every eleffehthe triangulation
7.

Problem 8.1 (FEM problem). GivenU" € S},(T), P!, Py € devS®(T %", seel! € Sp,(7)
satisfying, for allv € S},(7),
/C(E(Ul) — P! —P}):e(V)dz — / f)Vdr — / gV dr =0, (8.1)
J Q Ty
whereP = (P, P,)T = (P}, P})T — (P, P))T minimizes on every elemefite 7 the func-

tional .
min (C+H)Q: Q= A+ Q+|Qllor, (8.2)

among allQ = (Q1,Q2)",Q1, Qs € R4 trQ, = trQ, = 0. MatricesC, H, A are defined as

sym)?

R C C . H, 0

C .= ((C C) and H:= (01 Hg) ,

i._ (Ce(U) Ce(U?) A (PF

a= (i) * (eiom) - €+ ® ()
and the normi| - |4, ||Ql|ov := o¥||Q1|]1 + o5]]|Q-]|.

Let us denote the left size df (8.1) AU, V) and reformulate] (8]1) as a nonlinear problem
in U™

Problem 8.2 (abstract FEM problem). Find U! € S} (7)) satisfying

(8.3)

FUY“WV)=0 forall Ve Sy(T). (8.4)
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Note thatF'(-, V) is a nonlinear functional, that is generafipn-smooth Finite element
basisyp; fori = 1,...,2N in §;(7) is generated as

We look forU* in the form of the linear combination of finite element basis
2N
U'=> Ulg
=1

and assembly coefficients of the linear combination in a vector

U = (U},...,U)". (8.6)

(@iﬂ , O) if 7 odd
0 (8.5)

( Q%) if < even

Further, by substituting = ¢, fori = 1,...,2N to (8.4), we obtain the vector form of the
nonlinear problem

F,(UY) = F(U'¢;)=0 forall i=1,...,2N,
which can be reformulated as a nonlinear system of equatiors\famknowns inl},
F;(UY) =0 forall i=1,...,2N. (8.7)

The nonlinear systen (8.7) is solved iteratively. Starting with the initial approximation vector
U} of the solutionU" we generate theth approximatioriU;. from thek—1-th approximation
Ui _, by theNewton-Raphsomethod

UL =U, , + AU, (8.8)

where the incremenh U} solves a linear system afV equations

(" D) ()

A matrix B and the vector of.agrange parametera are related to the incooperation of the
Dirichlet boundary conditions [CK01]. A matrikF(UL) € R?V*2N represents a spar&an-
gential stiffness matrix

O(F(U)):

Since we can not determif&U) exactly, but only iteratively, the tangential matdéXF(U) is
approximated by aentral difference scheme

(DF(U))Z] ~ (F(U17 '. 7U] +€j7‘ . '7U2N) - F(U17 .. 7Uj - Gj,. . '7U2N))i
26]'
with small difference parametees > 0,5 = 1...N. Typically we can choose for ajl =

1,....2N
€; := /ey max(1, |Uj|),
wheree,, represents a computer relative accuracy of a number representation [Luk90].

(DF(U)); =

. (8.10)
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Figure 8.1: Example of the convergence behavior of Algorithm 3, displayed is residual versus
number of Newton iterations. The requirgderance = le—10 is reached already in thieth
iteration, the algorithm terminates in tRehe step when residual growsg > .

Remark 8.1. Another kind of methods for solving (8.4) would be for instance Qeasi-
Newton methodthat approximatéF(U) by least change secant methaigch as th@&royden
method, DFP, BFG#&ethods or some of their implementations for sparse matfices [Kos93].

The following algorithms is used for solving the nonlinear systen (8.4).

Algorithm 3 (Newton-Raphson solver with three stages convergence controlisiven initial
U} € R?Y satisfying Dirichlet boundary condition, an integenxstep, atolerance > 0, set
ro = ||F(U})|| the initial residualk = 0, close = 0.

(a) Setk = k + 1.

(b) If k = maxstep then setonvergence = 0 and stop.

(c) SetUy, := Uy, + AU, whereAUj. solves the linear system

(DF(g}(_l) %T) (A}\Ji) _ (—F(I()Ji_l)) ‘
IUE-UL i

(d) Set’f’k = ||F(U11() — BT)\H,T'GZ = m (Orrel =0, if HUII(—IH + HU]I(H = O)

(e) If close = 1 andry, > ry._; then setonvergence = 1, outputU and stop.
(f) If rel < tolerance then setlose = 1.
(9) Goto (a).

Algorithm [3 works in the following way. Due to the upgrade in the step (c), we generate
approximationsU}, k = 1,2,... of the exact solutiolU! iteratively. The iterative process
becomes stable, if

|| Uk — Uil
Ul + U]

< tolerance or |[|Ug||+ ||UL_,|| = 0.
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We carry on iterating with the residual decreasing theoretically down Bue to the rounding
errors, the residual, does not attain the zero value, however stops at certain value related to
the machine precision. For this reason we terminate the iterative process if the next residual is
smaller than the previous residugl > r_;. The condition (b) controls the maximal number

of iterations. Ifk = maxstep the iteration process fails to give a good approximation of the
solution within given number of iterationsaxstep.

Remark 8.2 (Choice ofmaxstep and damping). For the purely elastic problem is the sys-

tem of equationd (8]7) linear and the one Newton (8.9) is sufficient for reaching the zero
residual (apart from rounding effects). For plasticity problems (with present hardening), one
needs to apply more Newton steps [8.9) for reaching the residual under the given parameter
tolerance. Roughly speaking, the smaller the hardening is, the more Newton steps are required
and consequently the higheraxstep has to be given. In general, the Newton-Raphson method
does not convergence globally [BES]. In order to improve the convergence one introduces the
damped\ewton-Raphson method with the upgrade

U11<+1 = U11< + pk+1AU1£+17 (8.11)

wherepy,. is a (small) damping parameter(. The question of the proper choicemgf, ; is not
studied here, and onlyon-damped Newton-Raphson methath p,.,; = 1fork=1,2,... Is
applied in the numerical solver.

Algorithm 4 (Newton-Raphson solver with prescribed number of steps)Given initial U}
R?V satisfying Dirichlet boundary condition, an integeeps, setr, = ||[F(Ug)|| the initial
residualk = 0.

(a) Setk =k + 1.

(b) SetU; := Ul _, + AU}, whereAU; solves the linear system

<DF(g}<_1) BOT> (A}\J}{) _ (—F(gi_l)) _

(c) Setry, = ||F(UL) — BTl
(d) If k=steps then end else goto (a).

Remark 8.3. There is no control over the residual calculated in step (c) and therefore no
guaranteed convergence. However, in our numerical experiments (Chapter 9), it turns out suffi-
cient to apply Algorithnm 4 even with a small numbersoéps, e.g.,steps = 1.

8.2 Adaptive Mesh-Refining

Let X = (U, P,..., Py) be the approximation of the (unknown) solutier= (u, p1,...,pwm)
calculated on the triangulatidh. With the help of (exact) stregsand the discrete stres

o=Cle(w)—p1—-—pu) and T=C(e(U)— P —---— Pu),
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the energy norm of the errer= = — X can be expressed as
¢ =a(r — X,z = X) = [|[CT2(0 = %)|[72(q +Z|IH 2 (pi = P)ll2)- (8:12)

Our numerical experiments focus on 2-error estimatofCEQQ]. SinceX is a piecewise
constant, we compute a continuous piecewise affine fungtioa S*(7)?*¢ such that

* _ : _ / 5
HE — E HLQ(Q) = E/é;{l(l;l)dXd HZ Z HL (Q) (813)

It is naturally required that the proper averaging functionof S'(7)4*¢ has to approx-
imate the Neumann boundary conditions. To make this possible, it is required that the aver-
aging function:* € S*(7)%*¢ may be non-symmetric and thatsatisfies some compatibil-
ity conditions. Let£ denote the set of edges/ the set of nodes of the triangulatidh and
Ex = {E € £ : E € Ty} the set of edges at the Neumann boundary. For éaeh&y, let
ng denote the (constant) outer unit normal along the flat surface gfecto enable a nodal
interpolation

¥ (z) -ng=g(z) forallze NwithE €&y (8.14)

we require some continuity oy cf. [CFQO0] for details. We can define
Q(T,g) = {¥* € SHT)™* . %} satisfieg(8.14)}
and can calculate the global averaging functidrfrom

2/

With the assumption of *a small plastic erro}; ., ||p; — Pi||r2() = 0 can one construct
the error estimaton? of e? as

7= [[C7(E = )y
Since the calculation of* from (8.15) is expensive we construct instead the upper bound

12— Az > | min (1S~ 2l (8.16)

with an averagingoperator.A and AY. satisfying [(8.14), see [CFDO] for more information.
Finally, we construct th&Z-error estimator

7z = ||C_1/2(E — AZ)HLZ(Q)
and the elementwiséZ-refinement indicatos; z,

z = |[C7V2(E — AD)|r2(ry
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Remark 8.4 (residual error estimator). Another kind of the error indicator isidualerror
indicatorn, r defined by

Tn = h2 / 1f112de + / helS -0l de,
T oT

with the residual error estimatgy, already introduced in Chaptelr 7.

Theorem 8.1 (Equivalence of); and ng). Let f = 0in 7. Then there exist and ;. and the
smallest angle (in the triangulation)-depending constarts C' > 0 such that

Cnr < nz < C'g. (8.17)
Proof. The multiplicativity of the (Frobenius) matrix norfh- || yields

1 _ _
MH@ — AD)| |2y < IC7V2(E = AD) |2y < IV I(E = AD) |20y
Moreover, Proposition 1.21. in [Ver96] states the existence of constants C; > 0, that
depend on the smallest angle in the triangula@igrsuch that

Cinr < ||(X = AD)||z2(r) < Cong.

Combining both estimates and definiag := =55 andC” = [|C7'/?||Cy, the proof is
finished. O

8.3 Nested Iteration Technique

The Newton-Raphson solver with three stages convergence control (Algpiithm 3) performs well
on coarse meshes. Then the generation of the small system of linear eqyatipns (8.9) and its
solution is not very time consuming. For finer triangulations, we obtain a large system of linear
equations and every iteration step (c) in Algorithin 3 requires additional number of floating
point operations. In order to save the computational costs, one can implemesied iteration
technique a technique of solving a nonlinear system of more meshes (triangulations). The
idea of this approach is the following: Assume we have a séf ef 1 nested triangulations
{7y, T, ...,7Tr} satisfying

Ty CT C--- CTp.

We solve a nonlinear systefn (B.9) using a (small) fixed number of iterationsa very coarse
initial meshZ,. We prolongate the obtained approximation of the solution onto a finer fiesh
and use it as an initial approximation for an iterative solvefpand perform agaik iterations.
This can be repeated on further meshgs .. until we end up at solving: iterations on the
finest triangulatiory.

