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well as toDipl. Ing. J. Žán (Pilsen) for his typesetting tips.

Kiel, December 2001

J. Valdman



Summary

The aim of this thesis is the mathematical and numerical analysis of a multi-yield (surface)
model in elastoplasticity. The presented Prandtl-Ishlinskii model of play type generalizes the
linear kinematic hardening model and leads to a more realistic description of the elastoplastic
transition of a material during a deformation process. The unknowns in the quasi-static formu-
lation are displacement and (several) plastic strains which satisfy a time-dependent variational
inequality. As for the linear kinematic hardening model, the variational inequality consists of a
bounded and elliptic bilinear form, a linear functional, and a positive homogeneous, Lipschitz
continuous functional; hence existence and uniqueness of a weak solution is then concluded
from a general theory.

Our time and space discretization consists of the implicit Euler method and the lowest order
finite element method. For any one-time step discrete problem, the vector of plastic strains
(considered on one element) depends on the (unknown) displacement only. In contrast to the
linear kinematic hardening model, the dependence can not be stated explicitly, but has to be
calculated by an iterative algorithm. An a priori error estimate is established and shows linear
convergence with respect to time and space under the assumption of sufficient regularity of the
solution.

A MATLAB solver, which includes the nested iteration technique combined with an (ZZ-)
adaptive mesh-refinement strategy and the Newton-Raphson method, is employed for solving
the two-yield material model. Various numerical experiments support our theoretical results
and give more insight to complex dynamics in elastoplasticity problems.

Zusammenfassung

Das Ziel dieser Arbeit ist die mathematische und numerische Analyse eines Multiflächen-
Modells in der Elastoplastizität. Das vorgestellte, so genannte ”play type” Modell von Prandt-
Ishlinskii verallgemeinert das Modell der linearen kinematischen Verfestigung und führt zu
einer realistischeren Beschreibung der elastoplastischen Verformung des Materials. Die Un-
bekannten in der quasistatischen Formulierung sind die Verschiebung und (mehrere) plastische
Verzerrungen, die als L̈osung einer zeitabhängigen Variationsungleichung auftreten. Wie im
Problem der linearen kinematischen Verfestigung beinhaltet die Variationsungleichung eine
beschr̈ankte, elliptische Bilinearform, ein lineares Funktional sowie ein positiv-homogenes,
Lipschitz-stetiges Funktional, so daß Standardaussagen der Variationsrechnung die Existenz
und Eindeutigkeit einer schwachen Lösung garantieren.

Die Diskretisierung in Zeit und Raum erfolgt durch ein implizites Euler-Verfahren und eine
Finite Elemente Methode niedrigster Ordnung. In jedem Zeitschritt des diskreten Problems
hängt der zu einem Element assoziierte Vektor der plastischen Verzerrungen nur von den Ver-
schiebungen ab. Im Gegensatz zum Modell der linearen kinematischen Verfestigung lässt sich
diese Abḧangigkeit nicht in einer geschlossenen Formel darstellen und muß daher iterativ bes-
timmt werden. Eine a-priori Analyse zeigt lineare Konvergenz in Zeit und Raum unter hinre-
ichenden Regularitätvoraussetzungen.

Ein MATLAB Programm, welches ”nested iteration” Techniken mit adaptiven Netzver-
feinerungsalgorithmen kombiniert und ein Newton-Raphson Verfahren verwendet, wird zur



Lösung des ”two-yield” Problems herangezogen. Zahlreiche numerische Experimente bele-
gen die theoretischen Resultate dieser Arbeit und führen zu einem besseren Verständnis des
Materialmodells.
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Chapter 1

Introduction

Elastoplastic material behavior is often exploited in many engineering problems for calculation
of permanent deformation of structures, stability in the structural and solid mechanics, metal
forming operations and other processes beyond elasticity. Mathematical and numerical aspects
of problems in elastoplasticity date back to works of Duvaut and Lions [DL76], Hlaváček et al.
[HHNL88], Johnson et al. [EEHJ95, Joh76], Han and Reddy [HR95, HR99], Simo and Hughes
[SH98], Korneev and Langer [KL84], amongst others.

Figure 1.1: Examples of stress-strain relations in material science: linear elasticity (left), linear
kinematic hardening (middle), and two-yield model (right) in elastoplasticity.

The theory of elastoplasticity models the behavior of every point in the deformed continuum
in terms of the stress and strain tensors,σ andε. A linear stress-strain relation, which describes
reversible processes, e.g., a small homogeneous (relative) elongationε of a beam with a density
of force σ, is depicted in Figure 1.1 (left). If the forceσ is withdrawn, the elongation goes
back to zero as in the beginning of the deformation (point0). A typical ductile material (Figure
1.1, middle) behaves elastically as long as the strains are small. For stresses beyond a yield
limit (point I), the material reacts irreversible and the plastic strainp appears. That is, after the
force is withdrawn, the material stays deformed (pointIII). The stress-strain relation follows
a hysteresis curve, which consists of three parallel lines0 − I, II − IV, V − V II and two
parallel linesIV −V, V II − II. Thetwo-yieldmodel (Figure 1.1, right) generalizes the stress-
strain relation of thelinear kinematic hardeningmodel introducing the third set of parallel lines
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I − II, V − V II, IX −X, which is modeled by splitting the plastic strainp additionally into
two internal plastic strainsp1, p2, i.e.,p = p1 + p2. The mathematical and numerical analysis of
the two-yield model or more generally of amulti-yield modelgeneralizes the situation for the
linear kinematic hardening problem and is the main interest of this thesis.

Figure 1.2: Loading-deformation relation calculated for the problem of beam with 1D effects:
linear elasticity (left), linear kinematic hardening (middle) and two-yield model (right) in elasto-
plasticity.

Figure 1.3: Loading-deformation relation calculated for the Cook’s membrane problem: linear
elasticity (left), linear kinematic hardening (middle), and two-yield model (right) in elastoplas-
ticity.

The construction of multi-yield models as well as more complicated hardening models in
terms ofrheological modelshas already been studied in works of Brokate, Krejč́ı, Visintin,
Sprekels and others [Bro87, Bro98, BK98a, BK98b, BS96, Kre96, Vis94]. We consider here a
multi-yield model that operates withM plastic strainsp1, . . . , pM and an additive decomposition
of the strainε,

ε = e+ p1 + · · ·+ pM .

The presented multi-yield model isPrandtl-Ishlinskii model of play type[Kre96]. We show
that a weak formulation of this model can be written as avariational inequalityon a Hilbert
spaceH, The variational inequality consists of a bilinear forma(·, ·), a linear functional̀ (·)
and a nonlinear functionalψ(·) and has the following form: Seekw(t) ∈ H, such that, for all
z ∈ H and almost all timest ∈ [0, T ],

0 ≤ a(w(t), z − ẇ(t)) + ψ(z)− ψ(ẇ(t))− 〈`(t), z − ẇ(t)〉. (1.1)

Variational inequalities such as (1.1) arise in many problem, such as the obstacle or contact
problems or the non-differentiable problems with constraints. For their mathematical analysis
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we refer to Glowinskii et al. [GLR81]. As for the linear kinematic hardening model [HR99] we
prove that termsa(·, ·), `(·), ψ(·) in (1.1) satisfy sufficient assumptions to guaranteeexistence
anduniquenessof a weak solutionw(t) ∈ H.

Figure 1.4: Elastoplastic zones of the Cook’s membrane problem for purely elastic model (left),
single-yield (middle) and two-yield (right) models. Black color shows elastic zones (P1 = P2 =
0), darker and lighter gray color zones in the first (P1 6= 0, P2 = 0) and second plastic phase
(P2 6= 0).

The time dependent variational inequality (1.1) is discretized at each time step by theimpli-
cit Euler scheme, usingfinite element method[HR99, Alb01, ACZ99, Sut97]. This approach
leads to the minimization problem for a discrete approximation ofW 1 = (U1, P 1

1 , . . . , P
1
M)

of the exact solution at the first discrete timew(t1) = (u, p1, . . . , pM)(t1). If we denote by
W 0 = (U0, P 0

1 , . . . , P
0
M) the discrete approximation ofw(0) = (u, p1, . . . , pM)(0), then the

incremental variableX = (U, P1, . . . , PM) = W 1 −W 0 minimizes a functional

f(X) =
1

2
a(X,X) + ψ(X)− L(X), (1.2)

over allX in a finite dimensional subspaceS of H. The minimization problem (1.2) with the
convexbutnon smoothfunctionalψ is solved by the Newton-Raphson method [Neč83] and the
nested iteration method in a multilevel framework.

For a space discretization we usepiecewise affinefunctions to approximate the displace-
mentU andpiecewise constantfunctions to approximate the plastic strainsP1, . . . , PM on the
same regular triangulationT . Similarly as in the linear kinematic hardening case [AC00], the
vector of incremental plastic strainsP = (P1, . . . , PM)T depends on every elementT of the
triangulationT on the displacementU only, i.e., it is the minimizer of a functional

g(Q) =
1

2
(Ĉ + Ĥ)Q : Q− Â : Q+ ||Q||σy , Q = (Q1, . . . , QM)T , (1.3)

over all deviatoric symmetricd×dmatricesQ1, . . . , QM (d = 2, 3). The resulting matrix opera-
tor Ĉ+ Ĥ is not diagonalizable and hence it is not possible to separate the minimization of (1.3)
into M subproblems. In the two-yield case,M = 2, an analytical calculation of minimizing
(1.3) infers thatξ2 = ||P2|| is a root of a 8-th degree polynomial. Therefore, the minimizer of a
functional (1.3) can not be expressed exactly as for the single-yield model [AC00], but has to be
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Figure 1.5: Adaptive refinements of Cook’s membrane problem for purely elastic model (left),
single-yield (middle), and two-yield (right) models. The black color shows elastic zones (P1 =
P2 = 0), darker and lighter gray color zones in the first (P1 6= 0, P2 = 0), and second plastic
phase (P2 6= 0).

approximated by an iterative algorithm. The iterative algorithm belongs to the class ofalternat-
ing direction algorithmsand converges to the minimizer(P1, P2) with the convergence rate1/2.

By application of the arguments of the proof for the linear kinematic hardening model
[AC00], we show linear convergence in time and space for the implicit Euler scheme and the
lowest order finite element method under the assumption of sufficient regularity of the solution.

Numerical experiments for the calculation oftwo-yield plasticityproblems support the theo-
retical results and give more insight to complex dynamics of elastoplasticity problems. We ob-
serve two-yield plastic effects that arise in addition to single-yield effects, like different hystere-
sis curves and the time evolution of elastoplastic zones. Figures 1.2 and 1.3 show the loading-
displacement relation (measured at one material point) for elastic, single-yield and two-yield
material models. For the material under the cyclic uniaxial tension (Figure 1.2), the hystere-
sis relation is in agreement with the theoretically analyzed stress-strain relation. The typical
hysteresis curve (Figure 1.3) is not sharp, but it is smoothened through two-dimensional defor-
mation effects and the non-homogeneous elastoplastic material behavior.

The developed MATLAB solver involves a nested iteration technique withadaptivemesh-
refinements and an adaptive time-stepping. The following properties have been observed in the
numerical experiments:

1. Adaptivemesh-refinement strategy is superior touniformmesh-refinement strategy.

2. The nested iteration technique performs efficiently (i.e, the direct calculation requires
more time). One Newton step in the nested iteration technique is usually sufficient; more
steps only increase computational costs without large improvements with respect to ac-
curacy.

3. Computations based on the two-yield material model require longer CPU time than com-
putations where the single-yield material or the elastic material models are used.

4. Adaptive time-stepping (controlled by the number of Newton steps in the previous time
step) is inefficient.
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The conclusions from this thesis are the following points: Generalization of the mathema-
tical and numerical analysis for the linear kinematic hardening model to the multi-yield model
is indeed feasible and seems to lead to more realistic numerical simulations. The numerical
discretization leads to the similar structure of the discrete problem; however the explicit rela-
tion between plastic strains and displacement can not be stated analytically and therefore the
practical calculation of a multi-yield plasticity problem is more expensive. The convergence of
inner-outer multilevel oriented algorithms has been observed, and elements of a priori and a pos-
teriori error control are established. Adaptive mesh-refinement is applicable and advantageous;
in contrast, the construction of adaptive time-stepping requires more sophisticated approach and
deserves further future research.

The thesis is organized as follows. The boundary value problem of linear elasticity which
leads to the Navier-Laḿe equations (Problem 2.1), is described in Chapter 2. This becomes a
part of the more complex elastoplastic material response laws as explained below. Chapter 2
also provides basic tools like Korn’s inequality and the Lax-Milgram Lemma and closes with
outlooks for nonlinear elasticity.

Chapter 3 introduces three rheological elements, the elastic, rigid-plastic and kinematic ele-
ment. Elementary results from convex analysis are recalled which yield equivalent formulations
of rheological laws for the rigid-plastic element (Lemma 3.3 on page 17). A combination of
the three rheological elements results in the linear kinematic hardening single-yield (surface)
model in elastoplasticity. The weak time-evolution formulation of the boundary value problem
of elastoplasticity (Problem 3.1 on page 22) is derived in the form of an abstract variational
inequality.

Chapter 4 concerns the composition of more rigid-plastic elements, leading to the multi-
yield (surface) elastoplastic model, namely the Prandtl-Ishlinskii model of the play type. The
weak formulation of the boundary value problem of multi-yield elastoplasticity (Problem 4.1)
on page 31) is also discussed here.

Chapter 5 is devoted to the mathematical analysis of the boundary value problem of multi-
yield plasticity (Problem 4.1). Theorem 5.2 (on page 41) is a special case of a general theory
[HR99] and establishes existence and uniqueness of weak solutions. Its application is based on
the verification of the assumptions on the terms in the variational inequality (1.1): bounded-
ness and ellipticity of the bilinear forma(·, ·) (Propositions 5.1, 5.2 on pages 35, 38) and the
Lipschitz-continuity of the nonlinear functionalψ(·) (Proposition 5.3 on page 40).

The discretization of the boundary value problem of multi-yield plasticity (Problem 4.1) is
described in Chapter 6. For the two-yield material model, the relation between plastic strains
and displacement can not be calculated explicitly (as in case of the single-yield material model
[AC00]). Algorithm 2 (on page 60) establishes the elementwise computation of discrete plastic
stresses and Proposition 6.1 (on page 62) states its global convergence.

Chapter 7 studies convergence of the fully-discrete method. Proposition 7.1 (on page 65)
establishes a priori error estimates and the linear convergence in time and space by assuming
sufficient regularity of the solution. Proposition 7.2 (on page 71) formulates an a posteriori
error estimate for a one time-step problem and clarifies the residual error estimator which allows
adaptive mesh-refinement strategy.

The numerical algorithms of Chapter 8 include a nested iteration technique combined with
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adaptive mesh-refinement and adaptive time-stepping.
Chapter 9 reports on the calculations of two-yield plasticity in MATLAB and presents hys-

teresis curves for single and two-yield material, evolutions of elastoplastic zones within the
deformed continuum and experimental convergence rates.