Nested triangulation, . .., T can be generated by usiaglaptive mesh-refinemetaich-
niques. To the approximatiddi of the solutionU* on the mesl¥; we can calculate for every
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triangleT” € 7; anerror indicator nr. For given0 < ¢ < 1, we mark the elemerit for red-
refinement (it means the eleméhnbf lengthsly, I5, I3 will be split into four elements of lengths
11/2,15/2,13/2) if

> 0 maxnyr.
nr = T’G’TinT

In order to avoid hanging nodesed-green-blugefinement is performed [CarQ0c]. In this way

is the next mesH;, ; from the mesHZ; generated. As the initial approximati@f, on the new
triangulation7;,,, we take the approximatiobli defined on the triangulatio; prolongated

to the triangulatioriZ;, ;. More details about the nested iteration technique can be found in
[Hac85].

Algorithm 5 (Nested iteration technigue with adaptivity).

(a) Start with coarse mesh and a 'good’ initial approximatio§ defined orfZy, seti := 0.
(b) Compute the approximatiddi applyingk Newton iterations with respect .

(c) Computeyr forall T € 7,.

(d) Compute error bounQZTez ) "2 and terminate or goto (e).

(e) Mark element T red i > 9%13%; Nrr.

(f) Perform red-green-blue refinement to avoid hanging nodes, update mé&sh.to
(9) GeneratdJj as the prolongation df;. to 7; 4, seti := i + 1 and goto (b).

Remark 8.5. The choice) = 0 leads to the refinement of every elemé&n& T, to theuniform
mesh-refinement he closep is to 1 the less number of elements will be refined (possibly only
one element fof = 1). Typical choice ob is thend = 1/2.

8.4 Time-stepping

Let {to,...,tn} be a (ordered) set of discrete times, with a time dtep- t; — k;_; fori =
1,...,N. LetT € T be a (prescribed) triangulation 8f Our objective is to solve the discrete
problem on triangulatiol” for all (prescribed) discrete times i = 1,..., N with the least
possible computer complexity. Suppose for instance, Algorithm 3 is applied at every discrete
time ¢; with .S; iteration steps needed for reaching the required convergence. It seems logical to
assume that the total number of iteration stgﬁl S; reflects the complexity of the calculation.
From Propositiofn 7]2 we conclude that the smaller the time istethe smaller is the discrete
error and, consequently, the smaller is the number of iteration Steps-th discrete time. This
suggests an idea of solving the problem on a (ordered) larger set of discrete times

{0, ... thy D {to, ... tn},

with ¢y = t,,ty = ty,, N' > N. The proposed algorithm calculates the discrete problem on
the original set{t,,...,ty} than is being adaptively 'enlarged’ in dependence of number of
iterationss;.

Algorithm 6 (Adaptive time-stepping). Given{t,,...,ty} and two integers
0 < Shin < Spaz < 00. Seti := 0, time_step = t1 — 1.
(a) Solve the discrete problem with Algorith 3. Output number of needed iteréfjons
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(b) If S; < Sy Settime_step := time_step/2 and goto (d).

(©) If S; > S,az S€ttime_step := 2 time_step.

(d) If (: < N) and(t; + time_step < t;1) then insert; + time_step between; andt;  , set
N =N+1

(e) If i = N end, otherwise sét:= i + 1 and goto (a).

Remarks 8.1. (i) IntegerssS, .., Smaz determinate size of 'the next’ time step. If the number of
needed iterations; is sufficiently small respectively large (condition (b) respectively condition
(c) of Algorithm[§ the time step is divided by 2 respectively doubled.)

(i) The choiceS,,;, = 0,S,,.. = oo leads to the 'uniform’ time discretization. If the ini-
tial set of discrete times i§ly, to + At, to + NAt}. Algorithm@ performs calculations for the
discrete timeqto, to + At, to + 2At, ... to + NAt}.



Chapter 9

Numerical Experiments

Presented numerical experiments report on simulations in MATLAB 5.3 run on an Ultra SPARC
- Il processor with 14 GB RAM and 250 MHz CPU speed. The implemented MATLAB solver
runs calculations for either elastic, single-yield or two-yield material models, involves the nested
iteration technique combined with adaptive or uniform mesh-refinement and adaptive time-
stepping. The numerical experiments demonstrate:

1. Two-yield plastic effects that arise in addition to single-yield plastic effects, such as dif-
ferent hysteresis curves and the evolution of elastoplastic zones.

2. Properties of the nested iteration technique such as experimental convergence rates for
adaptive (ZZ-refinement indicator) and uniform mesh-refinements, an influence of the
number of used Newton steps on the convergence.

3. The different computational complexity for elastic, single-yield and two-yield material
models.

Remark 9.1 (Meaning of colors in figures).In pictures, at those we would like to stress out
different elastoplastic zones of the deformed material, the following colors are used:

e black - denotes the material zones in purely elastic phase (plastic Stan$, P, = 0),

e dark gray (brown in the color scale) - denotes the material zones in the first plastic phase
(plastic straing?, # 0, P, = 0),

e light gray (light yellow in the color scale) - denotes the material zones in the second
plastic phase (plastic straid # 0, P, # 0).

Remark 9.2 (Approximation of error). Since there is no example in two-yield plasticity with
known exact solution available, the error of the discrete approximation can not be computed
exactly. However, we calculate a reference solutittic/, P/, P;*/) on a sufficiently fine
reference triangulatioff,.;. Let7, C 7; C --- C Tr denote the nested triangulations in
the nested iteration technique. The reference trianguléfionis chosen for all numerical
experiments as the two times uniformly refined triangulafipr{see Figuré 9]1 for comparison
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Figure 9.1: Estimated error is displayed versus the degrees of freddfonthe uniform and
adaptive mesh-refining, then the reference solution is calculated on once (curves with '1 refine-
ment’ legend) or two times (curves with '2 refinements’ legend) uniformly refined triangulation
Tr. The difference of the convergence rates is more obvious for the adaptive refinements (the
expected convergence rateis): 'two refinements’ give more realistic convergence rate than
‘'one refinement’.

with 'one uniform refinement’ strategy). K andX"¢/ denote the stresses of the discrete and
the reference solutions, i.&.7¢/ is the solution or¥,.s, then

IC2(S = 2|12z, ),

estimates the error in the energy norm.

9.1 Beam with 1D effects

The problem of a beam to show one dimensional effects is displayed in Fighre 9.2. We consider
the unit square shage = (0,1)? in az — y coordinate system. The edgés a Dirichlet edge

with fixed y coordinate. The intersection poifit, 0) of edgesl and2 remains fixed in both
coordinates: andy, i.e.,

u(0,y) = (0,up) for0 <y <1,
1(0,0) = (0,0).

The edgeg and3 represent the Neumann edges with zero Neumann condition (tension free
surfaces)

(9.1)

g(z,0) =g(x,1) =(0,0) for0<z<1 (9.2)

and the edgé is also a Neumann edge with a nonzero Neumann condition representing the
constant surface force that deforms the beam@oordinate

9(1,y) = (9:,0) foro<y <1 (9.3)
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Figure 9.2: Geometry and coarse mégh Figure 9.3: Geometry and coarse mé&gh
of a beam problem with 1D effects. of a beam with 2D effects.
The deformation of the beam is expected in the form
U(Zt,y) = (U17u2)<l’,y) = (ZL’Ul(l,O),yUQ(O,l)) for (I7y) € Qa (94)
which implies for the strain tensor
. Ul(l, 0) 0 .
e(u) = < 0 (0, 1)> in Q. (9.5)
Besides that, the Neumann boundary conditions admit the stress tensor
{9z O .
o= (0 0) in €. (9.6)

There holds the Hook’s law in the purely elasticity phase (no plasticity}, 2ue + A(tre)l,

0] = A 2u+A 0 uz(0,1) | . (9.7)
0 0 0 2u 0
Simple inverse rule

—1 2+ A
(2u +A A 0 ) ey agew O
= A Q)
1

T Ap(pN)  Ap(utX)
0 0

2p
implies that the deformation of the beam can be expressed as

21+ A A
R A RS VR A T TRy
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Figure 9.4: Displayed loading-deformation relation in terms of the uniform surface loading
g:(t) versus thez-displacement of the poir{0, 1) for problem of the single-yield beam with

1D effects.
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Figure 9.5: Displayed loading-deformation relation in terms of the uniform surface loading
g:(t) versus thec-displacement of the poirtd, 1) for problem of the two-yield beam with 1D

effects.
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material model CPU time| total number | CPU time spent or]
(in sec) | of Newton stepg Algorithm|[Z (in %)

single-yield 347 492 13.8

two-yield 1603 588 77.4
Table 9.1: Performance of MATLAB solver for the problem of beam with 1D effects. The
calculation was run for the discrete times- {0,0.5,1,...,50}, and uniform mesH, with 16
Elements.

material model CPU time| total number | CPU time spent o
(in sec) | of Newton steps Algorithm@ (in %)
single-yield 430 589 14.8
two-yield 1647 677 74.2

Table 9.2: Performance of MATLAB solver for the first numerical experiment for the problem
of beam with 2D effects. The calculation was run for the discrete timeg0,0.5,1,...,50},
and uniform mesH, with 16 Elements.

Remark 9.3 (Limitation of our model). For the critical valueg, = ‘“‘(“T“

) is obviously
u2(0,1) = —1 and the shifted edg@ originally located above the ed@ecoincides with the
edge2. It would mean that the original volumieof the elastic beam becomeéswhich is not
mechanically allowed. The reason for it is that we have considered the linear elasticstensor
which only gives realistic description of an elastic medium for small deformations.

The elasticity phase lasts tjldeve|| < o7 or equivalently till it holds

V2g, < o,

the plasticity phase occurs fof > %

The numerical experiment for the hysteresis behavior demonstration was the calculation on
the coarse mesH, with 16 elements, discrete timg®), 0.5, 1,..., 50, in case of the uniform
cyclic surface loading

g = 12sin(tn/20).

MATLAB solver was specified by these properties: no time-stepping, no nested iteration tech-
nique, Newton-Raphson solver with three stages convergence control (Algpfithm 3). In order
to compare two different material models, we firstly considered the two-yield material specified
by parameters

= 1000, \ = 1000, 0} = 5, h; = 100,05 = 7, hs = 50

and secondly the single-yield material specified by parameters
= 1000, A = 1000, 0¥ = 5, h = 100.

Figures| 9.4 andl 9|5 shoWysteresis curvem terms of the dependence gf(¢) on the x-
displacement,.(t) of the point(z = 1,y = 0) for the single and two-yield material models.
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According to theoretical prediction, the calculated hysteresis curve for the two-yield material
consists of the two plastic parts, whereas there is only one plastic part for the single-yield ma-
terial.

9.2 Beam with 2D effects

In order to take two dimensional effect into account, we study another beam problem. Its geom-
etry is identical to the problem of beam with 1D effects, and the only difference being modified
is the Dirichlet boundary condition, see Figlire]9.3. We prescribe the Dirichlet bouhidary

both directions (i.e, the beam is fixed in both directionE &}, i.e.,

u(0,y) = (0,0) for0<y<1. (9.9)
It is expected that there is no known analytical solution of this problem.

The first numerical experiment demonstrates two-dimensional hysteresis effects. Material
and time parameters, the shape of the mesh and the solver properties are identical to the nu-
merical experiment for the problem of the beam with 1D effects. Fiduré¢s 9.6 and 9.7 show the
hysteresis curvefor the single and the two-yield material. A comparison of Figlires 9.6 and
[9.7 with Figure$ 9J4 ar[d 9.5 indicates that two-dimensional deformation effects smooth out the
elasto-plastic transition. Besides of that, the beam with 2D effects is less deformed than the
beam with 1D effects.