Conclusions and some open questions are summarized in Chapter 10. Finally, the Appendix
contains notation and MAPLE and MATLAB programs.



Chapter 2

Mathematical models in elasticity

This chapter introduces a mathematical model of linear elasticity and explains related concepts.
This is part of more involved elastoplastic stress-strain relations of the following chapters. A
model of nonlinear elasticity, whose studies leads tonon-convex analysisand are beyond the
range of this thesis, is also mentioned.

2.1 Model of linear elasticity

The elastic body is assumed to occupy a bounded domainΩ ⊂ Rd, with a Lipschitzboundary
Γ = ∂Ω. The boundaryΓ is split into aDirichlet boundaryΓD, a closed subset ofΓ with a
positive surface measure, and the remaining (relatively open and possibly empty)Neumannpart
ΓN := Γ \ ΓD. Applied volume and surface forces cause internal stresses within the body. This
is modeled by a symmetric second orderCauchy stresstensorσ : Ω → Rd×d

sym. An equilibrium
between external and internal forces in thequasi-staticcase is expressed by the equation of
equilibrium of forces

divσ + f = 0 for all x ∈ Ω, (2.1)

wheref : Ω → Rd denotes volumes forces (i.e., a gravity force) and divσ the divergence
defined by(divσ)j :=

∑d
k=1

∂σjk

∂xk
for all j = 1, . . . , d. Every material point of the body moves

with respect to its position in a reference configurationΩ by adisplacementu : Ω → Rd. The
deformation of the body is characterized for very small deformations through the linearized
Green strain tensor

ε(u) =
1

2
(∇u+ (∇u)T ).

In linear elasticity theory we assume a linear relation between the stressσ and the deforma-
tion ε, i.e.,

σ = Cε. (2.2)

The linear operatorC : Rd×d → Rd×d denotes a symmetric, positive definite elastic tensor. For
isotropic materials it holds that

Cε = 2µε+ λ(tr ε)I, (2.3)

where the (positive) coefficientsµ andλ are calledLamécoefficients. HereI denotes the second
order identity tensor (an identity matrix) and tr: Rd×d → R defines thetrace of a matrix,
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Figure 2.1: Material under deformation.

tr ε :=
∑d

j=1 εjj, for ε ∈ Rd×d. We pose essential and static boundary conditions, namely

u = 0 onΓD and σ · n = g onΓN ,

whereg is a given applied surface force andn denotes the outer normal to the boundaryΓN .
Substitution of (2.2) into (2.1) leads to the linear boundary value problem of quasi-static elas-
ticity in the space

H1
D(Ω) = {v ∈ H1(Ω)d|v = 0 onΓD}.

Problem 2.1 (Linear BVP of quasi-static elasticity).For givenf ∈ L2(Ω)d andg ∈ L2(ΓN)d,
findu ∈ H1

D(Ω) that satisfies

div Cε(u) + f = 0 in Ω,

u = 0 onΓD,

Cε(u) · n = g onΓN .

(2.4)

We multiply (2.4) by an arbitraryv ∈ H1
D(Ω), applyGreen’s theoremfrom vector analysis

and derive the weak formulation of the equation of equilibrium of forces∫
Ω

σ : ε(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v dx for all v ∈ H1
D(Ω). (2.5)

Here: denotes a scalar product of matrices, and it is defined asa : b :=
∑d

i,j=1 aijbij.

Definition 2.1 (Weak formulation of BVP). For givenf ∈ L2(Ω)d andg ∈ L2(ΓN)d, find
u ∈ H1

D(Ω) that satisfies

a(u, v) = b(v) for all v ∈ H1
D(Ω), (2.6)
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where the bilinear forma(·, ·) and the linear functionalb(·) are defined by

a(u, v) :=
∫
Ω

ε(u) : Cε(v) dx, (2.7)

b(u) :=
∫
Ω

f · u dx+
∫

ΓN

g · u ds. (2.8)

Before we state existence and uniqueness of the weak solution of Problem 2.1 we recall
Korn’s first inequalitythat is of central importance in linear continuum mechanics, cf. [Val88]
for a proof of the subsequent lemma.

Lemma 2.1 (Korn’s first inequality). Let Ω ⊂ Rd be a nonempty, open, bounded, and con-
nected domain inRd with a Lipschitz boundaryΓ that consists of a Dirichlet partΓD of a
positive surface measure. Then there exists a constantc > 0 that depends only onΩ such that

||u||H1(Ω) ≤ c

∫
Ω

||ε(u)||2 dx for all u ∈ H1
D(Ω). (2.9)

With the help of Korn’s first inequality we can prove that the bilinear forma(·, ·) is elliptic
in H1

D(Ω) and the linear BVP of quasi-static elasticity has a unique solution inH1
D(Ω), owing

to theLax-Milgram lemma.

Theorem 2.1 (Lax-Milgram). LetV be a Hilbert space,a : V × V → R a bilinear form that
is continuous and V-elliptic, andb : V → R a bounded linear functional. Then the problem

a(u, v) = b(v) for all v ∈ V (2.10)

has a unique solutionu ∈ V , and for some constantc > 0 independent ofb,

||u|| ≤ c||b||. (2.11)

Remark 2.1. The above assumptions,

f ∈ L2(Ω)d and g ∈ L2(ΓN)d

can be weakened. For instance in three dimensions, i.e.,d = 3, the assumptions

f ∈ L6/5(Ω)3 and g ∈ L4/3(ΓN)3

already guarantee a uniqueness of solutionsu ∈ H1
D, see [Cia94].

If we are provided a sufficient regularity of∂Ω andf , one can prove even a higher regularity
of the solutionu [Cia94].

Theorem 2.2. Let Ω ⊂ R3 be a domain with boundaryΓ of classC2, let f ∈ Lp(Ω)3, p ≥ 6
5
,

and letΓ = ΓD. Then the solutionu ∈ H1
D(Ω) of Problem 2.1 is in the spaceW 2,p(Ω)3 and

satisfies
div Cε(u) + f = 0 in Ω.

Let m ≥ 1 be a non-negative integer. Suppose the boundaryΩ is of classCm+2 and f ∈
Wm,p(Ω)3. The the solutionu ∈ H1

D of Problem 2.1 belongs toWm+2,p(Ω)3.

Proof. [Cia94].

Remark 2.2. The previous theorem can be extended to problems with nonzero Neumann boun-
dary ΓN . The closures ofΓD and ΓN must not intersect, i.e., dist(ΓN ,ΓD) > 0, and here
g ∈ Wm−1/p,p (ΓN)3.
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Figure 2.2: Examples of domains with a positive (left) and zero (right) distance of Dirichlet and
Neumann boundaries.

2.2 Model of nonlinear elasticity

Problem 2.1 can be seen as a linearized version of nonlinear elasticity withlarge deformations.
Then the (nonlinear) Green strain tensor is of the form

ε(u) =
1

2
(∇u+ (∇u)T + (∇u)T∇u). (2.12)

For a description of the internal stresses, thesecond Piola-Kirchhof strees tensorS : Ω → Rd×d
sym

is connected withε(u) through (a relation defined with the help of a given functionC)

S = Cε(u). (2.13)

An equilibrium of internal and external forces is expressed as

div
(
(1 +∇u)S

)
+ f = 0 in Ω. (2.14)

The term(1 +∇u) := F is thedeformation gradient, essential, and static boundary conditions
read

u = 0 onΓD and (1 +∇u)S · n = g onΓN .

The equilibrium equation (2.14) can be stated for a purely Dirichlet problem (i.e.,ΓD =
∂Ω,ΓN = 0) by an operator equation

A(u) = f, (2.15)

with an operatorA : V → Y defined by

A(u) = −div
(
(1 +∇u)C(

1

2
(∇u+ (∇u)T + (∇u)T∇u))

)
. (2.16)

For a special choice

V = {v ∈ W 2,p(Ω)d : v|ΓD
= 0} and Y = Lp(Ω),

A is a continuous mapping between spacesV andY (for appropriate smoothness and growth
conditions imposed onC). It can be noticed, thatu = 0 satisfies the equation (2.15) for zero
external forcesf = 0 . With the help ofimplicit function theorem[Cia83], one can prove local
existence of solutions of the equation (2.15) for sufficiently smallf .
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Theorem 2.3 (Local existence theorem in nonlinear elasticity).Let Ω ⊂ Rd be a bounded
Lipschitz domain with boundaryΓD of classC2. Let the mappingC of classC1(Rd×d

sym × Rd×d
sym)

satisfy
C(ε) = λtr (ε) + 2µε+O(|ε|2)

for λ, µ > 0. (HereO(|ε|2) denotes the Landau-symbol such thatlim supε→0O(|ε|2)/|ε|2 <
∞.) Then there exists for everyp > d a neighborhoodV of 0 in X := W 1,p

0 (Ω)d ∩W 2,p(Ω)d

(with respect for the norm inW 2,p(Ω)) and a neighborhoodU of 0 in Lp(Ω)d, such that for all
f ∈ U there exist uniqueu ∈ Y that solves

−div
(
(1 +∇u)C(

1

2
(∇u+ (∇u)T + (∇u)T∇u))

)
= f.

The defined mappingA−1 : f → u, U → V is Fréchet-differentiable.

Proof. See [Cia83].

For a more detailed discussion on nonlinear elasticity and the global existence technique,
which is based on the polyconvex energy densities due to J.M. Ball, we refer to [Cia83, Val88,
Car00b].





Chapter 3

Single-Yield Plasticity

This chapter introduces the classical concepts in small strain elastoplasticity with hardening.
The main focus is the linear kinematic hardening model, which belongs to the category of
single-yield models.

Figure 3.1: The tensile test: an increasing stressσ = P/A is applied to the specimen (left), the
resulting stress-strain relation (right).

The simplest mechanical test to visualize a nonlinear material behavior is the tensile test: an
increasing tensile load is applied to a specimen and resulting changes in lengths are monitored.
A typical stress-strain relation is displayed in Figure 3.1. At the beginning of the test the mate-
rial extends elastically in the regionO − I , the strainε is directly proportional to the stressσ
and the specimen returns to its original length on the removal of the stress. Beyond the elastic
limit (point I) the applied stress produces plastic deformations so that a permanent extension
remains after the removal of the applied load. The ratioσ/ε continues to decrease with elon-
gation due to workhardeninguntil theultimate tensile stressis reached. At this point a neck
begins to develop somewhere along the length of the specimen and further plastic deformation
is localized within the neck. After necking (pointII) has begun the nominal stress decreases
until the material fractures at the point of minimum cross-sectional area within the neck. In this
thesis we discuss models with a stress-strain relation in theO − II region: we omitsoftening
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effects in theII − III region.

3.1 Rheological elements

The behavior of an elastoplastic material is described by a combination of the following rheo-
logical elements: the linear, the rigid-plastic and the kinematic element [Kre96]. Every element
is characterized by its (internal) stress and strain tensors. We denote the stress byσ and the
strain byε for the simplicity of notation. For combinations of more elements, we distinguish
(internal) strains and stresses by introducing different indices, for instanceσp, σe or different
letters, for instancee, p.

3.1.1 The linear elastic element

The linear elastic element is a rheological element with a linear stress-strain relation, which is
used in mechanics to characterize elastic material. The second order stress tensorσ is given by
an action of the elastic tensorC on the second order strain tensorε

σ = Cε. (3.1)

For isotropic materials, the action ofC is given as in the linear elasticity by (2.3).

3.1.2 The rigid-plastic element

We define a stress space as the space of symmetric tensorsRd×d
sym. The basic concept in plasticity

is theyield surfacewhich is defined as the boundary∂Z of a convex closed setZ ⊂ Rd×d
sym. The

material remains rigid as long asσ ∈ int Z (the interior of Z). In this work we assume the
von-Misesyield condition, which specifiesZ for someσy > 0 as

Z = {σ ∈ Rd×d
sym : ||devσ||F ≤ σy}, (3.2)

where|| · ||F denotes the Frobenius matrix norm||a||2F = a :a =
∑d

i,j=1 a
2
ij. Since the Frobenius

norm is the only matrix norm being used, we omit the letterF and write|| · || only. The matrix
operator dev is the deviator defined by devσ := σ − 1

d
(trσ)I, where tr denotes the trace of a

matrix, trσ :=
∑d

i=1 σii.

Remark 3.1 (Tresca yield condition).The Trescayield condition is an example of another
yield condition:

Z = {σ ∈ Rd×d
sym : ξ1 + · · ·+ ξd ≤ σy}, (3.3)

whereξ1, . . . , ξd are the eigenvalues ofσ.

No deformation occurs, i.e.,̇ε = 0 as long asσ ∈ intZ, The symbolε̇ denotes the time
derivative ofε. The material behaves plastic ifσ reaches the boundary∂Z of Z. Plasticity is
governed by following physical principles:

σ ∈ Z,
〈ε̇, q − σ〉 ≤ 0 for all q ∈ Z.

(3.4)
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In this expression brackets denote a scalar product,〈a, b〉 := a : b. The volume change
is neglected during the plastic deformation. Therefore theincompressibility conditionof the
plastic strain reads

tr ε̇ = 0. (3.5)

We introduce some elementary results fromconvex analysisthat are important in the follow-
ing. It is convenient to work in the set of extended real numbers,R∞ := R∪{∞},R−∞ := R∪
{−∞},R±∞ := R∪{−∞,∞}with operations, i.e.x+∞ := ∞,−∞−∞ := −∞, 0·∞ := 0
and so on. An expression∞−∞ is not allowed. In all definitionsX is a Banach space.

Definition 3.1 (convex set, convex functional).A subsetY ⊆ X is convex, if

∀x, y ∈ Y, λ ∈ 〈0, 1〉 : λx+ (1− λ)y ∈ Y.

A functionalf : X → R+∞ is a convex functional, if

∀x, y ∈ Y, λ ∈ 〈0, 1〉 : f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Definition 3.2 (normal cone, indicator function, conjugate function). Let Y ⊂ X be a
convex set,x ∈ Y . Then

NY (x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 for all y ∈ Y } (3.6)

defines thenormal coneto a convex setY at pointx. For any setS ⊂ X, theindicator function
IS of S is defined by

IS(x) =

{
0 if x ∈ S,
+∞ if x 6∈ S. (3.7)

For a functionf : X → [−∞,∞] we define theconjugate functionf ∗ : X∗ → [−∞,∞] by

f ∗(x∗) = sup
x∈X

(〈x∗, x〉 − f(x)). (3.8)

Definition 3.3 (subdifferential). Let f be a convex function onX. For anyx ∈ X thesubdif-
ferential∂f(x) of x is the possibly empty subset ofX∗ defined by

∂f(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f(y)− f(x) ∀y ∈ X}. (3.9)

Definition 3.4 (lower semicontinuity). A function f : X → [−∞,+∞] is calledlower semi-
continuousif

{xn}n∈N → x⇒ lim inf
n→∞

f(xn) ≥ f(x).

Definition 3.5 (proper function). A function f : X → [−∞,+∞] is calledproper if there
exists a pointx ∈ X such thatf(x) <∞.

By using the definition of the normal cone the inequality in (3.4) can be expressed as

ε̇ ∈ NZ(σ). (3.10)

Is it possible to invert (3.10), precisely to expressσ in terms ofε̇? In convex analysis it is
proved that normal cone to the convex setZ atx is the subdifferential of the indicator function
IZ of Z atx,

∂IZ(x) = NZ(x) for all x ∈ Z.
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Lemma 3.1. LetX be a Banach space,f : X → [−∞,∞] be a proper, convex, lower semi-
continuous function. Then

x∗ ∈ ∂f(x) ⇔ x ∈ ∂f ∗(x∗). (3.11)

Proof. See [Kos91].

We apply Lemma 3.1 to the inclusion (3.10) and obtain

ε̇ ∈ ∂IZ(σ) ⇔ σ ∈ ∂I∗Z(ε̇). (3.12)

We define adissipation functionD(x) byD(x) := I∗Z(x). It means, that the indication and
dissipation functions areconjugatefunctions of each other. The following result characterizes
the form of the dissipation function for the von-Mises type yield function:

Lemma 3.2. For Z = {σ ∈ Rd×d
sym : ||devσ|| ≤ σy}, the dissipation functionD(x) = I∗Z(x)

satisfies

D(x) =

{
σy||x|| if tr x = 0,
+∞ otherwise.

(3.13)

Proof. By the definition, the conjugate function toI∗Z(x) is given as

I∗Z(x) = sup
y∈Rd×d

sym

(〈x, y〉 − IZ(y)).

Since the indicator functionIZ(.) only attains values0 or +∞ it is sufficient to find a supremum
over the subset{y ∈ Rd×d

sym : ||devy|| ≤ σy},

I∗Z(x) = sup
y∈Rd×d

sym

(〈x, y〉 − IZ(y)) = sup
y∈Rd×d

sym:||devy||≤σy

〈x, y〉. (3.14)

One of the following cases may occur:
(i) tr x = 0. We decomposey asy = devy + 1

d
(tr y)I and get

〈x, y〉 = 〈x, devy〉+ 〈x, 1
d
(tr y)I〉 = 〈x, devy〉+

1

d
tr x tr y.

Since trx = 0 we have〈x, y〉 = 〈x, devy〉 and

I∗Z(x) = sup
y∈Rd×d

sym:||devy||≤σy

〈x, y〉 = sup
y∈Rd×d

sym:||devy||≤σy

〈x, devy〉. (3.15)

We applyCauchy-Schwarz inequality〈x, devy〉 ≤ ||x|| · ||devy|| and bound (3.15) as

I∗Z(x) ≤ σy||x||.

The substitution ofy = x
||x||σ

y into (3.15) yields

I∗Z(x) ≥ σy||x|| (3.16)
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and the comparison of (3.15) with (3.16) deduces

I∗Z(x) = σy||x||. (3.17)

(ii) tr x 6= 0. For allx ∈ Rd×d
sym, arbitraryα ∈ R and the choicey = αI we conclude from (3.14)

that

I∗Z(x) ≥ α(tr x). (3.18)

After the substitutionα = sign(tr x)n the inequality (3.18) necessary impliesI∗Z(x) = +∞.

Lemma 3.2 and the definition of the subdiferential of the dissipation functionD result in

Lemma 3.3. For everyε̇, σ ∈ Rd×d
sym, Z = {σ ∈ Rd×d

sym : ||devσ|| ≤ σy}, the following state-
ments (a),(b),(c),(d) are pairwise equivalent:

(a) 〈ε̇, q − σ〉 ≤ 0 for all q ∈ Z.
(b) ε̇ ∈ NZ(σ).

(c) σ ∈ ∂D(ε̇), whereD(x) =

{
σy||x|| if tr x = 0,
+∞ otherwise.

(d) σ : (q − ε̇) ≤ D(q)−D(ε̇) for all q ∈ Rd×d
sym.

(3.19)

The satisfaction of the incompressibility condition (3.5) leads to another simplified equiva-
lent statement with trace-free arguments.

Lemma 3.4. Let the assumptions of Lemma 3.3 be satisfied and furthermore lettr ε̇ = 0. Then
the statement

(e)σ : (q − ε̇) ≤ D(q)−D(ε̇) for all q ∈ devRd×d
sym := {q ∈ Rd×d

sym : tr q = 0}. (3.20)

is equivalent to the statements (a),(b),(c),(d) in Lemma 3.3.

Proof. It is sufficient to prove the equivalence of statements (d) and (e). The implication(d) ⇒
(e) follows from the inclusion devRd×d

sym ⊆ Rd×d
sym. The implication(e) ⇒ (d) can be proved by

contradiction.

Remark 3.2 (Trace-free arguments).Lemma 3.4 states that under the condition trε̇ = 0 is is
sufficient to consider only trace-free argumentsq ∈ devRd×d

sym and the dissipation function in
the form

D(x) = σy||x||

in the statement (d) of Lemma 3.3.
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Figure 3.2: The elastic, kinematic and rigid-plastic element.

3.1.3 The kinematic element

We assume only the linear kinematic element, i.e. the element driven by the linear relation

σ = Hε, (3.21)

whereH is a positive definite matrix. TypicallyH = hI, whereh > 0 is a hardening coefficient
andI represents the identical matrix.

Remark 3.3. The linear kinematic hardening element represents the simplest hardening ele-
ment. There exists a variety of rheological elements describing nonlinear kinematic hardening,
such as the Armstrong-Frederick model, the Bover’s model, the model of Mróz and others
[Bro98].

3.2 Composition of rheological elements

A large variety of models for the behavior of materials can be obtained by the composition
of rheological elements. LetG1, G2 be two rheological elements andεi, σi let then be their
strains and stresses, respectively, corresponding to the elementGi, i = 1, 2. More generally, a
potential energy of each element is taken into consideration in [Kre96], however the stress and
strain characteristics are sufficient for our purpose here.

The total strainε and stressσ are defined by the following relations (the sign| means the
parallel combination of elements and− is used for the serial combination)

G1, G2 parallel
ε = ε1 = ε2

σ = σ1 + σ2

G1, G2 serial
ε = ε1 + ε2

σ = σ1 = σ2

Now we explore constitutive relations for the simplest possible combination of the rheolog-
ical elements, namelyε|R andε − R. Let the linear elastic element be described by internal
stressσe, internal straine and let the rigid-plastic element be described by internal stressσp and
internal strainp. Composed rheological rules then yield
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ε, R parallel
ε = e = p
σ = σe + σp

σe = Cε
σp ∈ Z
〈ε̇, q − σp〉 ≤ 0 for all q ∈ Z

ε,R serial
ε = e+ p
σ = σe = σp

σ = Ce
σp ∈ Z
〈ṗ, q − σ〉 ≤ 0 for all q ∈ Z

3.3 Kinematic hardening model

There is a very important model combining the linear elastic, the rigid-plastic and the kinematic
elements in the wayε− (K/R). The rheological rules yield

ε = e+ p

σ = σe + σp

σe = Hp
σ = Ce
σp ∈ Z
〈ṗ, q − σp〉 ≤ 0 for all q ∈ Z.

(3.22)

We call this rheological model akinematic hardeningmodel. Since the consider kinematic
element is linear, we speak oflinear kinematic hardening model. This model consists of one
rigid-plastic element only and therefore can be classified as asingle-yieldmodel.

Figure 3.3: Kinematic hardening model.

Theorem 3.1. LetH be a real separable Hilbert space endowed with a scalar product〈., .〉H.
LetZ ⊂ H be a convex closed set,0 ∈ Z and letx0 ∈ Z be a given element. Then for every
functionu ∈ W 1,1(0, T ;H) there exists a uniquex ∈ W 1,1(0, T ;H) satisfying the variational
inequality

〈u̇(t)− ẋ(t), x̃− x(t)〉H ≥ 0 for almost everỹx ∈ Z (3.23)

and the initial condition
x(0) = x0. (3.24)
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Proof. See [Kre96].

Remarks 3.1. (i) The solution of (3.23) is expressed bystopandplay operatorsS,P : Z ×
W 1,1(0, T ;H) → W 1,1(0, T ;H) that are defined as

S(x0, u) := x, P(x0, u) := u− S(x0, u). (3.25)

(ii) The stop and play operators represent hysteresis operators with many interesting properties
such as the rate independence, the semigroup property and causality [Kre96, BS96].

The important question is theσ − ε relation. More precisely, we may ask: Ifσ is given as
the function of timet, σ = σ(t), is it possible to determineε = ε(t) from (3.22)? The answer to
this question is positive [Kre96], namely we can rewrite〈ṗ, q − σp〉 in the kinematic hardening
case as

〈ṗ, q − σp〉 =
〈
H−1σ̇e, q − σp

〉
= 〈σ̇ − σ̇p, q − σp〉H−1

and therefore with the help of Theorem 3.1 we have

ε(t) = C−1σ(t) + H−1σe(t) = C−1σ(t) + H−1PH−1(σp
0, σ)(t), (3.26)

whereσp
0 = σp(t = 0) and the play operatorPH−1(., .) is the solution operator to the problem

with the scalar product〈x, y〉H−1 = 〈H−1x, y〉. Figures 3.4 and 3.5 illustrate an example of the
one-dimensional play operator and the stress-strain relation for the case of the prescribed cyclic
stressσ = A sin(t) with an amplitudeA, an initial zero plastic stressσp

0 = 0, and a yield set
Z = [−σy, σy]. Note that forσ(t) growing from0 toA (for t ∈ (0, π/2)),

P(0, σ) =

{
0 if σ ≤ σy,
σ − σy if σ > σy.

(3.27)

3.4 Boundary value problem

Rheological models describe the mechanical behavior of the material at one point. Let a situa-
tion at every point of our continuum be described by a system (3.22). According to Lemma 3.4
we replace the inequality

〈ṗ, q − σp〉 ≤ 0 for all q ∈ Z
in (3.22) by its equivalent form

σp : (q − p) ≤ D(q)−D(ṗ) for all q ∈ devRd×d
sym (3.28)

and integrate this overΩ to show∫
Ω

σp : (q − ṗ) dx ≤
∫

Ω

D(q) dx−
∫

Ω

D(ṗ) dx for all q ∈ devL2(Ω)d×d
sym. (3.29)

Now we can subtract the equilibrium equation∫
Ω

σ : ε(v − u̇) dx =

∫
Ω

f · (v − u̇) dx+

∫
ΓN

g · (v − u̇) dx (3.30)
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Figure 3.4: The play operatorσe = P (0, σ) in case of the cyclic stressσ = A sin(t).

Figure 3.5: Stress-strain relation in case of linear kinematic hardening model and the cyclic
stressσ = A sin(t).
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from the inequality (3.29) and obtain∫
Ω

σ : (ε(v)− q)) dx−
∫

Ω

σ : (ε(u̇)− ṗ) dx+

∫
Ω

σe : (q − ṗ) dx

+

∫
Ω

D(q) dx−
∫

Ω

D(ṗ) dx−
∫

Ω

f · (v − u̇) dx−
∫

ΓN

g · (v − u̇) dx ≥ 0,

for all v ∈ H1
D(Ω), q ∈ devL2(Ω)d×d

sym.

(3.31)

Sinceσ = C(ε(u)− p) andσe = Hp we denote

w = (u, p) and z = (v, q)

and rewrite (3.31) as a variational inequality

〈`(t), z − ẇ(t)〉 ≤ a(w(t), z − ẇ(t)) + ψ(z)− ψ(ẇ(t)) for all z ∈ H. (3.32)

Here
H = H1

D(Ω)× devL2(Ω)d×d
sym

and the bilinear forma(·, ·), the linear functional̀(·) and the nonlinear functionalψ(·) in (3.32)
have the form:

a : H×H → R, a(w, z) =

∫
Ω

C(ε(u)− p) : (ε(v)− q) dx+

∫
Ω

Hp : q dx,

`(t) : H → R, 〈`(t), z〉 =

∫
Ω

f(t) · v dx+

∫
ΓN

g(t) · v dx,

ψ : H → R, ψ(z) =

∫
Ω

D(q) dx.

(3.33)

Now we can formulate a boundary value problem of quasi-static elastoplasticity.

Problem 3.1 (BVP of quasi-static elastoplasticity).For given` ∈ H1(0, T ;H∗), `(0) = 0 find
w = (u, p) : [0, T ] → H, w(0) = 0, such that for almostt ∈ (0, T )

〈`(t), z − ẇ(t)〉 ≤ a(w(t), z − ẇ(t)) + ψ(z)− ψ(ẇ(t)) for all z ∈ H. (3.34)

3.5 Analogies

So far we have described a behavior at one point of our elastoplastic body by a system of equal-
ities and inequalities directly derived from rheological laws. Such approach is used, e.g., in
works of Brokate, Kreǰćı, Visintin [Bro97, Kre96, Vis94]. There exists another approach, based
on a theory ofinternal variables, used in works of Carstensen et al [ACZ99], Han and Reddy
[HR99], Simo and Hughes [SH98] and others. We mention some very basic information from
the theory of internal variables and show that a linear kinematic hardening model described by
(3.33) is a special case of a more general model.
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In the contents of small strain elastoplasticity, the total strainε(u) is split additively into two
contributions

ε(u) = C−1σ + p. (3.35)

ThePrandtl-Reuß lawin a stress formulation, requiresgeneralized stresses(σ, χ) ∈ Rd×d
sym×Rm

to beadmissible, i.e.,
ϕ(σ, χ) <∞ a.e. inΩ, (3.36)

for some functionalϕ which is convex and non-negative but may be+∞ such

(ṗ, ξ̇) ∈ ∂ϕ(σ, χ). (3.37)

Due to the convex analysis, we equivalently reformulate (3.37) with the help of a dual functional
ϕ∗ as

(σ, χ) ∈ ∂ϕ∗(ṗ, ξ̇). (3.38)

In the case ofcombined kinematic and isotropichardening with the von-Mises yield function
a (generalized) stress(σ, χ) is admissible ifχ = (α, β) ∈ R×Rd×d

sym ≡ Rm,m = 1+d(d+1)/2,
with α ≥ 0 and

Φ(σ, α, β) := ||devσ − devβ|| − σy(1 +Hα) ≤ 0. (3.39)

Here,σy > 0 is the yield stress andH ≥ 0 is the hardening modulus related to the isotropic
hardening. The characteristic functional of the admissible stressesϕ in (3.36) is for(σ, α, β) ∈
Rd×d

sym × R× Rd×d
sym

ϕ(σ, α, β) =

{
0 if α ≥ 0 ∧ Φ(σ, α, β) ≤ 0,
+∞ otherwise

(3.40)

and the corresponding dual functionalϕ∗ : Rd×d
sym × R× Rd×d

sym → R ∪ {+∞} is

ϕ∗(p, a, b) =

{
σy||p|| if tr p = 0 ∧ p = −b ∧ a+ σyH||p|| ≤ 0,
+∞ otherwise.