The second numerical experiment describes an elasto-plastic transition during the deforma-
tion process. The calculation was performed at discrete t{ags5, 1, ..., 10}, applying the
uniform surface loading

gx:t

and the same materials as in the first experiment. MATLAB solver was specified by these
properties: no time-stepping, nested iteration technique (Algofifhm 5) with uniformly refined
meshesly C¢ 71 € 7, C 73 € T, C 75 (with 16, 64, 256, 1024, 4096 and 16384 elements),
Newton-Raphson solver with one step (Algorithm 4). Figlires 9.8 and 9.9 display the evolution
of elastoplastic zones at chosen discrete times in the deformed configuration. As the deforma-
tion process starts (at discrete timtes {0,0.5,...,4.5}), material behaves purely elastically.

At discrete timet = 5.0 there appear the first plastic zones in corners (where the material is
fixed) and also in the right part of the doma&i(where external forcegact). For the two-yield
model there appear the second plastic zones after the discretesirag, and they develop in

the same way as the first plastic zones at the timés. For the final discrete time= 10, both
material models are in entirely plastic phases.

The third numerical experiment indicates properties of the nested iteration technique. We
consider one discrete time-step problem wigh= 0 and¢; = 8.5, the material with same
properties as in the second numerical experiment. MATLAB solver was specified by these
properties: no time-stepping, nested iteration technique (Algofithm 5) with uniforfly(
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material model CPU time| total number | CPU time spent or]
(in hours) | of Newton steps Algorithm@ (in %)
single-yield 15.59 126 3.5
two-yield 29.57 126 49.6

Table 9.3: Performance of MATLAB solver in the second numerical experiment for the problem
of beam with 2D effects. The calculation was run for the discrete timeg0,0.5,1,. .., 10},
and uniform mesh; with 16384 elements.

T, C 1, C 73 C 1T, C T5 with 16, 64, 256, 1024, 4096 and 16384 elements) or adaptively re-

fined meshed, Newton-Raphson solver with 1, 2, or 3 steps (Algofithm 4). Figurés 9.10 and
[9.11 display uniform and adaptive mesh-refinements. Figures 9.12 display the (estimated) error
and the ZZ-error estimator versus degrees of freedom in each nested iteratiohdoB New-

ton steps. The experimental convergence rateasn case of the uniform mesh-refinement,
while the adaptive mesh-refinement strategy improves the experimental convergence rate to
0.5. Note that the convergence rdté is optimal and it indicates the linear convergence (then
errore ~ O(N~1/2) for two dimensional problems). There is one practically important aspect

of the nested iteration technique evident in this numerical experiment. The application of more
(2,3,...) Newton steps within every nested iteration does not improve the experimental con-
vergence rate in comparison to one Newton step. Since every extra Newton step requires more
computational effort, it is therefore recommendable to apply just one Newton step for every
nested iteration.

9.3 Rotationally symmetric ring

The model of a rotationally symmetric ring is shown in Figure P.13 which represents a two
dimensional section of a tube of inner radiug-of 1 and an outer radius of= 2. We assume

no volume forces = 0 but radially applied surface forces defined with the help of the vector
e, = (cos ¢, sin ¢) in polar coordinates system— ¢ via

te, forr =1,
9(r:0:t) = { ~t/de, forr=2. (9.10)

Due to the radial symmetry of the geometry and the applied surface forces, one expects a ro-
tationally symmetric solution(r, ¢,t) = u(r,t),pi(r,¢,t) = pi(r,t), pa(r,d,t) = pao(r,t)

for all ,¢,t. Indeed, an analytical calculation [AIDO1] admits in the single-yield case (i.e.,

p = p1, p2 = 0) the solution

u(r, ¢, t) = u.(r,t) - e,

p(r, b, ) = Po(r,t) - (e, @ e, — 4 @ €4), (9.11)

e, = (—sin ¢, cos ¢) and the exact formulae far, (r, t) and P, (r, ) given in [Alb01]. Possible
generalization to the two-yield case is however not known to the author. For reason of the sym-
metrical solution property, we discretize one quarter of the ring only; see Higure 9.14, which
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Figure 9.6: Displayed loading-deformation relation in terms of the uniform surface loading

g=(t) versus ther-displacement of the poini0, 1) in the first numerical experiment for the

problem of the single-yield beam with 2D effects.
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Figure 9.8: Evolution of elastoplastic zones at discrete titnest.5, 5,5.5,6,6.5,7,8,9 in the

second numerical experiment with problem of the single-yield beam with 2D effects. The black
color shows elastic zones, darker gray color zones in the plastic phase. The displayed meshes
consists 0fl6334 elements, CPU time- 15.59 hours.
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Figure 9.9: Evolution of elastoplastic zones at discrete timesl.5,5,5.5,6,6.5,7, 8,9 in the
second numerical experiment with problem of the two-yield beam with 2D effects. The black
color shows elastic zones, darker and lighter gray color zones in the first and second plastic
phase. The displayed meshes consistidB4 elements, CPU time- 25.17 hours.
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Figure 9.10: Uniformly refined mesh&g, 71, 7>, 75, 7;, 75 (with 16, 64, 256, 1024, 4096,
16384 elements) and elastoplastic zones for the one time-stepowitt) and¢; = 8.5 in the
third numerical experiment for the problem of the two-yield beam with 2D effects.
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Figure 9.11: Adaptively refined mesh&g 75, 74, T, T3, T10, 712, 714 (With 16, 46, 136, 420,
712, 1432, 1752, 9952 elements) and elastoplastic zones for the one time-stép-withand

t; = 8.5 in the third numerical experiment for the problem of the two-yield beam with 2D
effects.
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Figure 9.14: Geometry and coarse mesh

Figure 9.13: Ring problem. 7, of Ring problem.

also shows the coarse megh

The first numerical experiment describes an elasto-plastic transition during the deformation
process. The calculation was performed at discrete tifes), 20, ...,430} on a finest mesh
generated by uniform refinements of the mesh with 12288 elements smoothing the non-
polygonal boundary. For the two-yield material model, we choose material parameters

E = 70000, v = 0.33,0Y = 243+/2/3, hy = 1,0% = 2501/2/3, hy = 1.

MATLAB solver was specified by these properties: no time-stepping, nested iteration technique
(Algorithm[5) with uniformly refined meshe®, ¢ 7, ¢ 7, € 73 C 7, C 75 C T (with 3,

12,48, 192,768, 3072 and 12288 elements), Newton-Raphson solver with one step (Algorithm

[4). Figure[9.1p displays the evolution of elastoplastic zones at chosen discrete times. For the
initial discrete times, the whole ring is in the elastic phase only. As the time increases, we ob-
serve first plastic and later second plastic phase zones moving radically the original boundary
r = 1 towards the boundany = 2. In the last discrete time the whole ring is completely in the
second plastic phase.

The second numerical experiment indicates properties of the nested iteration technique. We
consider one discrete time-step problem with= 0 and¢; = 200 and the single-yield material
with
E =70000,v = 0.33,0Y = 2204/2/3,h = 1.
MATLAB solver was specified by these properties: no time-stepping, nested iteration technique
(Algorithm [§ with uniformly (7, 71, 7, 73, 74, 75, 76 With 3,12, 48,192, 768, 3072 and 12288
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Figure 9.15: Evolution of elastoplastic zones at discrete titnes 150, 180, 210, 260, 290,

320, 350, 380 in the first numerical experiment with problem of the two-yield ring. The black
color shows elastic zones, darker and lighter gray color zones in the first and second plastic
phase. The displayed meshes considt2@B8 elements, CPU time- 21.9 hours.
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material model CPU time| total number | CPU time spent or]
(in hours) | of Newton steps Algorithm@ (in %)
single-yield 18.08 264 3.3
two-yield 25.17 264 21.9

Table 9.4: Performance of MATLAB solver for the first numerical experiment with the sym-
metric ring problem. The calculation was run at discrete times {0, 12, 20, ...,430}, and
uniform mesh7; with 12288 elements.

elements) or adaptively refined meshes, Newton-Raphson solver with 1, 2, or 3 steps (Algorithm
[). Figure[9.1p displays the exact error, the estimated error and the ZZ-error estimator versus
degrees of freedom in each nested iterationlf@ror 3 Newton steps. The ZZ-error estimator
shows for both uniform and adaptive mesh-refinements the optimal experimental convergence
rate(.5. After some minor preasymptotic differences, the exact error and the ZZ-error estimator
are practically identical (cfL[ACQO]).

9.4 L Shape

The model of an L shape body is shown in Figure P.17. As the result of surface forces (van-
ishing volume forceg are assumed) L-shaped body is deformed. The final deformation at the
timet; = 1 is expressed by a non-homogeneous boundary conditisnu, on the Dirichlet
boundant'p. up is defined in the polar coordinate systera [0, 00), 6 € [—m, 7] by

up(r,0) = ﬁr“[—(a + 1) cos ((a+1)0)) + (Cs — (a + 1)) C; cos ((a — 1)8)],

ug(r,0) = 5=r*[(a+1)sin ((a + 1)6)) + (Co + o — 1)) Cysin ((a — 1)6)].

2p

The constants, C;, Cs have the values

cos ((a+1)3m) ~2(A+2p)
cos ((a —1)27)’ T A+
The first numerical experiment indicates properties of the nested iteration technique. We

consider one discrete time-step problem with= 0 andt; = 1. Calculations are performed for
the two-yield material specified by parameters

a = 0.544483737, C =

E = 100000, = 0.3,07 = 1,hy = 1,0 = 1.41, hy = 0.02.

MATLAB solver was specified by these properties: no time-stepping, nested iteration technique
(Algorithm[5) with uniformly (Z, € 7 € 7, C 73 C 7, C 75 C 75 with 6,24, 96,384, 1536
and6144 elements) or adaptively refined meshes, Newton-Raphson solver with with 1, 2 or 3
steps (Algorithnj #). Figurg 9.19 displays adaptive mesh-refinements, Figuie 9.20 (estimated)
error and the ZZ-error estimator versus degrees of freedom in nested iterations step for 1, 2
or 3 Newton steps. The ZZ-error estimator shows the experimental convergenoes rite

the uniform mesh-refinements and the ratefor the adaptive mesh-refinements. For adaptive
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Figure 9.17: Geometry of the L shape problem and coarse Mesh

mesh-refinements the conditional number of the global matrix in the Newton upgralde (8.9) be-
comes for higher number of refinements (more tha@hdegrees of freedom) very large (Figure
[0.18). We do not observe the same effect for the calculation with the purely elastic material.
A possible explanation is that the global convergence of the Newton-Raphson method is not
guaranteed without damping.