(3.41)

Variablesξ = (a, b) andχ = (α, β) are connected in the relation

ξ = −H−1χ, (3.42)

whereH := diag(H1,H2) represents a hardening matrix that consists of an isotropic hardening
matrix H1 ∈ R and a kinematic hardening matrixH2 ∈ Rd×d

sym. Further it was shown [HR99]
thatw = (u, p, ξ) satisfies the variational inequality (3.32) holding for allw = (v, q, η) with
terms

a : H×H → R, a(w, z) =

∫
Ω

C(ε(u)− p) : (ε(v)− q) dx+

∫
Ω

ξ ∗H η dx

`(t) : H → R, 〈`(t), z〉 =

∫
Ω

f(t) · v dx+

∫
ΓN

g(t) · v dx,

ψ : H → R, ψ(z) =

∫
Ω

ϕ∗(q, η) dx.

(3.43)

The star∗ denotes the scalar product defined asξ ∗ χ := a · α + b : β for all ξ = (a, b), χ =
(α, β), a, α ∈ R, b, β ∈ Rd×d

sym. There are discussed special cases, in dependence on the choice
of values ofH1,H2, H schematically displayed as
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H1 H2 H
Isotropic hardening H1 > 0 0 H > 0

Kinematic hardening 0 H2 > 0 0
Perfect plasticity 0 0 0

In particular, for the case of kinematic hardeningH1 = 0,H2 > 0, H = 0 implies (3.42)
that the internal variableξ at w = (u, p, ξ) can be omitted and it can be further shown that
w = (u, p) solves a variational inequality (3.32) with terms (3.33), whereH = H1.



Chapter 4

Multi-Yield Plasticity

This chapter discusses the concept of multi-yield plasticity models as a natural generalization
of the single-yield plasticity model, which was introduced in the previous chapter.

Figure 4.1: Stress-strain relation in case of single-yield (left), multi-yield (middle) and realistic
model (right).

The model of linear kinematic hardening consists of only one rigid-plastic element and
belongs therefore to the category ofsingle yieldmodels. As it has already been seen, such a
model does not provide a satisfactory description of a real material behavior. The real relation
ε−σ is smooth. For this reason we introducemulti-yield models, schematically shown in Figure
4.1. Compared with a single yield model (left) the generalization with the multi-yield model
(right) to more plastic phases makes the relationε− σ smoother and more realistic.

4.1 Prandtl-Ishlinskii model of play type

The following model is the typical representative of a multi-yield model. We call thePrandtl-
Ishlinskii model of play typethe rheological element defined by the formulaε|

∑
r∈I(Kr−Rr),

where the sign
∑

denotes the combination of elements in series,I denotes a measure space,
with a finite nonnegative measureµ onI. We are basically concerned with two cases depending
on the structure of the index setI:
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Figure 4.2: Prandtl-Ishlinskii model of play type.

1. I is a finite set, sayI = {1, . . . ,M},M ∈ N, and furthermoreµ is chosen to be a
counting measure. Then we speak ofstandard Prandtl-Ishlinskii model of play typewith
M rigid-plastic elements. Alternatively we use the term themulti-yield model, or M-yield
modelin order to emphasizeM rigid-plastic elements in the model structure.

2. I is a measurable set with a finite measureµ. Then we speak ofmeasure Prandtl-Ishlinskii
model of play type.

Remark 4.1. If I = {1} then the standard Prandtl-Ishlinskii model of play type is reduced to
the linear kinematic hardening model. Sometimes in the following we use the termsingle-yield
model.

Rheological rules yield in the standard caseI = {1, . . . ,M}:

ε = e+ p,

p =
M∑

r=1

pr,

σ = σe
r + σp

r for all r = 1, . . . ,M,

σp
r ∈ Zr,

〈ṗr, qr − σp
r〉 ≤ 0 for all qr ∈ Zr, r = 1, . . . ,M,

σ = Ce,
σe

r = Hrpr, r = 1, . . . ,M.

(4.1)

In the measure case, we have the same system of equalities and variational inequalities. The
only difference is thatp =

∑M
r=1 pr in (4.1) is generalized as

p =

∫
I

pr dµ(r)
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and the conditionr ∈ {1, . . . ,M} is replaced byr ∈ I. Similarly as in linear kinematic
hardening case (3.26) we can express theε− σ relation by using a play operator as

ε = C−1σ +

∫
I

H−1
r PH−1

r
(σp

0r, σ) dµ(r), (4.2)

wherePr, r ∈ I is a solution operator of the variational inequality

〈u̇(t)− ẋ(t), x(t)− x̃〉H−1
r
≥ 0 for almost everỹx ∈ Zr. (4.3)

Example 4.1 (One-dimensional measure Prandtl-Ishlinskii model of play type).Let us con-
sider the one-dimensional case, i.e.,C,Hr ∈ R, r ∈ I. Then (4.2) reads

ε = C−1σ +

∫
I

H−1
r PH−1

r
(σp

0r, σ) dµ(r). (4.4)

In the case of the interval index setI = 〈α, β〉, α > 0 with Zr = 〈−r, r〉, σp
0r = 0 for all r ∈

I, for all r ∈ I, σ(t) ↗∞, σ(0) = 0 we further have:

ε =


C−1σ if σ ∈ (0, α〉
C−1σ +

∫ σ

α
H−1

r (σ − r) dµ(r) if σ ∈ (α, β)

C−1σ +
∫ β

α
H−1

r (σ − r) dµ(r) if σ ∈ 〈β,∞).

(4.5)

Concavity of the curveε−σ (convexity of the curveσ− ε) is than guaranteed by the condition

Hr > 0 for all r ∈ I (4.6)

and the monotonicity of both curves is ensured due to the condition

C−1 +

∫
I

H−1
r dµ(r) ≤ ∞. (4.7)

Example 4.2 (One-dimensional two-yield Prandtl-Ishlinskii model of play type).This model
represents the simplest multi-yield model and its modeling will be treated in the forthcoming
sections. We assume two rigid-plastic elements with yield sets

Z1 = [−σy
1 , σ

y
1 ] and Z2 = [−σy

2 , σ
y
2 ]

with 0 < σy
1 ≤ σy

2 . The stress-strain relation reads

ε = C−1σ + H−1
1 PH−1

1
(σp

01, σ) + H−1
2 PH−1

2
(σp

02, σ). (4.8)

An example of the linear combination of two play operators is displayed in Figures 4.4 and
4.3 for a prescribed cyclic stressσ = A sin(t), A > σy

2 and initial zero plastic stressesσp
01 =

σp
02 = 0. In the time intervalt = (0, π/2) there isσ− ε relation described by a piecewise affine

increasing function that consist of three affine parts (Figure 4.4). The values of anglesα, β1, β2

between one of three lines andσ axis (Figure 4.5) are derived from relations

tanα = C−1,

tan β1 = C−1 + H−1
1 ,

tan β2 = C−1 + H−1
1 + H−1

2 .

(4.9)

ConditionsC,H1,H2 > 0 ensure the concavity of theε− σ curve and also its monotonicity
with a relationα < β1 < β2 < π/2.
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Figure 4.3: Linear combination of two play operators in case of cyclic stressσ = A sin(t).

Figure 4.4: Stress-strain relation in case of two-yield model and cyclic stressσ = A sin(t).
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Figure 4.5: Stress-strain relation described by anglesα, β for single-yield model (left) and by
anglesα, β1, β2 for two-yield model (right).

Remark 4.2 (Generation of multi-yield model from single-yield model).Let us assume a
single-yield model specified by material parameters:C,H, σy > 0. To this single-yield model
we can construct corresponding two-yield model specified by parametersC,H1,H2, σ

y
2 ≥ σy

1 >
0 with similar stress-strain relation. If we require that

• the elastic tensorC is the same for both single-yield and two-yield models,

• the anglesβ andβ2 are equal, i.e.,β = β2,

• the value ofσy is betweenσy
1 andσy

2 , i.e.,0 < σy
1 < σy < σy

2 <∞,

than both models are identical forσ ∈ (0, σy
1) ∪ (σy

2 ,∞), cf. Figure 4.5. The equalityβ = β2

yields the condition onH1,H2,
H = H−1

1 + H−1
2 . (4.10)

Possible choice ofH1 andH2 is for instance

H1 = H2 = 2H. (4.11)

The technique of the generalization of the single-yield model can easily be extended to the
multi-yield model and it reads for theM -yield model

H1 = · · · = HM = MH. (4.12)

4.2 The boundary value problem

Similarly as for the linear kinematic hardening model we can derive a variational inequality
(3.32) with more general terms. As a rheological model we take the standard Prandtl-Ishlinskii
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model of play type with two rigid-plastic elements, i.e.,M = 2. According to Lemma 3.4, we
replace two inequalities in (4.1)

〈ṗ1, q1 − σp
1〉 ≤ 0 for all q1 ∈ Z1,

〈ṗ2, q2 − σp
2〉 ≤ 0 for all q2 ∈ Z2,

(4.13)

by their equivalent forms

σp
1 : (q1 − p1) ≤ D1(q1)−D1(ṗ1) for all q1 ∈ devRd×d

sym,

σp
2 : (q2 − p2) ≤ D2(q2)−D2(ṗ2) for all q2 ∈ devRd×d

sym.
(4.14)

The integration of (4.14) overΩ gives∫
Ω

σp
1 : (q1 − ṗ1) dx ≤

∫
Ω

D1(q1) dx−
∫

Ω

D1(ṗ1) dx for all q1 ∈ devL2(Ω)d×d
sym,∫

Ω

σp
2 : (q2 − ṗ2) dx ≤

∫
Ω

D2(q2) dx−
∫

Ω

D2(ṗ2) dx for all q2 ∈ devL2(Ω)d×d
sym.

(4.15)

We subtract the equilibrium equation (3.30) from both inequalities (4.15) and obtain∫
Ω

σ : (ε(v)− q1 − q2)) dx−
∫

Ω

σ : (ε(u̇)− ṗ1 − ṗ2) dx+

∫
Ω

σe
1 : (q1 − ṗ1) dx,

+

∫
Ω

σe
2 : (q2 − ṗ2) dx+

∫
Ω

(D1(q1) +D2(q2)) dx−
∫

Ω

(D1(ṗ1) +D2(ṗ2)) dx−∫
Ω

f · (v − u̇) dx−
∫

ΓN

g · (v − u̇) dx ≥ 0 for all v ∈ H1
D(Ω), q1, q2 ∈ devL2(Ω)d×d

sym.

(4.16)

Sinceσ = C(ε(u)− p1 − p2), σ
e
1 = H1p1 andσe

2 = H2p2 we can rewrite (4.16) as a variational
inequality (3.32) for

w = (u, p1, p2) and z = (v, q1, q2)

in a space
H = H1

D(Ω)× devL2(Ω)d×d
sym × devL2(Ω)d×d

sym,

where a bilinear forma(., .), a linear functional̀ (.) and a nonlinear functionalψ(.) have the
form

a : H×H → R, a(w, z) =

∫
Ω

C(ε(u)− p1 − p2) : (ε(v)− q1 − q2) dx

+

∫
Ω

H1p1 : q1 dx+

∫
Ω

H2p2 : q2 dx,

`(t) : H → R, 〈`(t), z〉 =

∫
Ω

f(t) · v dx+

∫
ΓN

g(t) · v dx,

ψ : H → R, ψ(z) =

∫
Ω

(D1(q1) +D2(q2)) dx.

(4.17)
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The generalization to the standard Prandtl-Ishlinskii model of play type withM rigid-plastic
elements yields obviously again the variational inequality (3.32) for

w = (u, p1, . . . , pM) and z = (v, q1, . . . , qM),

in a space
H = H1

D(Ω)× devL2(Ω)d×d
sym × · · · × devL2(Ω)d×d

sym︸ ︷︷ ︸
M times

,

where a bilinear forma(·, ·), a linear functional̀ (·) and a nonlinear functionalψ(·) have the
form

a : H×H → R, a(w, z) =

∫
Ω

(
C(ε(u)−

M∑
i=1

pi)
)

:
(
ε(v)−

M∑
i=1

qi

)
dx

+
M∑
i=1

∫
Ω

Hipi : qi dx,

`(t) : H → R, 〈`(t), z〉 =

∫
Ω

f(t) · v dx+

∫
ΓN

g(t) · v dx,

ψ : H → R, ψ(z) =

∫
Ω

M∑
i=1

Di(qi) dx.

(4.18)

Problem 4.1 (BVP of quasi-static multi-yield elastoplasticity).For givenl ∈ H1(0, T ;
H∗), `(0) = 0 find w = (u, p1, . . . , pM) : [0, T ] → H, w(0) = 0, such that for almost all
t ∈ (0, T )

〈`(t), z − ẇ(t)〉 ≤ a(w(t), z − ẇ(t)) + ψ(z)− ψ(ẇ(t)) for all z ∈ H. (4.19)

Similarly, for the measure Prandtl-Ishlinskii model of play type one analogically obtains the
variational inequality (3.32) for

w = (u, pr) and z = (v, qr), r ∈ I

in a space
H = {(v, qr), r ∈ I : v ∈ H1

D(Ω), qr ∈ devL2(Ω)d×d
sym}, (4.20)

where a bilinear forma(·, ·), a linear functional̀ (·) and a nonlinear functionalψ(·) have the
form

a : H×H → R, a(w, z) =

∫
Ω

(
C(ε(u)−

∫
I

pr dµ(r)
)

:
(
ε(v)−

∫
I

qrµ(r)
)

dx

+

∫
Ω

∫
I

Hrpr : qr dµ(r) dx,

`(t) : H → R, 〈`(t), z〉 =

∫
Ω

f(t) · v dx+

∫
ΓN

g(t) · v dx,

ψ : H → R, ψ(z) =

∫
Ω

∫
I

Dr(qr) dµ(r) dx.

(4.21)

The boundary value problem of quasi-static multi-yield elastoplasticity in the measure case
reads:
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Problem 4.2 (BVP of quasi-static multi-yield elastoplasticity, measure case).For
givenl ∈ H1(0, T ;H∗), `(0) = 0 findw = (u, pr), r ∈ I : [0, T ] → H, w(0) = 0, such that for
almost allt ∈ (0, T )

〈`(t), z − ẇ(t)〉 ≤ a(w(t), z − ẇ(t)) + ψ(z)− ψ(ẇ(t)) for all z ∈ H. (4.22)



Chapter 5

Mathematical Analysis

This chapter is focused on the analysis of boundary value problems of quasi-static multi-yield
elastoplasticity. First, the standard problem (Problem 4.1) is considered, and second the ob-
tained results are generalized for the measure problem (Problem 4.2). We show that the varia-
tional inequality (3.32) has a unique solution by checking the validity of assumptions of a more
general theorem [HR99].