The second numerical experiment compares the computational complexity of the nested
iteration technique and the direct calculation. The problem is specified as in the first experiment,
four techniques for the computation of the discrete solutiof;dar i = 1, ..., 6 are analyzed:

e The nested iteration technique (Algoritiiin 5) with Newton-Raphson solver with 1, 2 or 3
steps (Algorithni }4)

e The nested iteration technique (Algoritjm 5) with Newton-Raphson solver with three
stages convergence control (Algorithin 3)

e The direct calculation off; with Newton-Raphson solver with 1, 2 or 3 steps (Algorithm

)

e The direct calculation off; with with Newton-Raphson solver with three stages conver-
gence control (Algorithm]3)

CPU times and the (ZZ-) error estimators for are given in Table 9.5. The nested iteration
technique with the three stages convergence control always converged on every triangulation
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Figure 9.18: Condition number of the global stiffness matrix versus the degrees of freedom in
the first numerical experiment for the L shape problem.

T1,...,7s for the zero initial approximatiotV|7, = 0. The direct calculation off; converged

for the zero initial approximatio/|;, = 0 on the triangulationd, 71, 75, 75, however we
observe the divergence @p and7;. The possible reason is that the considered initial approxi-
mation for the Newton-Raphson

method was not close enough to the discrete solution. If convergence is obtained, then the
nested iteration technique performs faster then the direct calculation (with exception of the
triangulation?7;), and it is therefore more efficient. The direct calculation with 1, 2, or 3 steps
requires smaller computation costs than the nested iteration technique (with the same number
of steps) coarser mesh@s . .., 7;_;. Corresponding error estimates (the column errorgst.

in Table[9.5) indicate that the direct calculation would require more steps (than considered 1, 2,
or 3) for reaching the convergence. The nested iteration technique provides 'sufficiently’ good
approximation, even after 1 step. It is therefore recommendable to apply the nested iteration
technique with Newton-Raphson solver with one step (Algor{thm 4).

9.5 Cook’s membrane

Cook’s membrane with a coarse meglis visualized in Figurg 9.21, where a panel is clamped
at one end and subjected to a shear Igag (0, g,) along the opposite end (and vanishing
volume forcef = 0).

The first numerical experiment demonstrates two-dimensional hysteresis effects. Material,
time parameters and the solver properties are identical to the model of the beam with 1D effects.
The coarse mesh, consists of; elements. The uniform cyclic load is acting in thheoordinate
and is of the form

gy = 12sin(tm/20).
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6 elements 24 elements 96 elements

SOLVER TYPE CPUtime| error | CPUtime| error | CPUtime| error

(sec) | est.ny (sec) | est.ny (sec) | est.ny
DIRECT (1 New. step) 0.35| 1.10e-2 1.55|7.79e-3 5.20| 6.90 e-3
NESTED (1 New. step) 0.35| —||— 1.33|7.91e-3 5.71| 5.06 e-3
DIRECT (2 New. steps) 0.47| —||— 2.14| 797 e-3 8.84| 5.47 e-3
NESTED (2 New. steps 047 —||— 2.07|7.93e-3 9.18| 5.10e-3
DIRECT (3 New. steps) 0.67| —||— 2.88| 7.93e-3 11.38| 5.09 e-3
NESTED (3 New. steps 0.67| —||— 2.71| 793 e-3 13.07| 5.10 e-3
DIRECT (three stages) 0.17| —||— 4.67| 793 e-3 49.98| 5.10 e-3
NESTED (three stages 017, —||— 4.78| 7.93 e-3 46.66| 5.10 e-3

384 elements 1536 elements 6114 elements

SOLVER TYPE CPUtime| error | CPUtime| error | CPUtime| error

(sec) | est.ny (sec) | est.ny (sec) | est.ny
DIRECT (1 New. step) 15.79| 5.39 e-3 61.53| 3.98 e-3 433.76| 2.88 e-3
NESTED (1 New. step) 24.07| 3.32 e-3 107.87| 2.21 e-3 623.72| 1.58 e-3
DIRECT (2 New. steps) 31.11| 5.39e-3 123.57| 5.60 e-3 765.47| 4.82 e-3
NESTED (2 New. steps 40.18| 3.31e-3 174.31| 2.20 e-3 930.23| 1.47 e-3
DIRECT (3 New. steps) 44.82| 4.17 e-3 200.57| 1.65e-3| 1147.55| 2.85e-2
NESTED (3 New. steps 57.88| 3.31e-3 243.10| 2.20 e-3| 1194.75| 1.52 e-3

DIRECT (three stages) 344.14| 3.31 e-3 divergence divergence

NESTED (three stages)  300.19| 3.31e-3] 1227.48| 2.20e-3| 7136.45| 1.46 e-3

Table 9.5: Comparison: direct calculation versus the nested iteration technique in the second
numerical experiment for the L shape problem. Considered is one time-step,witt) and
t; = 1 and six uniform triangulations with, 24, 94, 384, 1536 and6114 elements.
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Figure 9.19: Adaptively refined mesh&g 71, 7>, 74, ¢, 73, 110, 712 (With 6, 22, 34, 88, 170,
366, 694, 1372 elements) and elastoplastic zones for the one time-stefy with andt; =

1 in the first numerical experiment for the problem of the two-yield L shape. Displacement
factor=10000.
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Figure 9.21: Geometry and coarse m&glof a Cook’s membrane problem.

material model CPU time| total number | CPU time spent or
(in sec) | of Newton steps Algorithmlﬁ (in %)
single-yield 430 589 14.8
two-yield 1647 677 74.2

Table 9.6: Performance of MATLAB solver in the first numerical experiment with the Cook’s
membrane problem effects. The calculation was run at discrete time$0,0.5,1,...,50},
and uniform mesh, with 6 elements.

Figures 9.2 anfl 9.23 show thegsteresis curvel terms of the dependence gf(¢) on the
y-displacement;, (t) of the point(46, 60) for single and two-yield models. In both curves we
observe strong two-dimensional effects causing the smoothing of the elasto-plastic transition.

The second numerical experiment indicates properties of the nested iteration technique. We
consider one discrete time-step problem with= 0 and¢; = 1.7, the material with same prop-
erties as in the first numerical experiment. MATLAB solver was specified by these properties:
no time-stepping, nested iteration technique (Algorifhm 5 with uniformly or adaptively refined
meshes), Newton-Raphson solver with 1, 2 or 3 steps (Algofithm 4). 9.25 displays the
(estimated) error and the ZZ-error estimator versus degrees of freedom in nested iteration step
for 1,2 or 3 Newton steps. The ZZ-error estimator shows the experimental convergengetrate
for the uniform and the experimental convergence taidor the adaptive mesh-refinements.

9.6 Plate with a hole

A two dimensional squared plate with a hole is under the time-dependent tension as shown in
Figure[9.26. Due to the symmetry reasons, only the quarter of the square, depicted in Figure
[9.27, is discretized. For a calculation we consider the single-yield material with

E = 206900, v = 29,0Y = 4504/2/3,h =1
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Figure 9.22: Displayed loading-deformation relation in terms of the uniform surface loading
g,(t) versus they-displacement of the poin0, 1) in the first numerical experiment for the
problem of the single-yield Cook’s membrane.
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Figure 9.23: Displayed loading-deformation relation in terms of the uniform surface loading
g,(t) versus they-displacement of the poin, 1) in the first numerical experiment for the
problem of the two-yield Cook’s membrane.



SECTION 9.6. PLATE WITH A HOLE 105

Figure 9.24: Adaptively refined mesh@&gs 75, 74, 75, Tz, Ty, T10, 711 (With 32, 104, 259, 584,
1088, 1329, 1645, 2021 elements) and elastoplastic zones for the one time step problem with

to = 1 andt; = 0.7 in the second numerical experiment for the problem of the two-yield Cook’s
membrane.
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Figure 9.25: The second numerical experiment for the two-yield Cook’s membrane problem,

one time-step withy = 0,7, = 1.7. (Estimated) error and ZZ-error estimator are displayed
versus the degrees of freedaw
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Figure 9.26: Problem of the plate with a
hole.

Figure 9.27: Geometry of the plate with a
hole and coarse me&h.

or the two-yield material with
E = 206900, v = 29, 0] = 4504/2/3,h = 1,08 = 500/2/3,hy = 1

subjected to the time-dependent surface tengien(0, 600¢).

The first numerical experiment indicates properties of the nested iteration technique. We
consider one discrete time-step problem wigh= 0 andt; = 0.7 and the two-yield mate-
rial with material parameters given above. MATLAB solver was specified by these properties:
nested iteration technique (AlgoritHm 5 with uniformly or adaptively refined meshes, Newton-
Raphson solver with 1, 2, or 3 steps (Algorithin 4). Figure 9.28 displays the exact error, the es-
timated error and the ZZ-error estimator versus degrees of freedom in each nested iteration for
1,2 or 3 Newton steps. The ZZ-error estimator shows the (experimental) convergenoeirate
for uniform mesh-refinements and the (experimental) convergenceé.bafter adaptive mesh-
refinements .

The second numerical experiment demonstrates the adaptive time-stepping strategy de-
scribed in Sectiop 84. For time and space discretization, we set{0.4,0.5,0.6,0.7} and
7y. For solving of the discrete problem, the adaptive time-stepping algorithm (Algofithm 6)
with the following parameters is used:

e Sin =0, 5,..: = oo. This choice leads to no (uniform) time-stepping, i.e., the initial set
of the discrete times remains unchanged.

e S,in = 0,5, = 3. This means the adaptive time-stepping, i.e., if the number of
Newton step in the time; is smaller thanS,,,..., the time stepAt; = ¢; — t;_; will be
divided by 2.
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material model CPU time| total number | CPU time spent or]
(in sec) | of Newton stepg Algorithm|[Z (in %)

elastic 129 115 0
single-yield 384 255 8.7
two-yield 472 248 18.9

Table 9.7: Performance of MATLAB solver for the elastic, the single-yield and the two-yield
plate with with a hole. The calculation was run for the tird@st, 0.41,0.42,...,0.8} and the
mesh7; (generated by one uniform refinement®@j with 124 elements.

The calculation shows that the number of Newton steps increases from 1 at-tirhd to 5 at

timet¢ = 0.8 for the uniform time-stepping algorithm (Figure 9.29). The adaptive time-stepping
algorithm attempts to reduce the original time stefy = 0.1 so that the number of Newton
stepsis 3 orless. As the result of it, the time stgmt the timef = 0.8 equald).0001. The total
calculation time isl 1.8 seconds for the case of uniform (no) time-stepping idseconds for

the case of the adaptive time-stepping. We can observe that Algdrithm 6 is sensitive to the
choice of parameters,.;,,, Siaz- (The choiceS,,.. = 4 would enforce the uniform time-time
stepping in this experiment).

9.7 Comments concerning numerical performance

The developed MATLAB solver enables the calculations of simple two-dimensional problems.
It has been tested for meshes with up to 50.000 elements. Solving problems with higher number
elements is very time consuming, from a couple of hours to days. What concerns the choice
of the material model, computations based on the two-yield material are more expensive if
compared to the single-yield model and the purely elastic model. The main reason for this
is the expensive calculation of plastic dependencies (Algorithm 2) and a different number of
Newton steps necessary for reaching convergence. This is illustrated by the second numerical
experiment for the plate with a hole. The Newton-Raphson solver with the three stages control
(Algorithm[3) is applied to the mesh with 124 elements (generated by one uniform refinement

of 7p) at discrete timeg$0.4,0.41,0.42,...,0.8}. A comparison of the calculation complexity

for the single-yield and the two-yield model for other numerical experiments are provided in
Tabled 9.1, 9]2, 918, 9.4, 9.6.