In the standard case, we search for a solutionw = (u, p1, . . . , pM) ∈ H of the variational
inequality (3.32). The Hilbert spaceH is defined as the Cartesian product of Hilbert spaces
V,Q0

H = V ×Q0 × · · · ×Q0︸ ︷︷ ︸
M times

,

where
V := H1

D(Ω) and Q0 := {q : q ∈ devRd×d
sym, qij ∈ devL2(Ω)}.

A scalar product(·, ·)H and an induced norm|| · ||H in the spaceH are

(w, z)H := (u, v)V + (p1, q1)Q0 + · · ·+ (pM , qM)Q0 ,

||w||2H := (u, u)2
V + (p1, p1)

2
Q0

+ · · ·+ (pM , pM)2
Q0
,

||z||2H := (v, v)2
V + (q1, q1)

2
Q0

+ · · ·+ (qM , qM)2
Q0
.

In the forthcoming sections we prove that

• The bilinear form

a(w, z) =

∫
Ω

(
C(ε(u)−

M∑
i=1

pi)
)

:
(
ε(v)−

M∑
i=1

qi

)
dx+

M∑
i=1

∫
Ω

Hipi : qi dx

is bounded and elliptic in the spaceH.

• The functional

ψ(z) =

∫
Ω

M∑
i=1

Di(qi) dx

is nonnegative and positive homogeneous in the spaceH.
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5.1 Boundedness ofa(w, z)

By the definition of boundedness, it is to prove

|a(w, z)| ≤ cb||w||H||z||H, (5.1)

wherecb > 0. For simplicity of notation, only the caseM = 2 is analyzed. An extension to the
caseM > 2 follows automatically. By the triangle inequality,

|a(w, z)| ≤
∣∣∣ ∫

Ω

C(ε(u)− p1 − p2) : (ε(v)− q1 − q2) dx
∣∣∣+ ∣∣∣ ∫

Ω

(H1p1 : q1 + H2p2 : q2) dx
∣∣∣.

(5.2)

The first term in the inequality (5.2) can be bounded by Cauchy-Schwartz inequality for the
scalar product(a, b) = a : b, and the multiplicativity of the Euclidean norm|| · ||,∣∣∣ ∫

Ω

C(ε(u)− p1 − p2) : (ε(v)− q1 − q2) dx
∣∣∣ ≤ ∫

Ω

∣∣∣C(ε(u)− p1 − p2) : (ε(v)− q1 − q2)
∣∣∣ dx

≤ ||C||
(∫

Ω

||ε(u)− p1 − p2||2 dx
) 1

2
(∫

Ω

||ε(v)− q1 − q2||2 dx
) 1

2
.

By using the inequality|a+ b+ c|2 ≤ 3(|a|2 + |b|2 + |c|2) for all a, b, c ∈ R, we obtain∫
Ω

||ε(u)− p1 − p2||2 dx ≤
∫

Ω

∑
i

∑
j

(
εij(u)− p1ij

− p2ij

)2

dx

≤ 3

∫
Ω

∑
i

∑
j

(
εij(u))

2 + (p1ij
)2 + (p2ij

)2
)

dx

≤ 3

∫
Ω

(
||ε(u)||2 + ||p1||2 + ||p2||2

)
dx.

(5.3)

Sinceε(u) : ε(u) =
∑
i,j

1
2
(ui,j + uj,i)

2 ≤
∑
i,j

u2
i,j, it holds consequently

∫
Ω
||ε(u)||2 dx ≤

||u||2
H1

D(Ω)d , which further implies∫
Ω

(
||ε(u)||2 + ||p1||2 + ||p2||2

)
dx ≤ ||u||2H1

D(Ω)d +

∫
Ω

(
||p1||2 + ||p2||2

)
dx = ||w||2H.

Putting estimates (5.3) and (5.3) together, one obtains∫
Ω

||ε(u)− p1 − p2||2 dx ≤ 3||w||2H (5.4)

and for the same reason ∫
Ω

||ε(v)− q1 − q2||2 dx ≤ 3||z||2H. (5.5)
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The second term in (5.2) is bounded as∣∣∣ ∫
Ω

(H1p1 : q1 + H2p1 : q1) dx
∣∣∣ ≤ ∫

Ω

∣∣∣H1p1 : q1 + H2p2 : q2

∣∣∣ dx
≤
∫

Ω

(
||H1p1|| · ||q1||+ ||H2p2|| · ||q2||

)
dx

≤ max{||H1||, ||H2||}
∫

Ω

(
||p1|| · ||q1||+ ||p2|| · ||q2||

)
dx

≤ max{||H1||, ||H2||}
∫

Ω

(
||p1||2 + ||p2||2

)1/2(
||q1||2 + ||q2||2

)1/2

dx

≤ max{||H1||, ||H2||}
(∫

Ω

(
(||p1||2 + ||p2||2) dx

)1/2(∫
Ω

(||q1||2 + ||q2||2) dx
)1/2

≤ max{||H1||, ||H2||} ||w||H||z||H

(5.6)

Combining the estimates (5.4), (5.5) and (5.6), we conclude the following proposition forM =
2.

Proposition 5.1 (Boundedness of the bilinear forma(·, ·)). A bilinear forma(·, ·) is
bounded in the spaceH,

|a(w, z)| ≤
(
(M + 1)||C||+ max

i=1,...,M
||Hi||

)
||w||H||z||H. (5.7)

Proof. The proof is a direct modification of the aforementioned situation forM = 2.

5.2 H-ellipticity of a(w, z)

We aim to prove the existence of a constantce > 0, so that

a(w,w) ≥ ce||w||2H for all w ∈ H.

Under the natural assumptions of symmetry of elastic and hardening tensors

ξ : Cλ = Cξ : λ for all ξ, λ ∈ Rd,

ξ : Hiλ = Hiξ : λ for all ξ, λ ∈ Rd, i = 1, . . . ,M
(5.8)

and their positive definiteness

Cξ : ξ ≥ c||ξ||2 for all ξ ∈ Rd,

Hiξ : ξ ≥ hi||ξ||2 for all ξ ∈ Rd, i = 1, . . . ,M
(5.9)

we can bound the integrand in the scalar producta(w,w) as

C(ε(u)− p1 − · · · − pM) : (ε(u)− p1 − · · · − pM) + H1p1 : p1 + · · ·+ HMpM : pM

≥ c||ε(u)− p1 − · · · − pM ||2 + h1||p1||2 + · · ·+ hM ||pM ||2

≥ min{c, h1, . . . , hM}
(
||ε(u)− p1 − · · · − pM ||2 + ||p1||2 + · · ·+ ||pM ||2

)
.

(5.10)
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Figure 5.1: Continuous functionf(x) on the torus (x2
0 + x2

1 = 1) in Lemma 5.2 forM = 1. Its
minimum is0.3819.

Lemma 5.1. Let D ∈ RN×N be a diagonal matrixD = diag(d1, . . . , dN), dj 6= 0 for j =
1, . . . , N , let a ∈ RN . Then there holds

det(D + a⊗ a) = (
N∏

j=1

dj)(1 +
N∑

j=1

a2
j/dj). (5.11)

Proof. The proof consists in constructing similar matrices to(D + a ⊗ a) by equivalent op-

erations, that do not change the determinant. Firstly, the last column

(
−a
1

)
of the matrix(

D −a
aT 1

)
is multiplied with−aj and added it to thej−th column forj = 1, . . . , N , and we

obtain (
D + a⊗ a −a

0 1

)
.

Secondly, thej-th row of the matrix matrix

(
D −a
aT 1

)
is multiplied with−aj/di and added to

the last one forj = 1, . . . , N , and we obtain(
D −a
0 1 +

∑N
j=1 a

2
j/dj

)
.

Thus, the following formula is derived

det(D + a⊗ a) = det

(
D + a⊗ a −a

0 1

)
= det

(
D −a
aT 1

)
= det

(
D −a
0 1 +

∑N
j=1 a

2
j/dj

)
.
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SinceD is a diagonal matrix with det(D) =
∏N

j=1 dj, we have

det

(
D −a
0 1 +

∑N
j=1 a

2
j/dj

)
= (

N∏
j=1

dj)(1 +
N∑

j=1

a2
j/dj),

which concludes the proof.

Lemma 5.2. There existsk = k(M) > 0 such that, for allx0, x1, . . . , xM ∈ R,

(
x0 −

M∑
i=1

xi

)2

+
M∑
i=1

x2
i ≥ k

M∑
i=0

x2
i . (5.12)

Proof. Let us denotef(x) = (x0 −
∑M

i=1 xi)
2 +

∑M
i=1 x

2
i , wherex = (x0, · · · , xM) ∈ RM+1.

It is easy to check thatf is homogeneous of degree2, f(rx) = r2f(x) for all r ∈ R. Thus

inf
x∈RM+1,x 6=0

f(x)

||x||2
= min

x∈RM+1,||x||2=1
f(x) ≥ k. (5.13)

Sincef(x) is a continuous function on the compact set{x ∈ RM+1 : ||x||2 = 1}, there exists
x̄ ∈ RM+1 such thatf(x̄) = minx∈RM+1

f(x)
||x||2 = k. Additionally, sincef(x) > 0 for all x ∈

RM+1 satisfying||x||2 = 1, there holdsk > 0.

Remarks 5.1. (i) Lemma 5.2 holds also for matricesx0, x1, . . . , xM ∈ Rd×d when(·)2 is re-
placed|| · ||2 =

∑d
i,j=1(·)2

ij, i.e.,

∣∣∣∣∣∣x0 −
M∑
i=1

xi

∣∣∣∣∣∣2 +
M∑
i=1

||xi||2 ≥ k
M∑
i=0

||xi||2. (5.14)

(ii) According to Lemma 5.2, the valuek depends onM only. In order to calculatek as a
function ofM explicitly, we rewrite

(
x0 −

M∑
i=1

xi

)2

+
M∑
i=1

x2
i = xTAx, x = (x0, . . . , xM) ∈ RM+1

with the matrix

A = (1,−1, . . . ,−1)⊗ (1,−1, . . . ,−1) + diag(0, 1, . . . , 1).

Then (5.13) is reformulated as

k ≤ xTAx

xTx
.

That means that the maximalk is the smallest eigenvalue of matrixA. All eigenvaluesλ of
matrixA satisfy the condition

det(A− λI) = det(diag(−λ, 1− λ, . . . , 1− λ) + (1,−1, . . . ,−1)⊗ (1,−1, . . . ,−1)) = 0.
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The application of Lemma 5.1 withD = diag(−λ, 1− λ, . . . , 1− λ) anda = (1,−1, . . . ,−1)
deduces under the assumptionsλ 6= 0, 1,

−λ(1− λ)M(1 +
1

−λ
+

M

1− λ
) = 0,

with the solutionλ1,2 = 1 + M
2
± 1

2

√
4M +M2. Sincek is the smaller value ofλ1 andλ2, we

finally have

k(M) = 1 +
M

2
− 1

2

√
4M +M2. (5.15)

Table 5.1 displays some values ofk andMk. Meaning of the valueMk will be given in
Remark 5.1. Note thatk(M) ↘ 0 asM →∞ andMk → 1 asM →∞.

M k Mk
1 0.3819 0.3819
2 0.2679 0.5358
3 0.2087 0.6261
4 0.1715 0.6862
5 0.1458 0.7294

10 0.0839 0.8392
100 0.0098 0.9804

1000 9.98 10e-4 0.9980

Table 5.1: Values ofk andMk for different values ofM .

An application of Lemma 5.2 to the bound (5.10) leads to another bounds ofa(w,w),

a(w,w) ≥ k min{c, h1, . . . , hM}
∫

Ω

(||ε(u)||2 + ||p1||2 + · · ·+ ||pM ||2) dx. (5.16)

According to theKorn’s first inequality,∫
Ω

||ε(u)||2 dx ≥ K||u||H1
D(Ω) for all u ∈ H1

D(Ω),

whereK > 0 depends only on the domainΩ we finally obtain

Proposition 5.2 (Ellipticity of the bilinear form a(·, ·)). A bilinear forma(·, ·) isH-elliptic,

a(w,w) ≥
(
k min{c, h1, . . . , hM}min{1, K}

)
||w||2H, (5.17)

wherek depends only on the number of multi-yieldsk = k(M) in (5.15),K on the domainΩ
and the dimensiond, i.e.,K = K(Ω, d).
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Remark 5.1 (Meaning of the valueMk in Table 5.1). Let us assume theM -yield model
generated from the single-yield model according to Remark 4.2. It means

h1 = · · · = hM = Mh.

In the case of sufficientlysmall hardening, h1, . . . , hM ≤ c, the ellipticity constant from Propo-
sition 5.2 reads

k min{c, h1, . . . , hM}min{1, K} = Mk hmin{1, K},

where only the productMk depends on number of multi-yieldsM . By comparing the values
Mk in Table 5.1, it can be seen that replacing the single-yield model by the M-yield model
(with arbitraryM ) does not significantly affect the ellipticity of the bilinear forma(·, ·).

5.3 Non-negativity, positive homogeneity, and Lipschitz con-
tinuity of ψ(z)

SinceDi(qi) = σy
i ||qi|| for all i = 1, . . . ,M is a convex, nonnegative and positively homoge-

neous function,

ψ(z) =

∫
Ω

(
D1(q1) +D2(q2) + · · ·+DM(qM)

)
dx

is a convex, nonnegative and positively homogeneous functional. We show the Lipschitz conti-
nuity of ψ(z), i.e. the existence of a constantL ≥ 0 such that

|ψ(z1)− ψ(z2)| ≤ L||z1 − z2||H for all z1, z2 ∈ H.

Let us definez1 = (v1, q1
1, . . . , q

1
M), z2 = (v2, q2

1, . . . , q
2
M). Then

|ψ(z1)− ψ(z2)| =

=
∣∣∣ ∫

Ω

(
(D1(q

1
1)−D1(q

2
1)) + · · ·+ (DM(q1

M)−DM(q2
M))
)

dx
∣∣∣

=
∣∣∣ ∫

Ω

(
σy

1(||q1
1|| − ||q2

1||) + · · ·+ σy
M(||q1

M || − ||q2
M ||)

)
dx
∣∣∣

≤max{σy
1 , σ

y
2 , . . . , σ

y
M}
∣∣∣ ∫

Ω

(
(||q1

1|| − ||q2
1||) + · · ·+ (||q1

M || − ||q2
M ||)

)
dx
∣∣∣.