For the elastic material model, both plastic componéhtand P, are zero and therefore the
Algorithm[Z need not be applied. Besides, the sysfenj (8.1) is linear and its solution is found
within only one Newton step (in fact, more steps are needed with respect to the termination
property of the three stage algorithm, see Figuré 8.1). Solving the (indeed nonlinear) system
(8.4) in case of the single and two-yield models requires more Newton steps. Longer time,
that Algorithm[2 needs for the two-yield material calculation compare to the single-yield mate-
rial calculation is the consequence of the principal difference of both material models: for the
single-yield material the plastic dependence can be calculated analytically, or equivalently, one
iteration of Algorithm[?2 yields the solution, however for the two-yield material more Newton
steps are required.
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Figure 9.28: The first numerical experiment for the two-yield plate with a hole, one time-step
with ty = 0, ¢, = 0.7. (Estimated) error and ZZ-error estimator are displayed versus the degrees

of freedomJV.
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Figure 9.29: The second numerical experiment for the problem of the two-yield plate with a
hole. Time-stepAt and the number of Newton step are displayed versus thettifoethe
uniform and adaptive time-stepping.

Adaptive mesh-refining strategies led in all numerical examples (with exception of L shape
model) to optimal converge rates.



Chapter 10

Conclusions and open guestions

We summarize the main results we have obtained in this thesis.

e Similarly to the linear kinematic hardening model, the weak form of Prandtl-Ishlinskii
model of play type can be rewritten as a variational inequality on a Hilbert shace
which involves a bilinear forna(-, -), a linear functional(-) and a nonlinear functional

w().

e The bilinear formu(-, -), the linear functional(-) and the nonlinear functional(-) satisfy
sufficient conditions (i.e., ellipticity of(-, -), Lipschitz continuity ofi(-) and others) that
guarantee the existence and uniqueness of the variational inequality solution in a Hilbert
spaceH.

e For the one time-step discrete problem, the vector of incremental plastic sttaias
(P, ..., Py)T depends on every elemefitof the triangulatiorZ on the displacement
U only. In contrast to the linear kinematic hardening model, this dependency can not be
expressed analytically, but has to be calculated by a numerical algorithm.

e Numerical examples indicate the priority of adaptive mesh-refinements over uniform
mesh-refinements. Besides, one Newton iteration in the nested iteration technique is suffi-
cient, more iterations only increase computational costs without large improvements with
respect to accuracy.

The following questions stay so-far unanswered and their study might become a part of a
future research.

e The Prandtl-Ishlinskii model of play type generalizes the model of linear kinematic hard-
ening only. It would be chalenging to extend the Prandtl-Ishlinskii model of play type in
order to respect isotropic hardening effects as well.

¢ Is there any example in two-yield plasticity with a known analytical solution?

e Is it possible to prove sufficient regularity of the solutions and clarify superiority of adap-
tive refinement techniques theoretically?






Notation

Rmxd
dxd
ngjm
dxd
devRg"
MT

iL'T

[1X ]| or |||
X :Yor(X,Y)
TRy

det

diaga, ..., ay)
\Y

div

0A

A
Q
I'(=09)

open interval

closed interval

natural numbers (withoui)

Euclidian space of (column-) vectorsdrcomponents
space ofn x d-matrices with real entries

space of symmetrié x d-matrices with real entries
space of deviatoric symmetritx d-matrices with real entries
transposed matrix td/ ¢ R™*9

transposed vector to € R?

Frobenius norm of matrix ¢ R4*4

(Euclidian) scalar product of matricé§ Y € R4*¢
dyadic product of, y

determinant of a square matrix

diagonal matrix with entries;, ..., a,

gradient (as row-vector)

divergence

boundary of sed

closure of sed

bounded Lipschitz domain iR¢

boundary of domaifi
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I'p Dirichlet boundary of domaif

Iy Neumann boundary of domain

n (outer) unit normal vector oh = 0

fla restrictionoff : X - YtoAC X

X* dual space of normed spage

C"(Q) space of continuous functions éhwith continuous (partial)
derivatives up to ordem

LP(Q2) Lebesque space of Lebesque measurable functiofs on
that are inp-th order integrablel < p < oo

WhP(Q) Sobolev space of functions itr(£2), with weak derivatives iri.” ()¢

H(Q) = Wh2(Q)

Hp(Q) space of functions ii7*(2) that vanish on Dirichlet boundaiy,,

Wmr(Q) Sobolev space of:-th order, i.e., all partial derivatives
up tom-th order exist in weak sence and belond tg(?)

H™(Q) = Wm2(Q)

-1l norm on the normed space, e.g.|| - ||, || - [[ze@), || - [[wre(e)

- o I - 1l norm on Lebesgue spaéé((?)

| llmpas |- llmp NOrmon Sobolev spadé™?((2)

(x,) — sequencéz,,) converges strongly to

B open ball ab with radiusr = 1

T triangulation of domair

T element (triangle) of triangulatiof

N set of nodes (vertices)

E set of edges

En set of edges oh'

SYT) lowest order finite element space Bn(elementwise affine)

SH(T) finite element functions fror8*(7") which vanish orl"p

ST) piecewise constant functions @n

hg diameter of an edge

hr diameter of an element

An - ngl jump of the normal component of, acrossk

divy elementwise application of div



NOTATION

115

nr,1n
uworU

oory

porP
C A u

local error-indicator and error estimator
displacement

Cauchy stress tensor

Green strain tensor

plastic strain

elastic tensor and Laéncoefficients
(kinematic) hardening tensor
dissipation function
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MAPLE programs

Program 'maple.ms’ displays the functionflP) = %(@ +H)P : P-P: A+ || P||o,
and its parts%(@ +H)P: PP : A, ||P||, in 2 — y coordinate system. Two components
plastic strainP = (P, )" for modeling of two-yield plasticity assumé&g and P, in the
form P, = (2,0;0,—x), P, = (y,0;0,—y). It also displays the nonlinear system (6.48) for
& = ||P1]], & = || || in coordinate systersy — &,. For a different elastoplastic material pa-
rametersgu, 0¥, oy, hy, hy and values ofd;, A, € R2X2 can be changed in lingsand3.

sym

maple.ms

with(linalg):n:=2;

mu:=1;sigmal:=1; sigma2:=2;h1:=1;h2:=1;

Al:=10*array([[2,0],[0,0]]); A2:=10*array([[2,0],[0,0]));

Identity:=evalm(array(identity, 1..n,1..n)):

devAl:=evalm(Al-(1/n)*trace(Al)*Identity);

devA2:=evalm(A2-(1/n)*trace(A2)*Identity);

> [1:=evalm((sigmal+(2*mu+h1)*xil)*devA2-2*mu*xil*devAl);
[2:=evalm((sigma2+(2*mu+h2)*xi2)*devAl-2*mu*xi2*devA2); r:=
simplify(((2*mu+h21)*xil+sigmal)*((2*mu+h2)*xi2+sigma2)-4*mu"2*xi1*xi2);

> Phil:=expand(trace(multiply(transpose(I1),I1)))-r"2;
Phi2:=expand(trace(multiply(transpose(12),12)))-r"2;

> implicitplot({Phi1=0,Phi2=0}, xi1=-10..10,xi2=-10..10,grid=[50,50]);

> with(linalg):P1:=array(1..2,1..2,[[x,0],[0,-x]]);

P2:=array(1..2,1..2,[[y,0],[0,-y]ID);

f1:=1/2*(((2*mu+h1)*norm(P1, frobenius’)"2)+

2*(2*mu*trace(multiply(P1,P2)))+((2*mu+h2)*norm(P2, frobenius’)"2));

f2:=trace(multiply(P1,devAl))+trace(multiply(P2,devA2));

f3:=sigmal*norm(P1, frobenius’)+sigma2*norm(P2, frobenius’);

f:=f1+13-f2;f_scaled:=subs({x=x/sqrt(2),y=y/sqrt(2)},f);

plot3d(f1,x=-100..100,y=-100..100,axes=FRAME,style=PATCHCONTOUR,

shading=ZGREYSCALE);

plot3d(f2,x=-100..100,y=-100..100,axes=FRAME,style=PATCHCONTOUR,

shading=ZGREYSCALE);

> plot3d(f3,x=-100..100,y=-100..100,axes=FRAME,style=PATCHCONTOUR,
shading=ZGREYSCALE);

> plot3d(f,x=1..3,y=1..2,axes=FRAME,style=PATCHCONTOUR,

shading=ZGREYSCALE);

V V V V

V V V V \Y

\%







MATLAB programs

MATLAB programs for the calculation of two-yield plasticity are partly listed below. The
complete listing can be obtained via http://www.numerik.uni-kiekdgh. The nested iteration
solver with adaptivity (ZZ-estimator) is run by calling the program ’start.m’. Lihes13 can

be modified:

Newtonsteps means the number (given as a string) of Newton-Raphson iterations (Al-
gorithm[4) on every mesh, typicallyf’;’ 2’ 3’, the choic€three_stages’ leads to the
Newton-Raphson solver with the three stages solver (Algofjithm 3).

theta is the (adaptive) mesh-refinement parameter with the value betivard1, typ-
ical choices areheta = 0.5 (adaptive mesh-refinement) tfieta = 1 (uniform mesh-
refinement).

step_min, step_max - the time-stepping parameters; the chaite_min = 0,
step_max = oo leads to no (uniform) time stepping.

re finements denote the number of mesh-refinements for every time step.

tolerance specifies the stopping criterion for the calculation of the plastic dependence in
Algorithm[2.

tolerance_N ewton - determines the parameteierance for the Newton-Raphson solver
with the three stages convergence control (Algorithm 3).

mazimum_N ewton_step - specifies the maximal number of Newton-Raphson steps for
reaching convergence in case of the Newton-Raphson solver with the three stages conver-
gence control (Algorithm|3).

yield_type determines the type of material behavior, i‘ewlti’,’single’ or’elastic’ for
the two-yield, single-yield or elastic material behavior.

problem specifies the example for calculatidheam2D’, 'beam1D’, 'ring’ or’ Lshape’
or’platehole’ are available.