(5.18)

Since(||a|| − ||b||) ≤
∣∣||a|| − |b||∣∣ ≤ ||a− b|| for all a, b ∈ H, than it further holds

|ψ(z1)− ψ(z2)| ≤ max{σy
1 , σ

y
2 , . . . , σ

y
M}
∫

Ω

(
||q1

1 − q2
1||+ · · ·+ ||q1

M − q2
M ||
)

dx. (5.19)

With the help of the Cauchy-Schwartz inequality inL2(Ω),∫
Ω

||q1
i − q2

i ||1 dx ≤
(∫

Ω

||q1
i − q2

i ||dx
) 1

2
(∫

Ω

1 dx
) 1

2
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for all i = 1, . . . ,M , it is possible to estimate

|ψ(z1)− ψ(z2)| ≤

≤max{σy
1 , . . . , σ

y
M}meas(Ω)

1
2

(
(

∫
Ω

||q1
1 − q2

1||2 dx)
1
2 + · · ·+ (

∫
Ω

||q1
M − q2

M ||2 dx)
1
2

)
= max{σy

1 , . . . , σ
y
M}meas(Ω)

1
2 (||q1

1 − q2
1||Q0 + · · ·+ ||q1

M − q2
M ||Q0).

(5.20)

The Cauchy-Schwartz inequality for vectors

h1+h2+. . .+hM ≤ (h2
1+h

2
2+. . .+ h2

M)
1
2 M

1
2 for all h1, . . . , hM ∈ R

yields further

|ψ(z1)− ψ(z2)| ≤ max{σy
1 , . . . , σ

y
M}meas(Ω)

1
2M

1
2 (||q1

1 − q2
1||2Q0

+ · · ·+ ||q1
M − q2

M ||2Q0
)

1
2

≤ max{σy
1 , σ

y
2 , . . . , σ

y
M}meas(Ω)

1
2M

1
2 ||z1 − z2||H, (5.21)

which ends the proof of the Lipschitz continuity. We proved the following proposition:

Proposition 5.3 (Lipschitz continuity of the functional ψ(·)). The functionalψ(·) is a Lips-
chitz continuous functional in the spaceH with a Lipschitz constant

L = max{σy
1 , σ

y
2 , . . . , σ

y
M}meas(Ω)

1
2M

1
2 . (5.22)

5.4 Existence and uniqueness

In order to formulate an existence and uniqueness result for the Problem 4.1 we use the analogy
with more general problem(ABS) [HR99].

Problem 5.1 (ABS).Findw : [0, T ] → H, w(0) = 0, such that for almost allt ∈ (0, T ), ẇ(t) ∈
Z and

〈`(t), z − ẇ(t)〉 ≤ a(w(t), z − ẇ(t)) + ψ(z)− ψ(ẇ(t)) for all z ∈ Z

The following existence result is proved in [HR99].

Theorem 5.1 ([HR99]). LetH be a Hilbert space,Z ⊂ H be a nonempty, closed, convex cone;
a : H×H → R be a bilinear form that is symmetric, bounded, andH-elliptic; l ∈ H1(0, T ;H∗)
with `(0) = 0; andψ : Z → R nonnegative, convex, positively homogeneous, and Lipschitz
continuous. Then there exists a unique solutionw of Problem ABS satisfyingw ∈ H1(0, T ;H).
Furthermore,w : [0, T ] → H is the solution to Problem ABS if and only if there is a function
w∗(t) : [0, T ] → H∗ such that for almost allt ∈ (0, T )

a(w(t), z) + 〈w∗(t), z〉 = 〈`(t), z〉 for all z ∈ H,
w∗(t) ∈ ∂ψ(ẇ(t)).
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All assumptions in Theorem 5.1 are satisfied for Problem 4.1. Symmetry of the bilinear form
a(·, ·) is a consequence of symmetry properties ofC,Hi (5.8). Therefore the choiceZ = H
reduces Problem(ABS) to Problem 4.1 and Theorem 5.1 infers the existence and the uniqueness
result for Problem 4.1.

Theorem 5.2. Let l ∈ H1(0, T ;H∗) with `(0) = 0. Then there exists a unique solutionw =
(u, p1, . . . , pM)(t) of Problem 4.1 in the spaceH1(0, T ;H).

5.5 Extension to Measure Problem

Application of the same technique as for Problem 4.1 can also be generalized for Problem 4.2.
In Problem 4.2, we search for a solutionw = (u, pr) ∈ H, r ∈ I satisfying the variational
inequality (3.32). The Hilbert spaceH is defined as the Cartesian product

H = V × L2
µ(I;Q0), (5.23)

where

L2
µ(I;Q0) := {x ∈ I ×Q0 :

∫
r∈I

||xr||2Q0
dµ(r) <∞}.

A scalar product(·, ·)H and an induced norm|| · ||H in the spaceH are

(w, z)H := (u, v)V +

∫
Ω

∫
I

pr : qr dµ(r) dx,

||w||2H := (u, u)V +

∫
Ω

∫
I

pr : pr dµ(r) dx,

||z||2H := (v, v)V +

∫
Ω

∫
I

qr : qr dµ(r) dx.

The sum
M∑

r=1

in the forms ofa(·, ·) andψ(·) is formally replaced by
∫

I
dµ(r), i.e.,

a(w, z) =

∫
Ω

(
C(ε(u)−

∫
I

pr dµ(r)
)

:
(
ε(v)−

∫
I

qrµ(r)
)

dx+

+

∫
Ω

∫
I

Hrpr : qr dµ(r) dx,

ψ(z) =

∫
Ω

∫
I

Dr(qr) dµ(r) dx.

(5.24)

We repeat the same steps as for the boundedness ofa(w, z) in the case of the standard Prandtl-
Ishlinskii model of play type. Note that∣∣∣∣∣∣ε(u)− ∫

I

pr dµ(r)
∣∣∣∣∣∣2 ≤ 2

(
||ε(u)||2 + µ(I) ·

∫
I

||pr||2 dµ(r)
)
, (5.25)

which infers ∫
Ω

∣∣∣∣∣∣ε(u)− ∫
I

pr dµ(r)
∣∣∣∣∣∣2 dx ≤ 2 max

{
1, µ(I)

}
||w||2H.



42 CHAPTER 5. MATHEMATICAL ANALYSIS

For the same reason we get∫
Ω

∣∣∣∣∣∣ε(v)− ∫
I

qr dµ(r)
∣∣∣∣∣∣2 dx ≤ 2 max

{
1, µ(I)

}
||z||2H.

We bound the term|
∫

Ω

∫
I
Hrpr : qr dµ(r) dx| as∣∣∣ ∫

Ω

∫
I

Hrpr : qr dµ(r) dx
∣∣∣ ≤ ∫

Ω

∫
I

|Hrpr : qr|dµ(r) dx

≤ sup
i∈I

||Hi||
∫

Ω

∫
I

||pr|| · ||qr||dµ(r) dx

≤ sup
i∈I

||Hi||
∫

Ω

(∫
I

||pr||2 dµ(r)
)1/2(∫

I

||qr||2 dµ(r)
)1/2

dx

≤ sup
i∈I

||Hi||
(∫

Ω

∫
I

||pr||2 dµ(r) dx
)1/2(∫

Ω

∫
I

||qr||2 dµ(r) dx
)1/2

= sup
i∈I

||Hi||||w||H||z||H

(5.26)

and obtain the following proposition:

Proposition 5.4 (Boundedness of the bilinear forma(·, ·), measure case).A bilinear form
a(·, ·) is continuous bounded in the spaceH

a(w, z) ≤
(
2 max

{
1, µ(I)

}
||C||+ sup

r∈I
||Hr||

)
||w||H||z||H, (5.27)

Ellipticity of the bilinear forma(·, ·) can be proved in the similar manner as for the standard
model. Symmetry and positive definiteness assumptions onC and Hi yield analogically to
(5.10)

C
(
ε(u)−

∫
I

pr dµ(r)
)

:
(
ε(u)−

∫
I

pr dµ(r)
)

+

∫
I

Hrpr : pr dµ(r)

≥ min{c, inf
i∈I

hi}
(∣∣∣∣∣∣ε(u)− ∫

I

pr dµ(r)
∣∣∣∣∣∣2 +

∫
I

||pr||2 dµ(r)
)
. (5.28)

A slightly modified version of Lemma 5.2 leads to the ellipticity ofa(·, ·).
Lemma 5.3.There existsk = k(µ(I)) > 0 such that for allx0, xr ∈ R, r ∈ I,

∫
I
x2

r dµ(r) <∞
it holds

(x0 −
∫

I

xr dµ(r))2 +

∫
I

x2
r dµ(r) ≥ k(x2

0 +

∫
I

x2
r dµ(r)). (5.29)

Proof. We show this result directly by rewriting:(
x0 −

∫
I

xr dµ(r)
)2

+

∫
I

(xr)
2 dµ(r)

≤(x0)
2 +

(∫
I

xr dµ(r)
)2

− 2(x0)
(∫

I

xr dµ(r)
)

+

∫
I

(xr)
2 dµ(r)

≤(x0)
2 +

(∫
I

xr dµ(r)
)2

− d(x0)
2 − 1

d

(∫
I

xr dµ(r)
)2

+

∫
I

(xr)
2 dµ(r)

≤(1− d)(x0)
2 +

[
(1− 1

d
)µ(I) + 1

] ∫
I

(xr)
2 dµ(r),

(5.30)
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where we have used a well known inequality2ab ≤ da2 + 1
d
b2 for all a, b ∈ R, d ∈ (0,∞) and

the Cauchy-Schwarz inequality(∫
I

xr dµ(r)
)2

≤
∫

I

1 dµ(r) ·
∫

I

(xr)
2 dµ(r) = µ(I)

∫
I

(xr)
2 dµ(r).

We choosed ∈ (0, 1), such thatmin{1 − d, 1 − µ(I)1−d
d
} = k > 0. It is satisfied for all

d ∈ ( µ(I)
1+µ(I)

, 1).

Remarks 5.2. (i) The technique involved in this proof was previously used by Han and Reddy
in [HR99].
(ii) A matrix version of inequality (5.29) in Lemma 5.3 reads

||x0 −
∫

I

xr dµ(r)||2 +

∫
I

||xr||2 dµ(r) ≥ k(||x0||2 +

∫
I

||xr||2 dµ(r)). (5.31)

(iii) The greatest value ofk according to the proof is

k = max
d∈(

µ(I)
1+µ(I)

,1)

min {1− d, 1− µ(I)
1− d

d
}.

The first Korn’s inequality with the constantK together with Lemma 5.3 infer

Proposition 5.5 (Ellipticity of the bilinear form a(·, ·), measure case).A bilinear forma(·, ·)
isH-elliptic with

a(w,w) ≥
(
k min{c, inf

r∈I
{hr}}min{1, K}

)
||w||2H, (5.32)

wherek depends only on the measure of the index setI, k = k(µ(I)), K on the domainΩ and
the dimensiond,K = K(Ω, d).

The Lipschitz continuity forψ(z) =
∫

Ω

∫
I
Dr(qr) dµ(r) dx follows from the estimate

|ψ(z1)− ψ(z2)| ≤
∫

Ω

∫
I

|Dr(q
1
r)−Dr(q

2
r)|dµ(r) dx

=

∫
Ω

∫
I

σy
r (||q1

r || − ||q2
r ||) dµ(r) dx ≤

∫
Ω

∫
I

σy
r ||q1

r − q2
r ||dµ(r) dx

≤ sup
r∈I
{σy

r}
∫

Ω

(

∫
I

1 dµ(r))1/2(

∫
I

||q1
r − q2

r ||2 dµ(r))1/2 dx

≤ sup
r∈I
{σy

r}µ(I)1/2

∫
Ω

(

∫
I

||q1
r − q2

r ||2 dµ(r))1/2 dx

≤ sup
r∈I
{σy

r}µ(I)1/2meas(Ω)1/2

∫
Ω

∫
I

||q1
r − q2

r ||2 dµ(r) dx

≤ sup
r∈I
{σy

r}µ(I)1/2meas(Ω)1/2||z1 − z2||H,

(5.33)

and it is formulated in the following proposition.
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Proposition 5.6 (Lipschitz continuity of the functional ψ(·), measure case).The functional
ψ(·) is a Lipschitz continuous functional in the spaceH with a Lipschitz constant

L = sup
r∈I
{σy

r}µ(I)1/2meas(Ω)1/2. (5.34)

For the same reason as for the standard model isψ(z) a nonnegative and positive homo-
geneous functional. All assumptions of Lemma 5.1 are also satisfied for Problem 4.2, and
therefore the choiceZ = H reduces Problem(ABS) to Problem 4.2 and Theorem 5.1 infers the
existence and the uniqueness result for Problem 4.2.

Theorem 5.3. Let l ∈ H1(0, T ;H∗) with `(0) = 0. Then there exists a unique solutionw =
(u, pr)(t), r ∈ I of Problem 4.2 in the spaceH1(0, T ;H).



Chapter 6

Numerical Modeling

This chapter is devoted to the discretization of the variational inequality (3.32) with the implicit
Euler method in time and with the finite element method in space. We use capital letters for dis-
crete variables. For instance,X = (U, P ) denotes a discrete approximation ofx = (u, p). The
discretization of Problem 4.2 consists in our approach of measure, time and space discretiza-
tions.

Measure discretization: We replace a measurable functionp by the vectorP of M elements
(the continuous model is approximated by the discrete problem with M multi-yields) with state
variables

X = (U, P ), whereP = (P1, . . . , PM),

Y = (V,Q), whereQ = (Q1, . . . , QM)

and approximate the integral
∫

I
P dµ(r) as

∫
I

pr dµ(r) ≈
M∑
i=1

αiPi, (6.1)

where constantsαi are related to some integration rule, for instance the weights of theNewton-
Cotesformulae. Similarly, we derive discrete forms for the terms of the variational inequality.
(3.32), i.e.,

a(X, Y ) =

∫
Ω

C(ε(U)−
M∑
i=1

αiPi) : (ε(V )−
M∑
i=1

αiQi) dx,

+

∫
Ω

M∑
i=1

αiHiPi : Qi dx,

ψ(Y ) =

∫
Ω

M∑
i=1

αiDi(Qi) dx,

Di(Qi) =σy
i ||Qi|| for all i = 1, . . . ,M.

(6.2)
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Note that for the choiceαi = 1 for all i = 1, . . . ,M , we have the same form of termsa(·, ·), ψ(·)
as in Problem 4.2. In the following we consider only this case for the simplicity of notation.

Time discretization: We replace the continuous time interval(0, T ) by the sequence of dis-
crete timest0, . . . , tN with

0 = t0 < τ1 ≤ t1 < τ2 ≤ t2 < · · · ≤ tN−1 < τN ≤ tN = T,

with a time stepkj = tj − tj−1, j = 1, . . . , N . Knowing the values ofX(t) at timest0, . . . , tN
one can interpolate

X(τj) =
τj − tj−1

kj

X(tj) +
tj − τj
kj

X(tj−1) for j = 1, . . . , N. (6.3)

The time derivative is consequently approximated by

Ẋ(τj) =
X(tj)−X(tj−1)

kj

for j = 1, . . . , N. (6.4)

Spatial discretization: We divide a polygonal domainΩ ∈ R2 by a regular triangulation
T (it means no hanging nodes, domain is matched exactly) into triangles and define the set of
T -piecewise constantfunctions by

S0(T ) := {a ∈ L2(Ω) : for all T ∈ T , a|T ∈ R} (6.5)

and the set ofT -piecewise affinefunctions that are zero onΓD by

S1
D(T ) := {v ∈ H1

D(Ω) : for all T ∈ T , v|T ∈ P1(T )d}. (6.6)

(P1(T ) denotes the affine functions onT .) We can replace

H = V ×Q0 × · · · ×Q0︸ ︷︷ ︸
M times

by itsfinite elementsubspaceS (therefore we speak ofconforming finite elements)

S = S1
D(T )× devS0(T )d×d

sym × · · · × devS0(T )d×d
sym︸ ︷︷ ︸

M times

.

The discrete problem is then posed in the space

S :={X ∈ C(0, T ;S) : X(0) = X0 and

X(t) =
t− tj
kj

X(tj) +
tj − t

kj

X(tj−1)

for tj−1 ≤ t ≤ tj, j = 1, . . . , N}.

(6.7)

Problem 6.1 (S). SeekX ∈ S that satisfies, for allj = 1, . . . , N ,

`(τj)(Y − Ẋ(τj)) ≤ a(X(τj), Y − Ẋ(τj)) + ψ(Q)− ψ(Ṗ (τj)) for all Y ∈ S. (6.8)
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We define fori = 0, . . . , N ,

X i := (U i, P i) = X(ti),

substituteẊ1 = X1−X0

k1
into (3.32) and deduce the inequality in the first discrete timet1,

`(t1)(Y −
X1 −X0

k1

) ≤ a(X1, Y − X1 −X0

k1

) + ψ(Q)− ψ(
P 1 − P 0

k1

) for all Y ∈ S.(6.9)

We define anincrementalvariableX = (U, P ) := X1 −X0, l := `(t1), the linear operator

L(Y ) = `(Y )− a(X0, Y ) (6.10)

and obtain a problem:

Problem 6.2 (S2). SeekX = (U, P ) ∈ S that satisfies

L(Y −X) ≤ a(X, Y −X) + ψ(Q)− ψ(P ) for all Y = (V,Q) ∈ S. (6.11)

Problem 6.2 is further equivalent to the minimization problem:

Problem 6.3 (M2). For f(Y ) = 1
2
a(Y, Y ) + ψ(Q)− L(Y ) seekX = (U, P ) ∈ S with

f(X) = min
Y ∈S

f(Y ). (6.12)

Lemma 6.1 (Equivalence of problems(S2) and (M2)).

X is a solution of Problem(S2) if and only ifX is a solution of Problem(M2).

Proof. (M2) ⇒ (S2) : (M2) implies, for allY, θ ∈ (0, 1),

f(X + θ(Y −X)) ≥ f(X).

Hence

θa(X, Y −X) +
1

2
θ2a(Y −X,Y −X) + ψ(X + θ(Y −X))− ψ(X)− θL(Y −X) ≥ 0.

The convexity ofψ(·) : ψ(X + θ(Y −X)− ψ(X) ≤ θ(ψ(X)− ψ(Y )) yields

a(X, Y −X)− L(Y −X) +
1

2
θa(Y −X, Y −X) ≥ θ(ψ(X)− ψ(Y )).

Dividing the last inequality byθ and taking the limitθ ↓ 0, we end up with the inequality (6.9)
in Problem(S2).

(S2) ⇒ (M2) : for all Y holds

f(Y ) =f(X + (Y −X)) =

=
1

2
a(X,X) + a(X, Y −X) +

1

2
a(Y −X,Y −X)

+ ψ(P ) + ψ(Q)− ψ(P )− L(X)− L(Y −X) =

=f(X) +
1

2
a(Y −X, Y −X)︸ ︷︷ ︸

≥0

+ a(X, Y −X) + ψ(Q)− ψ(P )− L(Y −X)︸ ︷︷ ︸
≥0 (M2)

≥f(X).

(6.13)
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The Problem(S2) can also be written as a problem with more inequalities.

Problem 6.4 (S2-more equations).SeekX = (U, P ) ∈ S withP = (P1, . . . , PM) that satisfies

L(Y −X) = a(X, Y −X) for all Y = (V, P ) ∈ S, (6.14)

L(Yi −X) ≤ a(X, Yi −X) + ψ(Yi)− ψ(X) for all Yi ∈ S, i = 1, . . . ,M, (6.15)

whereYi = (U,Q), Q = (P1, . . . , Pi−1, Qi, Pi+1, . . . , PM).

The detailed form of (6.14) and (6.15) reads for allV ∈ S1
D(T ), Qi ∈ devS0(T ), i =

1, . . . ,M

∫
Ω

f(t)(V − U) dx+

∫
ΓN

g(t)(V − U) ds =

∫
Ω

C(ε(U)−
M∑
i=1

Pi) : ε(V − U) dx, (6.16)

∫
Ω

(C(ε(U0)−
M∑
i=1

P 0
i )−HiP

0
i ) : (Qi − Pi) dx

≤−
∫

Ω

(C(ε(U)−
M∑
i=1

Pi)−HiPi) : (Qi − Pi) dx+

∫
Ω

(D(Qi)−D(Pi)) dx.

(6.17)

We sum all inequalities (6.15) overi = 1, . . . ,M , noticing that

M∑
i=1

(Yi −X) =
M∑
i=1

(0, 0, . . . , 0, Qi − Pi, 0, . . . , 0) = (0, Q− P ) = (Y −X),

M∑
i=1

(ψ(Yi)− ψ(X)) = ψ(Y )− ψ(X),

and conclude
L(Y −X) ≤ a(X, Y −X) + ψ(Y )− ψ(X),

whereY =
∑M

i=1 Yi = (U,Q1, . . . , QM) = (0, Q). It gives rise to another equivalent formula-
tion of Problem 6.4.

Problem 6.5 (S2-two equations). SeekX = (U, P ) ∈ S with P = (P1, . . . , PM) that satisfies

L(V − U, 0) = a(X, Y −X) for all Y = (V, P ) ∈ S, (6.18)

L(Y −X) ≤ a(X, Y −X) + ψ(Y )− ψ(X) for all Y = (U,Q) ∈ S. (6.19)

The equivalence of defined problems can be written schematically:

(S2) ⇔ (M2) ⇔ (S2 −more equations) ⇔ (S2 − two equations)
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The form ofa(·, ·), L(·), ψ(·) in (6.19), for the two-yield model withM = 2 (generalization to
the caseM > 2 follows immediately), have the form

a(X, Y −X) =

∫
Ω

(
C(ε(U)−P1−P2) : (−Q1+P1−Q2+P2)+H1P1 : (Q1−P1)

+H2P2 : (Q2−P2)
)

dx

= −
∫

Ω

[(Cε(U)
Cε(U)

)
−
((C C

C C

)
+

(
H1 0
0 H2

))(P1

P2

)]
:

(
Q1 − P1

Q2 − P2

)
dx,

L(Y −X) = −a(X0, Y −X)

=

∫
Ω

[(Cε(U0)
Cε(U0)

)
−
((C C

C C

)
+

(
H1 0
0 H2

))(P 0
1

P 0
2

)]
:

(
Q1 − P1

Q2 − P1

)
dx,

ψ(Y ) =

∫
Ω

(
σy

1 ||Q1||+ σy
2 ||Q2||

)
dx =

∫
Ω

||
(
Q1

Q2

)
||σy dx,

where||(P1, P2)
T ||σy := σy

1 ||P1||+ σy
2 ||P2|| defines a matrix norm (sinceσy

1 , σ
y
2 > 0). With the

help of substitutions

Ĉ :=

(
C C
C C

)
and Ĥ :=

(
H1 0
0 H2

)
,

P :=

(
P1

P2

)
and P 0 :=

(
P 0

1

P 0
2

)
and Q :=

(
Q1

Q2

)
,

Â :=

(
Cε(U)
Cε(U)

)
+

(
Cε(U0)
Cε(U0)

)
− (Ĉ + Ĥ)P 0,

(6.20)

we rewrite the inequality (6.19) as the inequality for allQ ∈ devS0(T )d×d
sym × devS0(T )d×d

sym∫
Ω

(Â− (Ĉ + Ĥ)P ) : (Q− P ) dx ≤
∫

Ω

(||Q||σy − ||P ||σy) dx. (6.21)

Owing to our space discretization,P andÂ are constant matrices on every triangleT of our tri-
angulationT . It enables to decompose the inequality (6.21) elementwise. GivenÂ, Ĉ, Ĥ ∈
Rd×d, we seekP = (P1, P2)

T , P1, P2 ∈ Rd×d
sym, trP1 = trP2 = 0 such that for allQ =

(Q1, Q2)
T , Q1, Q2 ∈ Rd×d

sym, trQ1 = trQ2 = 0 holds

(Â− (Ĉ + Ĥ)P ) : (Q− P ) ≤ ||Q||σy − ||P ||σy . (6.22)

The next two sections are addressed to the question, whether inequality (6.22) has a unique
solution, separately for the single-yield and the two-yield models.

6.1 Single-yield model,M = 1

The single-yield model is specified by one plastic strainP andC = Ĉ with CP = 2µP and
H = Ĥ with HP = hP , the matrix norm||P ||σy = σy||P || andA = Â = Cε(U) + Cε(U0)−
(C + H)P 0. The existence of the unique solutionP of the inequality (6.22) on every elementT
is then guaranteed by the following lemma.
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Lemma 6.2 ([ACZ99]). GivenA ∈ Rd×d
sym andσy > 0 there exists exactly oneP ∈ Rd×d

sym with
trP = 0 that satisfies

{A− (C + H)P} : (Q− P ) ≤ σy{||Q|| − ||P ||} (6.23)

for all Q ∈ Rd×d
sym with trQ=0. This is characterized as the minimizer of

1

2
(C + H)P : P − P : A+ σy||P || (6.24)

(amongst trace-free symmetricd× d-matrices) and equals

(||devA|| − σy)+

2µ+ h

devA
||devA||

, (6.25)

where(·)+ := max{0, ·} denotes the non-negative part. The minimal value of (6.24) (attained
for P as in (6.25)) is

−1

2
(||devA|| − σy)2

+/(2µ+ h). (6.26)

Proof. Although the proof is given in [ACZ99], we recall it here again, since it is useful for
understanding of cases with two- and more yield models. In the convex analysis, the inequality
6.23 states that

A− (C + H)P ∈ σy∂|| · ||(P ), (6.27)

where∂|| · || =sign denotes the sub-gradient of the norm, and only trace-free arguments are
under consideration. The function|| · || is convex and so is (6.24). Identity (6.23) is equivalent
to 0 belonging to the sub-gradient of (6.24). IfP = 0 the inequality (6.23) states

A : Q ≤ σy||Q|| (6.28)

for all Q ∈ Rd×d
sym with trQ = 0. Hence,||devA|| ≤ σy. If ||devA|| > σy we concludeP 6= 0

and obtain∂|| · ||(P ) = {P/||P ||}. Hence (6.23) yields

devA− (C + H)P = σyP/||P ||. (6.29)

Notice that trCP = 0 as trP = 0, and only trace-free arguments are under consideration. Since
CP = 2µP we obtain

devA = (σy + (2µ+ h)||P ||)P/||P || (6.30)

and so||devA|| = σy + (2µ+ h)||P ||, whence

||P || = (||devA|| − σy)/(2µ+ h).

Using this in (6.30) we deduce

P =
(||devA|| − σy)+

2µ+ h

devA
||devA||

. (6.31)

Formula (6.31) holds also for P=0. Taking (6.31) in (6.24) we calculate the minimal value
(6.26).
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Figure 6.1: Values of quadratic functional
1
2
(C + H)P : P as a function ofx andy

for argumentP = (x, y; y,−x).

Figure 6.2: Values of the linear functional
P : A as a function ofx andy for argu-
mentP = (x, y; y,−x).

Figure 6.3: Values of the functional with
the normσy||P || as a function ofx andy
for argumentP = (x, y; y,−x).

Figure 6.4: Values of the functional1
2
(C+

H)P : P−P : A+σy||P || as a function of
x andy for argumentP = (x, y; y,−x).
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Remark 6.1. The minimizing functional (6.24) consist of the quadratic term1
2
(C + H)P : P ,

the linear term devA : P and the term with the normσy||P ||. Since2µ + h > 0 andσy > 0
represent the quadratic term and the term with the norm strictly convex functionals. As the
result of it is (6.24) also a strictly convex functional. Figures 6.1, 6.2, 6.3, 6.4 display a possible
form of the quadratic, the linear, the term with the norm and the functional (6.25), assuming
symmetric and trace free matrix argumentP in the form

P =

(
x y
y −x

)
.

6.2 Two-yield model,M = 2

The two-yield model is specified by two plastic strainsP1, P2 that can be coupled in a plastic

strainP = (P1, P2)
T . FurtherĈP =

(
2µ(P1 + P2)
2µ(P1 + P2)

)
, ĤP =

(
h1P1

h2P2

)
, ||P ||σy = σy

1 ||P1|| +

σy
2 ||P2|| andÂ =

(
A1

A2

)
=

(
Cε(U)
Cε(U)

)
+

(
Cε(U0)
Cε(U0)

)
− (Ĉ + Ĥ)P 0.

Similarly as for the single-yield model we can show the existence and uniqueness of the
plastic strainP = (P1, P2)

T on every elementT ∈ T .

Lemma 6.3. GivenÂ = (A1, A2)
T , A1, A2 ∈ Rd×d

sym there exists exactly oneP = (P1, P2)
T , P1,

P2 ∈ Rd×d
sym with trP1 = trP2 = O that satisfies

(Â− (Ĉ + Ĥ)P ) : (Q− P ) ≤ ||Q||σy − ||P ||σy (6.32)

for all Q = (Q1, Q2)
T , Q1, Q2 ∈ Rd×d

sym with trQ1 = trQ2 = O. ThisP is characterized as the
minimizer of

f(P ) =
1

2
(Ĉ + Ĥ)P : P − P : Â+ ||P ||σy (6.33)

(amongst trace-free symmetricd× d matricesP1, P2).

Proof. The equivalence off(P ) = min
Q
f(Q) and (6.32) is obvious. The functionf(P ) is

strictly convex, continuous in the space of all trace-free symmetric d×d matricesP1, P2,
lim

||Q||→∞
f(Q) = +∞ so it attains exactly one minimum.

If Ĉ was in some block diagonalizable form̂C =

(
C 0
0 C

)
, it would be possible to separate

the variational inequality (6.22) into twoM variational inequalities of type (6.23), use Lemma
6.2 and express the exact minimizer of (6.33) as a linear combination of them. In the next
subsection, we focus on an analytical approach for minimizing (6.33).
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6.2.1 Analytical approach

Lemma 6.4. LetB be a unit ball at the point0,B := {Q ∈ Rd×d
sym : ||Q|| ≤ 1}. Then

∂|| · ||σy(P1, P2) =


{σy

1B, σ
y
2B} if P1 = P2 = 0,

{σy
1

P1

||P1|| , σ
y
2B} if P1 6= 0, P2 = 0,

{σy
1B, σ

y
2

P2

||P2||} if P1 = 0, P2 6= 0,

{σy
1

P1

||P1|| , σ
y
2

P2

||P2||} if P1 6= 0, P2 6= 0.