For the observation of convergence behavior, a functiest_adaptive’ can be used. The
function is called together with two parametexsfinements and maxNewtonsteps. The
function runs the program ’start.m’ and it generates a coarse solution of according to the
solver setup. Then, the nested iteration technique witfinements refinements (uniform
of adaptive, how it is set up in 'start.m’) is applied. It is performed in the cycle for the
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fixed number of Newton steps, ..., maxNewtonsteps. The reference solution is calcu-
lated on the mesH,..inements @ccording to Remark 9.2. The (estimated) error in the energy
norm and the value of the error estimator (ZZ-estimator) for approximations on coarser meshes

1,...,refinements — 2 are evaluated.

start.m

declaration_of_variables % specifies global variables

%%%%%%%% %% %% %% %% % %% %% %% %% %% %% % %% %% %% %% %% %% % %6 %% % %% %00
Newtonsteps='3"; %number of Newtonsteps (as a string)
%or 'three_stages’ or ’fixed_residual’
theta=0; %0.5 adaptive, O uniform
maximum_Newton_step=100;
step_min=0; step_max=100; %time adaptivity
refinements=0;
tolerance=1e-4; %for the plastic-dependence scheme
tolerance_Newton=10e-6;
maximum_Newton_step=100;
yield_type="multi’; % ’'multi’ or ’'single’ or ’elastic’;
problem="beam2D’; %’beam2D’ or 'heamlD’ or ’ring’ or ’'Lshape’
%or ’'cook’or ’platehole’;

%%%%% %% %% %% %% %% %% % %% %% %% %0 %% %% % % %% %0 %% % %0 % %% %% % %% %0 %% %Y
last_uniform_refinements=1; %minimal value=1, for the generation of the

%reference solution

material;
mu_times_2=mu*2;
C=mu*[2 0 0;0 2 0;0 0 1] + lambda*[1 1 0;1 1 0;0 0 O];

%Generation of the coarse mesh
while size(Elemente,1)<10
[Koordinaten,Elemente,Dirichlet, Neumann]=Rotverfeinerung(Koordinaten,...
Elemente,Dirichlet,Neumann);
end

Koordinaten_coarse=Koordinaten;
Elemente_coarse=Elemente;
Dirichlet_coarse=Dirichlet;
Neumann_coarse=Neumann;

%initial conditions

Uprev=zeros(size(Koordinaten,1),2); %defined on every node
Plprev=zeros(size(Elemente,1),2); %defined on every element - constant
P2prev=zeros(size(Elemente,1),2); %defined on every element - constant

%set up

condestA=[]; N=[]; hysteresis_u=[]; hysteresis_g=[];
state=[]; %0 -elastic, 1-first plastic, 2-second plastic
counter=1;

numberoftimes=size(t,2);

further=1,;

%%0%% %% %%

%%0%%%% %%
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%cycle over all discrete times
while further
%switching to coarse mesh
Koordinaten=Koordinaten_coarse;
Elemente=Elemente_coarse;
Dirichlet=Dirichlet_coarse;
Neumann=Neumann_coarse;

%testing the convergence on the coarse mesh for the time adaptivity
%disp(Running FEM + Newton method on the coarse mesh’);
%[U,U_coarse,P1,P1 coarse,P2,P2_coarse,iterations_coarse]=...
%nested_iteration_refinements(Plprev,...

% P2prev,Uprev,t(counter),’fixed_residual’,0);

%improving the space error - mesh-refining

[U,U_coarse,P1,P1_coarse,P2,P2_ coarse,iterations_fine]=...
nested_iteration_refinements(Plprev,...
P2prev,Uprev,t(counter),Newtonsteps,refinements);

iterations(;,counter)=iterations_fine;
iterations_coarse=iterations_fine(1);

Uprev=U_coarse;
Plprev=P1_coarse;
P2prev=P2_coarse;

%which state - elastic, single-yield or two-yield?
if (norm(P1)+norm(P2)==0)
disp(elasticity’); state=[state O0];
else
if (norm(P2)>0)
disp('two-yield plasticity’); state=[state 2];
else disp('single-yield plasticity’); state=[state 1];
end
end

%generating figures

cd MATRICES

save(strcat('zones_’,problem,’ \yield_type,” ’,num2str(counter)),...
'Elemente’,’Koordinaten’,’'U’,’P1',’P2’’lambda’,’mu’);

cd ..

generate_zones(strcat('zones_’,problem,” ’\yield type,’ ’,...
num2str(counter)));

%output for hysteresis behavior
%generate_hysteresis;

%figure(30);
%plot(hysteresis_u,hysteresis_g,’x-");
%M (counter)=getframe;

%adaptive time-stepping
if (counter==numberoftimes)
further=0;
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else
if iterations_coarse>step_max
t=adaptive_time(t,counter+1,0.5);
else
if iterations_coarse<step_min
t=adaptive_time(t,counter+1,2);
else
t=adaptive_time(t,counter+1,1);
end
end

numberoftimes=size(t,2);
counter=counter+1;
end
save time_adaptivity
end

save
%animation
%movie(M);
%movie2avi(M, plasticity.avi’, FPS’,2);

nestediteration _refinement.m

function [U,U_coarse,P1,P1_coarse,P2,P2_coarse,iterations]=...
nested_iteration_refinements(P1prev,P2prev,U time,Newtonsteps,refinements)
global Koordinaten Elemente Neumann Dirichlet %mesh invariants

global problem

iterations=[];

disp('Number of elements’);
disp(size(Elemente,1));

mesh_preparation; %gets mesh ready - STEMAelastic + maske and others
incorporate_Dirichlet;
if strcmp(problem,’Lshape’)
for j=1:size(Dirichlet,1)
U(Dirichlet(j,1),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,1),:));
U(Dirichlet(j,2),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,2),:));
end
end
evaluate_fv(time);
evaluate_gv(time);

[U,P1,P2,iterations_Newton]=FEM_Newton(P1prev,P2prev,U,Newtonsteps);
iterations=[iterations;iterations_Newton];

if “isempty(Neumann)
NKV = Koordinaten(Neumann(:,2),:)- Koordinaten(Neumann(:,1),:);
NKV = NKV./[sgrt(sum(NKV.*NKV,2)),sqrt(sum(NKV.*NKV,2))];
% Neumann-Kanten % Vektoren, normiert
NNV = [NKV(;,2),-NKV(;,1)]; % Neumann-Kanten Normalenvektoren
else NKV=[]; NNV=[];
end
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[Kantennr,Elemente]=GeneriereKantennr(Elemente,Koordinaten);

Sigma=evaluate_sigma(U,P1,P2);

[eta,eta_s]=ZZ Estimate(Elemente, Koordinaten, Dirichlet, ...
Neumann, NKV, NNV, Sigma,time);

disp('ZZ-error estimator’);

disp(norm(eta));

%cd MATRICES
%save(strcat(eta_’,num2str(0)),'eta’);
%cd ..

VK=AAlg1(eta’,Elemente,Koordinaten,Kantennr);
VK = BlauGruen(Elemente,Koordinaten,Kantennr,VK);

U_coarse=U;
P1 coarse=P1,;
P2_coarse=P2;

for i=l:refinements
% generate mesh refinement
triangles=howmanytriangles(Elemente,Kantennr,VK);
[Koordinaten,Elemente,Dirichlet, Neumann]=Verfeinerung(Koordinaten,...
Elemente,Dirichlet,Neumann,Kantennr,VK);
if strcemp(problem,’ring’)
Koordinaten=correct_ring_coordinates(Koordinaten,Neumann);
end

Prolongation_linear = GeneriereProlongation(Kantennr,VK);

%generate Prolongation_constant matrix

Prolongation_constant=sparse(size(P1prev,1),size(triangles,2));

index=0;

for j=1:size(triangles,2)
Prolongation_constant(index+1:index+triangles(j),j)=1;
index=index+triangles());

end

disp(Number of elements’);
disp(size(Elemente,1));

%Prolongation
U=Prolongation_linear*U;
P1prev=Prolongation_constant*Plprev;
P2prev=Prolongation_constant*P2prev;

mesh_preparation; %gets mesh ready - STEMAelastic + maske and others
incorporate_Dirichlet;
if strcmp(problem,’Lshape’)
for j=1:size(Dirichlet,1)
U(Dirichlet(j,1),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,1),:));
U(Dirichlet(j,2),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,2),:));
end
end
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evaluate_fv(time);
evaluate_gv(time);

[U,P1,P2,iterations_Newton]=FEM_Newton(P1prev,P2prev,U,Newtonsteps);
iterations=[iterations;iterations_Newton];

if “isempty(Neumann)
NKV = Koordinaten(Neumann(:,2),:)- Koordinaten(Neumann(:,1),:);
NKV = NKV./[sgrt(sum(NKV.*NKV,2)),sqrt(sum(NKV.*NKV,2))];
% Neumann-Kanten % Vektoren, normiert
NNV = [NKV(;,2),-NKV(;,1)]; % Neumann-Kanten Normalenvektoren
else NKV=[]; NNV=[];
end

[Kantennr,Elemente]=GeneriereKantennr(Elemente,Koordinaten);

Sigma=evaluate_sigma(U,P1,P2);

[eta,eta_s]=ZZ Estimate(Elemente, Koordinaten, Dirichlet, ...
Neumann, NKV, NNV, Sigma,time);

disp('’ZZ-error estimator’);
disp(norm(eta));

%cd MATRICES
%save(strcat('eta_’,num2str(i)),’ eta’);
%cd ..

VK=AAlg1(eta’',Elemente,Koordinaten,Kantennr);
VK = BlauGruen(Elemente,Koordinaten,Kantennr,VK);

%figure(i+1);
%show_zones(U,P1,P2);
%cd FIGURES
%print(gcf,’-depsc’,strcat(’zones’,num2str(i+1)));
%cd ..

end

FEM Newton.m
function [U,P1,P2iterations]=FEM_Newton(P1prev,P2prev,U,Newtonsteps)

switch Newtonsteps

case {'three_stages’}
[U,P1,P2,iterations]|=FEM_Newton_three_stages(P1prev,P2prev,U);
disp('Newton step needed for convergence’);
disp(iterations);

case {fixed_residual’}
[U,P1,P2 iterations]=FEM_Newton_fixed_residual(Plprev,P2prev,U);
disp(Newton step needed for convergence’);
disp(iterations);

otherwise
[U,P1,P2]=FEM_Newton_fixed_steps(Plprev,P2prev,U,str2num(Newtonsteps));
iterations=Newtonsteps;

end
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FEM _Newton fixed_steps.m

function [U,P1,P2]=FEM_Newton_fixed_steps(Plprev,P2prev,U,number_of steps)
global STEMAelastic B W

global condestA N

[help,feste2DKnoten]=find(B);

disp('Evaluating Phi%);
[Phi,plasticelements,P1,P2]=evaluate_Phi(U,P1prev,P2prev);

residualvector=Phi; residualvector(feste2DKnoten)=[];
residual=sqrt(residualvector’*(residualvector));
disp(residual = 7);

disp(residual);

for i=1l:number_of steps

if isempty(find(plasticelements)) %elasticity only
disp('Substituting elastic DPhi’);
%global matrix - set up
stabilization=max(max(STEMAelastic));
A=[STEMAelastic, stabilization*B’;stabilization*B,...

sparse(size(B,1),size(B,1))];

else %plasticity!!
disp('Evaluating plastic DPH/’);
DPhi=evaluate_DPhi_plastic(U,P1prev,P2prev,plasticelements);
%global matrix - set up
stabilization=max(max(DPhi));
%stabilization=1;
A=[DPhi,stabilization*B’;stabilization*B,sparse(size(B,1),...

size(B,1))];

end

%condestA=[condestA condest(A)];

%N=[N size(STEMAelastic,2)];

b=[Phi; stabilization*W];

% one Newton iteration

solution=A\b;

lambda=solution(size(STEMAelastic,1)+1:end);

Udeltavector=solution(1:size(STEMAelastic,1));

Udelta=matrix2form(Udeltavector);

U=U-Udelta;

[Phi,plasticelements,P1,P2]=evaluate_Phi(U,P1prev,P2prev);

%residualvector=Phi;residualvector(feste2DKnoten)=[];

%residual=sqgrt(residualvector’*(residualvector));

residual=norm(stabilization*B"*lambda-Phi);

disp(residual = );

disp(residual);

end

FEM _Newton_three_stages.m

function [U,P1,P2,step]=FEM_Newton_three_stages(Plprev,P2prev,U)
global STEMAelastic B W

global tolerance maximum_Newton_step;

global condestA N
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[help,feste2DKnoten]=find(B);

disp(’Evaluating Phi’);
[Phi,plasticelements,P1,P2]=evaluate_Phi(U,P1prev,P2prev);

residualvector=Phi; residualvector(feste2DKnoten)=[];
residual=sqrt(residualvector*(residualvector));
disp(residual = );

disp(residual);

if residual==0
further=0;
else
further=1,
end

tolerance_reached=0;
step=0;
residualold=residual;

while (further==1) & (step<=maximum_Newton_step)
if isempty(find(plasticelements)) %elasticity only
disp('Substituting elastic DPhi’);
%global matrix - set up
stabilization=max(max(STEMAelastic));
A=[STEMAelastic, stabilization*B’;stabilization*B,...
sparse(size(B,1),size(B,1))];
else %plasticity!!
disp(’Evaluating plastic DPH/’);
DPhi=evaluate_DPhi_plastic(U,P1prev,P2prev,plasticelements);
%global matrix - set up
stabilization=max(max(DPhi));
A=[DPhi,stabilization*B’;stabilization*B,sparse(size(B,1),...
size(B,1))];
end

%condestA=[condestA condest(A)];

%N=[N size(STEMAelastic,2)];

b=[Phi; stabilization*W];

% one Newton iteration

solution=A\b;
lambda=solution(size(STEMAelastic,1)+1:end);
Udeltavector=solution(1:size(STEMAelastic,1));
Udelta=matrix2form(Udeltavector);

U=U-Udelta;

disp('Evaluating Phi’);
[Phi,plasticelements,P1,P2]=evaluate_Phi(U,P1prev,P2prev);
%residualvector=Phi; residualvector(feste2DKnoten)=[];
%residual=sqgrt(residualvector’*(residualvector));
residual=norm(stabilization*B"*lambda-Phi);
%fprintf(residual =%10.8f \n’,residual);

disp(residual = );
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disp(residual);

if residual<=tolerance
tolerance_reached=1;

end

if (tolerance_reached==1) & (residual>residualold)
further=0;

end

residualold=residual;

step=step+1;

end

if step==maximum_Newton_step
display(Maximum number of Newton steps exceeded!!!);
pause

end

evaluate Phi.m

function [Phi,plasticelements,P1,P2]=evaluatePhi(U,P1prev,P2prev)
global fv gv STEMAelastic Rglobal Areaglobal Elemente

%calculating Phi - right side for the Newton matrix - elementwise
%plasticelements=[];

Phi=zeros(1,2*size(U,1));

%Calculation C\epsilon(U):\epsilon(V), V=V_i ==> vector
Phi=(vectorform(U)*STEMAelastic);

%-int_\Omega fv dx

Phi=Phi-fv-gv;

[P1,P2,plasticelements]=evaluate_P_global(U,P1prev,P2prev);
for j=1:. size(Elemente,1);

%assignment of real indices

I=2*Elemente(j,[1 1 2 2 3 3])-[1,0,1,0,1,0];

Pllocal=P1(j,);
P2local=P2(j,:);
if plasticelements(j)™=0
Rlocal=Rglobal(:,:,j);
Arealocal=Areaglobal(j);
%Calculating CPO:\epsilon(V), V=V_i ==> vector
STEMAZ3PIasticlocal=integral_plastic(Rlocal,Arealocal,...
Pllocal+P2local);
Phi(l)=Phi(l)-STEMA3Plasticlocal;
end
end
Phi=Phi’;

evaluate DPhi_plastic.m
function DPhi=evaluate_DPhi_plastic(U,P1prev,P2prev,plasticelements)

global STEMAelastic Koordinaten Elemente Rglobal Areaglobal

DPhi=STEMAelastic;
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for j=1:size(Elemente,1);
if plasticelements(j)>0
%assignment of real indices
[=2*Elemente(j,[1 1 2 2 3 3])-[1,0,1,0,1,0];
P1previocal=P1prev(j,:);
P2previlocal=P2prev(j,:);
Koordinatenlocal=Koordinaten(Elemente(j,:),:);
Ulocal=U(Elemente(j,:),:);
Rlocal=Rglobal(:,:,j);
Arealocal=Areaglobal(j);

for i=1:6
Uvectorlocal=vectorform(Ulocal);
%setting up the increment for the approximation of DPhi
epsilon=sqrt(eps)*max(1,abs(Uvectorlocal(i)));
Upluslocal=Uvectorlocal,
Uminuslocal=Uvectorlocal;
Upluslocal(i)=Upluslocal(i)+epsilon;
Uminuslocal(i)=Uminuslocal(i)-epsilon;
Upluslocal=matrix2form(Upluslocal);
Uminuslocal=matrix2form(Uminuslocal);

[P1pluslocal,P2pluslocal]=evaluate_P_on_element(Rlocal,...
Upluslocal,P1prevlocal,P2previocal);

[P1minuslocal,P2minuslocal]=evaluate_P_on_element(Rlocal,...
Uminuslocal,P1prevlocal,P2previocal);

%approximation of the derivation by the difference
STEMA3PIastic(i,:)=integral_plastic(Rlocal,Arealocal,...
(P1pluslocal+P2pluslocal-P1minuslocal-P2minuslocal)/2/epsilon);
end
DPhi(1,1)=DPhi(l,1)-STEMA3PIastic’;
end
end

STEMA3.m
function STEMA3=STEMA3(Knoten)
%calculates \int_elemet C epsilon_i:\epsilon_j,
%i,j=1..6 for tracefree and symmetic Plasticstrain
global C
Rlocal=R(Knoten);
STEMA3=det([1 1 1;Knoten’])/2*Rlocal*C*Rlocal;

integral _plastic.m
function integral=integral_plastic(Rlocal,Arealocal,Plasticstrain)

%calculates \int_element CPlasticstrainn:\epsilon_i, i=1..6

%for trace-free and symmetric Plasticstrain

global mu

Plasticvector=[Plasticstrain(1) -Plasticstrain(1) Plasticstrain(2)];
integral=mu*Arealocal*(Plasticvector*Rlocal); %Area/2 * R™*2*mu*Plastic
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evaluate P_on_element.m

function [P1llocal,P2local]=evaluate_P_on_element(Rlocal,Ulocal,...
P1prevlocal,P2prevlocal)
global C hl h2 mu

Plprevlocalmatrix=[P1previocal;P1lprevlocal(2) -Plpreviocal(1)];
P2prevlocalmatrix=[P2prevlocal;P2prevlocal(2) -P2previocal(1)];
Ulocalvector([1 3 5])=Ulocal(:,1);
Ulocalvector([2 4 6])=Ulocal(:,2);

%gamma (epsilonll,epsilon22,epsilon12) on the element
gamma=Rlocal*Ulocalvector’;
CepsU=matrixform(C*gamma);

%A=C epsilon(U)-(C+H)Pprev
Al=CepsU-((2*mu+hl)*Plpreviocalmatrix+2*mu*P2prevlocalmatrix);
A2=CepsU-(2*mu*P1lpreviocalmatrix+(2*mu+h2)*P2prevlocalmatrix);
devAl=dev(Al);

devA2=dev(A2);

[deltaPllocalmatrix,deltaP2localmatrix]=dependence(devAl,devA2);

P1llocal=deltaPllocalmatrix(1,:)+P1previocal;
P2local=deltaP2localmatrix(1,:)+P2previocal;

dependence.m

function [P1,P2]=dependence(devAl,devA2
global yield_type
switch yield_type
case ’elastic’
Pl=zeros(2);
P2=P1;
case 'single’
global sigmayl mu_times 2 hl
Pl1=dependence_single_general(devAl,mu_times_2,sigmayl,hl);
P2=zeros(2);
case 'mult’
global sigmayl sigmay2 mu_times 2 hl h2 tolerance
%estimation of the solution
P2=dependence_single_general(devAz2,...
mu_times_2,sigmay2,h2);
Pl1=dependence_single_general(devAl-mu_times 2*P2,...
mu_times_2,sigmay1,hl);
%x=[P1(1,1)]; y=[P2(1,1)];
normold=norm(P1,fro’)+norm(P2,’fro’);

while 1
P2=dependence_single_general(devA2-mu_times_2*P1,...
mu_times_2,sigmay2,h2);

Pl1=dependence_single_general(devAl-mu_times 2*P2,...
mu_times_2,sigmay1,hl);
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normnew=norm(P1,'fro")+norm(P2,’fro’);

difference=abs(normnew-normold);

if difference>0
difference=difference/(normnew-+normold);

end

if difference<tolerance
break
end
normold=normnew;
end
end

dependencesingle general.m
function P=dependence_single_general(devA,mu_times_2,sigmay,h)
normdevA=norm(devA,’fro’);
if normdevA<sigmay

P=zeros(2);
else

P=devA*(normdevA-sigmay)/normdevA/(mu_times_2+h);
end

mesh preparation.m

function mesh_preparation

global Koordinaten Elemente Dirichlet

global STEMAelastic maske Areaglobal maske DirichletKnoten Rglobal
%global SCALINGmatrix

Areaglobal=[];
Rglobal=[];
STEMAelastic=sparse(2*size(Koordinaten,1),2*size(Koordinaten,1));
%SCALINGmatrix=STEMAelastic;
%node_in_element=sparse(size(Koordinaten,1),size(Elemente,1));
for j=1:. size(Elemente,1);
I=2*Elemente(j,[1 1 2 2 3 3])-[1,0,1,0,1,0];
Elementelocal=Elemente(j,:);
Koordinatenlocal=Koordinaten(Elementelocal,:);
Rglobal(;,:,j)=R(Koordinatenlocal);
Areaglobal(j)=det([1 1 1;Koordinatenlocal]);
%CepsUlocal(:,:,j)=matrixform(C*gamma);
STEMAelastic(l,1)=STEMAelastic(l,1)+STEMA3(Koordinatenlocal);
%SCALINGmatrix(l,)=SCALINGmatrix(l,1)+STEMAH1(Koordinatenlocal);
end
%SCALINGmatrix=STEMAelastic;

%Preparation - extracting Dirichlet nodes
maske=zeros(size(Koordinaten,1),1);
maske(Dirichlet)=ones(size(Dirichlet));
DirichletKnoten=find(maske);
freieKnoten=find("maske);
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R.m
function R=R(Knoten)
PhiGrad=[1 1 1;Knoten’|\[zeros(1,2);eye(2)];
R([1,3],[1,3,5])=PhiGrad’;
R([3,2],[2,4,6])=PhiGrad’;
material.m

switch problem
case 'beamlD’,
t=[0 0.5 10*5]; %first experiment - hysteresis
mu=1000;lambda=1000;
sigmay1=5; h1=100; sigmay2=7; h2=50;
[Koordinaten,Elemente,Dirichlet,Neumann]=beam_1D_symetric_mesh(0);
case 'beam2D’,
t=[0 0.5 10*5]; %first experiment - hysteresis
t=[3:0.5:10]; %second experiment - evolution
t=8.5; %third experiment - one time step adaptivity
mu=1000;lambda=1000;
sigmay1=5; h1=100; sigmay2=7; h2=50;
[Koordinaten,Elemente,Dirichlet, Neumann]=beam_2D_symetric_mesh(0);
case ’ring’,
t=[0 10 430]; %evolution
t=200; % one time step adaptivity
E=70000; nu=0.33; lambda=E*nu/((1+nu)*(1-2*nu)); mu=E/(2+2*nu); %glass
sigmay1=243*sqrt(2/3); hl=1; sigmay2=250*sqrt(2/3); h2=1; %only for
%comparison with JA
[Koordinaten,Elemente,Dirichlet,Neumann]=ring_mesh(0);
case ’'Lshape’
t=1; %one time step adaptivity
E=100000; nu=0.3; lambda=E*nu/((1+nu)*(1-2*nu)); mu=E/(2+2*nu); %glass
sigmayl=1; h1=2; sigmay2=1.41; h2=0.02;
h1l=1;
[Koordinaten,Elemente,Dirichlet, Neumann]=Lshape_mesh(0);
case ’'cook’
t=[0 0.5 10*5]; %hysteresis
t=1.7; %one time step adaptivity
mu=1000; lambda=1000;
sigmayl1=5; h1=100; sigmay2=7; h2=50; % - hysteresis
sigmay2=6; % - one time step
[Koordinaten,Elemente,Dirichlet,Neumann]=cook_mesh(0);
case ’'platehole’
t=[0.4 0.41 0.8];
%t=[0.7]; %one time step adaptivity
E=206900; nu=0.29; lambda=E*nu/((1+nu)*(1-2*nu)); mu=E/(2+2*nu); %glass
mu=1000; lambda=1000;
sigmay1=450*sqrt(2/3); hl=1; sigmay2=500*sqrt(2/3); h2=1,;
[Koordinaten,Elemente,Dirichlet, Neumann]=platehole_mesh(0);
end

dev.m

function A=dev(B)
tr_over_2=(B(1,1)+B(2,2))/2;
A=B-[tr_over_2 0; 0 tr_over_2];
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test adaptive.m

function [norm_error,norm_eta]=test_adaptive(hnumber_of refinements,...
maxNewtonsteps)

global problem vyield_type

global last_uniform_refinements;

evaluate_U_coarse
close all

for j=1l:maxNewtonsteps
evaluate_U_exact(number_of_refinements,j);
cd MATRICES
load exact_solution;
cd ..

for k=0:(number_of_refinements-last_uniform_refinements)
cd MATRICES
load(strcat('U_",num2str(k)));
load(strcat('P1_’,num2str(k)));
load(strcat('P2_",num2str(Kk)));
load(strcat(’eta_’,num2str(k)));
cd ..

number_of flops(j,k+1)=flops;
number_of_unknowns(j,k+1)=size(U,1)*2;
number_of_elements(j,k+1)=size(P1,1);

for I=k:(number_of refinements-1)
cd MATRICES
load(strcat(’Prolongation_linear_’,num2str(1)));
load(strcat(’Prolongation_constant_’,num2str(1)));
cd ..

U=Prolongation_linear*U;

P1=Prolongation_constant*P1;

P2=Prolongation_constant*P2;
end

error_U=U-U_exact;
error_P1=P1-P1_exact;
error_P2=P2-P2_exact;

norm_eta(j,k+1)=norm(eta);

%mesh_preparation

norm_error(j,k+1)=NormEnergy(error_U,error_P1,error_P2,...
Elemente_exact,Koordinaten_exact,...
Areaglobal_exact,Rglobal_exact);

%normal.2(j,k+1)=NormL2(U,Elemente_exact,Koordinaten_exact);
end
end

%exact solution for the single-yield ring
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if strcmp(yield_type,’single’) & strcmp(problem,’ring’)
for k=0:(number_of_refinements-last_uniform_refinements)
cd MATRICES
load(strcat('mesh_’,num2str(k)));
cd ..
Koordinaten=[zeros(size(Koordinaten,1),1) Koordinaten];
Elemente=[zeros(size(Elemente,1),1) Elemente];
Dirichlet=[zeros(size(Dirichlet,1),1) Dirichlet];
Neumann=[zeros(size(Neumann,1),1) Neumann];
od=cd;
cd ../JJOCHEN_SOLVER
save Koordinaten Koordinaten
save Elemente Elemente
save Dirichlet Dirichlet
save Neumann Neumann
[relTmSpcError,ZZ_Est,Res_Est,SpcError,dof]=...
fem_plast([0 200],1,10,1e-12,1,1,0,[0])
cd(od)
norm_error_exact(k+1)=SpcError;
end
end

%clear Rglobal_exact Prolongation_constant Prolongation_linear
%clear U P1 P2 error_U error_P1 error_P2

if strcmp(yield_type,’single’) & strcmp(problem,’ring’)

save matlab norm_eta norm_error norm_error_exact number_of unknowns
else

save matlab norm_eta norm_error number_of unknowns
end

x1=number_of unknowns(1,:);
yl=norm_error(1,:);
z1=norm_eta(1,});
x2=number_of_unknowns(2,:);
y2=norm_error(2,:);
z2=norm_eta(2,:);
x3=number_of_unknowns(3,:);
y3=norm_error(3,:);
z3=norm_eta(3,:);
loglog(x1,y1,-0',x2,y2,’-.0',x3,y3,"--0");
hold on
loglog(x1,z1,-0',x2,22,-.0",x3,23,’--0");
if strcmp(yield_type,’single’) & strcmp(problem,’ring’)

loglog(x3,norm_error_exact,’-d’);
end

xlabel('N’);
ylabel(\eta_{Z} and error’);

evaluate U_coarse.m

function evaluate _U_coarse
start
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clear Newtonsteps number_of refinements U Elemente Koordinaten ...
Dirichlet Neumann

cd MATRICES

save coarse_solution

cd ..

evaluate U_exact.m

function evaluate U_exact(number_of refinements,Newtonsteps)
global last_uniform_refinements; %minimal value=1

declaration_of variables

cd MATRICES

load coarse_solution; %only structure, not solution
cd ..

Elemente=Elemente_coarse;
Koordinaten=Koordinaten_coarse;
Dirichlet=Dirichlet_coarse;
Neumann=Neumann_coarse;

time=t(counter);

Uprev=zeros(size(Koordinaten,1),2); %defined on every node
Plprev=zeros(size(Elemente,1),2); %defined on every element - constant
P2prev=zeros(size(Elemente,1),2); %defined on every element - constant

U=Uprev; %initial approximation for Newton method

for i=0:(number_of refinements-1)
mesh_preparation; %gets mesh ready - STEMAelastic + maske and others
incorporate_Dirichlet;
evaluate_fv(time);
evaluate_gv(time);

if strcmp(problem,’Lshape’)
for j=1:size(Dirichlet,1)
U(Dirichlet(j,1),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,1),:));
U(Dirichlet(j,2),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,2),:));
end
end

disp(Number of elements’);
disp(size(Elemente,1));

if i>=(number_of_refinements-last_uniform_refinements+1)
global theta

thetaold=theta;

theta=0;

[U,P1,P2]=FEM_Newton_fixed_steps(Plprev,P2prev,U,1);

theta=thetaold,
else

[U,P1,P2]=FEM_Newton_fixed_steps(P1prev,P2prev,U,Newtonsteps);

end
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cd MATRICES
save(strcat('U_’,numz2str(i)),'U’);
save(strcat('P1_',num2str(i)),’P1’);
save(strcat('P2_’,num2str(i)), P2’);
global Elemente Koordinaten Dirichlet Neumann
save(strcat('mesh_’,;num2str(i)), Elemente’,’Koordinaten’,...

'Neumann’,’Dirichlet’);
cd ..

if “isempty(Neumann)
NKV = Koordinaten(Neumann(:,2),:)- Koordinaten(Neumann(:,1),:);
NKV = NKV./[sgrt(sum(NKV.*NKV,2)),sqrt(sum(NKV.*NKV,2))];
% Neumann-Kanten % Vektoren, normiert
NNV = [NKV(;,2),-NKV(;,1)]; % Neumann-Kanten Normalenvektoren
else
NKV=[]; NNV=[];
end
[Kantennr,Elemente]=GeneriereKantennr(Elemente,Koordinaten);
Sigma=evaluate_sigma(U,P1,P2);
[eta,eta_s]=ZZ Estimate(Elemente, Koordinaten, Dirichlet, ...
Neumann, NKV, NNV, Sigma,time);

cd MATRICES
save(strcat(eta_’,num2str(i)), eta’);
cd ..

if i>=(number_of_refinements-last_uniform_refinements)
global theta
thetaold=theta,
theta=0;
VK=AAlg1(eta’,Elemente,Koordinaten,Kantennr);
theta=thetaold;
else
VK=AAlgl(eta’,Elemente,Koordinaten,Kantennr);
end
VK = BlauGruen(Elemente,Koordinaten,Kantennr,VK);

% Generiere neue Triangulierung

trianglesdistribution=howmanytriangles(Elemente,Kantennr,VK);

[Koordinaten,Elemente,Dirichlet, Neumann]=Verfeinerung(Koordinaten,...
Elemente,Dirichlet,Neumann,Kantennr,VK);

if strcmp(problem,’ring’)
Koordinaten=correct_ring_coordinates(Koordinaten,Neumann);

end

Prolongation_linear = GeneriereProlongation(Kantennr,VK);

Prolongation_constant=sparse(size(P1prev,1),...
size(trianglesdistribution,?2));
index=0;
for j=1:size(trianglesdistribution,2)
Prolongation_constant(index+1:index+trianglesdistribution(j),j)=1;
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index=index+trianglesdistribution(j);
end

cd MATRICES

save(strcat(’Prolongation_linear_’,;num2str(i)),’Prolongation_linear’);

save(strcat('Prolongation_constant_’,num2str(i)),...
'Prolongation_constant’);

cd ..

U=Prolongation_linear*U;

P1prev=Prolongation_constant*Plprev;

P2prev=Prolongation_constant*P2prev;
end

mesh_preparation; %gets mesh ready - STEMAelastic + maske and others
incorporate_Dirichlet;

evaluate_fv(time);

evaluate_gv(time);

if strcmp(problem,’Lshape’)
for j=1:size(Dirichlet,1)
U(Dirichlet(j,1),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,1),:));
U(Dirichlet(j,2),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,2),:));
end
end

disp(Number of elements’);
disp(size(Elemente,1));

%enforced uniform refinement

thetaold=theta;

theta=0;
[U_exact,P1_exact,P2_exact]=FEM_Newton_fixed_steps(P1prev,P2prev,U,1);
theta=thetaold;

Koordinaten_exact=Koordinaten;
Elemente_exact=Elemente;

global STEMAelastic Areaglobal
STEMAelastic_exact=STEMAelastic;
Areaglobal_exact=Areaglobal;
number_of_refinements_exact=number_of_refinements;
Rglobal_exact=Rglobal,

cd MATRICES
save exact_solution U_exact Koordinaten_exact Elemente_exact P1_exact ...

P2_exact Areaglobal _exact Rglobal _exact number_of refinements_exact
cd ..
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