(6.34)

Proof. By the definition, the convex function||P ||σy is decomposed as two convex functions
σy

1 ||P1|| andσy
2 ||P2||. Both functions have subdifferentials, namely

∂(σy
1 ||P1||)(P1, P2) =

{
{σy

2B, 0} if P1 = 0,
{σy

2
P2

||P2|| , 0} if P1 6= 0
(6.35)

and

∂(σy
2 ||P2||)(P1, P2) =

{
{0, σy

1B} if P2 = 0,
{0, σy

2
P2

||P2||} if P2 6= 0.
(6.36)

Both convex functionsσy
1 ||P1|| andσy

2 ||P2||, considered as functions of two variablesP1, P2,
are continuous at the pointP1 = P2 = 0 in Banach spaceRd×d

sym × Rd×d
sym. According to the

convex analysis (for instance Theorem 7.11 in [Bro97]), we can write

∂(||(P1, P2)||σy) = ∂(σy
1 ||P1||) + ∂(σy

2 ||P2||),

which concludes the proof.

The last lemma divides the problem of minimizingf(P ) into four cases, depending of the
values ofP1 andP2.
Case 1:P1 = P2 = 0 with the following equivalences

P1 = P2 = 0 ⇔ Â : Q ≤ ||Q||σy for all Q = (Q1, Q2)
T , trQ1 = trQ2 = 0

⇔ devAi : Qi ≤ ||Qi||σy
i

for all Qi, trQi = 0, i = 1, 2

⇔ ||devAi|| ≤ σy
i , i = 1, 2. (6.37)

Case 2:P1 = 0, P2 6= 0, which means(
devA1

devA2

)
−
(

(2µ+ h1)I 2µI
2µI (2µ+ h2)I

)(
0
P2

)
∈
(

σy
1B

{σy
2

P2

||P2||}

)
. (6.38)

We may write equivalently

devA1 − 2µP2 ∈ σy
1B, (6.39)

devA2 − (2µ+ h2)P2 = σy
2

P2

||P2||
. (6.40)

Elimination ofP2 from (6.40) yields

P2 =
||devA1|| − σy

2

2µ+ h2

devA2

||devA2||
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and the substitution of this into (6.39) gives finally the condition

devA1 − 2µ(
||devA1|| − σy

2

2µ+ h2

devA2

||devA2||
) ∈ σy

1B. (6.41)

Case 3:P1 6= 0, P2 = 0. The same technique as in Case 2., only with the reversed indices1 and
2, gives

P1 =
||devA2|| − σy

1

2µ+ h1

devA1

||devA1||
,

devA2 − 2µ(
||devA2|| − σy

1

2µ+ h1

devA1

||devA1||
) ∈ σy

2B. (6.42)

Case 4:P1 6= 0, P2 6= 0 implies(
devA1

devA2

)
−
(

(2µ+ h1)I 2µI
2µI (2µ+ h2)I

)(
P1

P2

)
=

(
σy

1
P1

||P1||
σy

2
P2

||P2||

)
. (6.43)

Applying substitutionsPi = ξiXi, where||Xi|| = 1, i = 1, 2, (6.43) becomes the system of
nonlinear equations with positive parametersξ1 = ||P1||, ξ2 = ||P2||,(

devA1

devA2

)
=

(
(σy

1 + (2µ+ h1)ξ1)I 2µξ2I
2µξ1I (σy

2 + (2µ+ h2)ξ2)I

)(
X1

X2

)
. (6.44)

Another substitutionsη1 := σy
1 + (2µ+ h1)ξ1, η2 := σy

2 + (2µ+ h2)ξ2, ν1 := 2µξ1, ν2 := 2µξ2
and the fact that (

η1I ν2I
ν1I η2I

)−1

=
1

η1η2 − ν1ν2

(
η2I −ν2I
−ν1I η1I

)
yield

η2devA1 − ν2devA2 = (η1η2 − ν1ν2)X1,

−ν1devA1 + η1devA2 = (η1η2 − ν1ν2)X2.
(6.45)

Normalization of (6.45) and the application of substitutions forη1, η2, ν1, ν2 give the system of
nonlinear equations for positiveξ1, ξ2

||l1(ξ1)|| − |r(ξ1, ξ2)| = 0,

||l2(ξ2)|| − |r(ξ1, ξ2)| = 0,
(6.46)

where

l1(ξ1) = (σy
1 + (2µ+ h1)ξ1)devA2 − 2µξ1devA1,

l2(ξ2) = (σy
2 + (2µ+ h2)ξ2)devA1 − 2µξ2devA2,

r(ξ1, ξ2) = (σy
1 + (2µ+ h2)ξ1)(σ

y
2 + (2µ+ h2)ξ2)− 4µ2ξ1ξ2.

(6.47)

Instead of the solving (6.46) we prefer to solve the equivalent system of nonlinear equations

Φ1(ξ1, ξ2) = ||l1(ξ1)||2 − (r(ξ1, ξ2))
2 = 0,

Φ2(ξ1, ξ2) = ||l2(ξ2)||2 − (r(ξ1, ξ2))
2 = 0.

(6.48)
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Remark 6.2. There is a geometrical interpretation of (6.48). For fixedα > 0, curves||l1(ξ1)||2 =
α and||l2(ξ2)||2 = α represent two pairs of parallel lines in theξ1 − ξ2 coordinate system, that
are perpendicular to each other and||r(ξ1, ξ2)||2 = α is a hyperbole. The solution of (6.48) is
then the intersection point of two pairs of lines and the hyperbole, cf. Figure 6.5.

Is is possible to solve (6.48) exactly? This question can partly be answered by the following
lemma.

Lemma 6.5. Givenσy
1 , σ

y
2 , h1, h2, µ,devA1,devA2. Then the solutionξ2 of the nonlinear sys-

tem (6.48) is a root of the 8-th degree polynomial of the form

(
J4F 2

)
ξ8
2 +
(
2%4J2F

)
ξ7
2 +
(
2%3J2F+%42

)
ξ6
2 +
(
2%2J2F+2%3%4

)
ξ5
2

+
(
2%1J2F+2%2%4+%32−F (BJ+2IC)2

)
ξ4
2

+
(
−E(BJ+2IC)2−2F (2CG+BH)(BJ+2IC)+2%1%4+2%2%3

)
ξ3
2

+
(
−D(BJ+2IC)2−2E(2CG+BH)(BJ+2IC)−F (2CG+BH)2

+2%1%3+%22
)
ξ2
2

+
(
−2D(2CG+BH)(BJ+2IC)−E(2CG+BH)2+2%1%2

)
ξ2

+
(
%12−D(2CG+BH)2

)
= 0,

(6.49)

where

%1 := H2 D− C G2 − AH2 −BGH − C D,

%2 := −BGJ − 2H J A− C E − 2 I C G+H2E − I B H + 2H J D,

%3 := −C F − J2A+ 2H J E − I B J + C + J2 D +H2 F,

%4 := 2H J F + J2E

(6.50)

and the coefficientsA,B,C,D,E, F,G,H, I, J are specified in the proof.

Proof. We can rewrite

||l1(ξ1)||2 = ||((2µ+ h1)devA2 − 2µdevA1)ξ1 + σy
1devA2||2 =

= ||σy
1devA2||2︸ ︷︷ ︸

A

+ 2(σy
1devA2) : ((2µ+ h1)devA2 − 2µdevA1)︸ ︷︷ ︸

B

ξ1

+ ||(2µ+ h1)devA2 − 2µdevA1||2︸ ︷︷ ︸
C

ξ2
1 = A+Bξ1 + Cξ2

1 ,
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||l2(ξ2)||2 = ||((2µ+ h2)devA1 − 2µdevA2)ξ2 + σy
2devA1||2 =

= ||σy
2devA1||2︸ ︷︷ ︸

D

+ 2(σy
2devA1) : ((2µ+ h2)devA1 − 2µdevA2)︸ ︷︷ ︸

E

ξ2

+ ||((2µ+ h2)devA1 − 2µdevA2)||2︸ ︷︷ ︸
F

ξ2
2 = D + Eξ2 + Fξ2

2 ,

r(ξ1, ξ2)
2 = (σy

1σ
y
2︸︷︷︸

G

+ (2µ+ h1)σ
y
2︸ ︷︷ ︸

H

ξ1 + (2µ+ h2)σ
y
1︸ ︷︷ ︸

I

ξ2 + (2µ(h1 + h2) + h1h2)︸ ︷︷ ︸
J

ξ1ξ2)
2

= (G+Hξ1 + Iξ2 + Jξ1ξ2)
2

ThenΦ1,Φ2 are polynomials of the second degree in two variablesξ1, ξ2.

Φ1(ξ1, ξ2) = A+Bξ1 + Cξ2
1 − (G+Hξ1 + Iξ2 + Jξ1ξ2)

2 = 0 (6.51)

Φ2(ξ1, ξ2) = D + Eξ2 + Fξ2
2 − (G+Hξ1 + Iξ2 + Jξ1ξ2)

2 = 0 (6.52)

Expressingξ1 from (6.52),

ξ1 =
−I ξ2 −G±

√
D + E ξ2 + F ξ2

2

H + J ξ2
, (6.53)

the substitution of (6.53) into (6.51), infers after some transformations (MAPLE 6) the polyno-
mial (6.49).

Finding rootsξ2 of the eight degree polynomial (6.49), one can substituteξ2 into (6.53) and
determinate values ofξ1. Sinceξ2 generally attains8 values, the solution(ξ1, ξ2) can even attain
16 different values.

Remark 6.3. Lemma 6.5 states that ifP1 6= 0 andP2 6= 0 thenξ2 = ||P2|| is a root of the 8-th
degree polynomial (6.49). In some special cases the 8-th degree polynomial can be replaced by
some lower degree polynomial. This is demonstrated in the next example.

Example 6.1.Let µ = 1, σy
1 = 1, σy

2 = 2, h1 = 1, h2 = 1 and

A1 = A2 =

(
20 0
0 0

)
.

The direct calculation shows

l1 =

(
10 + 10ξ1 0

0 −10− 10ξ1

)
,

l2 =

(
20− 10ξ2 0

0 −20− 10ξ2

)
,

r = 5 ξ1 ξ2 + 6 ξ1 + 3 ξ2 + 2

and the nonlinear system of equations (6.48) reads

Φ1 = 200 + 400 ξ1 + 200 ξ2
1 − (2 + 3 ξ2 + 6 ξ1 + 5 ξ1 ξ2)

2 = 0, (6.54)

Φ2 = 800 + 800 ξ2 + 200 ξ2
2 − (2 + 3 ξ2 + 6 ξ1 + 5 ξ1 ξ2)

2 = 0. (6.55)
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Figure 6.5: Geometrical interpretation of the solution(ξ1, ξ2) of the nonlinear system (6.48):
(ξ1, ξ2) is the intersection point of two perpendicular lines and a hyperbole. In Example 6.1,
ξ1 = 3.02, ξ2 = 2.02 and parameterα = 3244.

Graph of the nonlinear system (6.54), (6.55) is displayed in Figure 6.10.ξ1 is solved from (6.55)
with

ξ1 = −1

2

24 + 56ξ2 + 30ξ2
2 ± 20

√
2 (12 + 16ξ2 + 5ξ2

2)

(6 + 5 ξ2)2

and the substitution of it (only the− term, the+ term leads to different signs ofξ1 andξ2) into
(6.54) implies the equation

200
−25ξ4

2 − 160ξ3
2 + (40

√
2− 172)ξ2

2 + (432 + 160
√

2)ξ2 + 672 + 160
√

2

(6 + 5 ξ2)2
= 0.

Since(6 + 5 ξ2) > 0 it is sufficient to solveξ2 from the4-th degree polynomial

25ξ4
2 + 160ξ3

2 − (40
√

2− 172)ξ2
2 − (432 + 160

√
2)ξ2 − 672− 160

√
2 = 0.

Without this conditionξ2 could be calculated as the root of the8-th degree polynomial (6.49).
The exact calculation shows that

ξ2 = {−4.428427124, 2.028427124,−2,−2}

and only the positive solutionξ2 = 2.028427124 is admissible. Figures 6.6, 6.7, 6.8, 6.9 display
the form of the quadratic, the linear, the term with the norm and the functional (6.33), assuming
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Figure 6.6: Values of the quadratic func-
tional 1

2
(Ĉ + Ĥ)P : P as a function of

x and y, whereP = (P1, P2)
T , P1 =

(x, 0; 0,−x), P2 = (y, 0; 0,−y).

Figure 6.7: Values of the linear functional
P : A as a function ofx and y, where
P = (P1, P2)

T , P1 = (x, 0; 0,−x), P2 =
(y, 0; 0,−y).

Figure 6.8: Values of the functional
with the norm ||P ||σy as a function of
x and y, whereP = (P1, P2)

T , P1 =
(x, 0; 0,−x), P2 = (y, 0; 0,−y).

Figure 6.9: Values of the functional1
2
(Ĉ+

Ĥ)P : P − P : A + ||P ||σy as a function
of x andy, whereP = (P1, P2)

T , P1 =
(x, 0; 0,−x), P2 = (y, 0; 0,−y).
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Figure 6.10: Graph of the nonlinear systemΦ1(ξ1, ξ2) = 0,Φ2(ξ1, ξ2) = 0 in Example 6.1. The
intersection points (ξ1, ξ2) of the displayed branches are the solutions of the nonlinear system.

symmetric and trace free matricesP1, P2 in the form

P1 =

(
x 0
0 −x

)
and P2 =

(
y 0
0 −y

)
.

All figures in this example were produced by a Maple programmaple.ms listed in Appendix
was used.

We end up with the algorithm for the calculation ofP1, P2.

Algorithm 1 (Polynomial approach for calculation of P1, P2). Givenµ, h1, h2, σ
y
1 , σ

y
2

and devA1,devA2.
(a) If ||devA1|| ≤ σy

1 and||devA2|| ≤ σy
2 then set

P1 := 0 and P2 := 0

and output(P1, P2).

(b) If ||devA1 − 2µ(
||devA2||−σy

2

2µ+h2

devA2

||devA2||)|| ≤ σy
1B then set

P
(case2)
1 := 0 and P

(case2)
2 :=

||devA2|| − σy
2

2µ+ h2

devA2

||devA2||
.
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(c) If ||devA2 − 2µ(
||devA1||−σy

1

2µ+h1

devA1

||devA1||)|| ≤ σy
2 then set

P
(case3)
1 :=

||devA1|| − σy
1

2µ+ h1

devA1

||devA1||
and P

(case3)
2 := 0.

(d) Find allξi
1 > 0, ξi

2 > 0 (either no solution or from 1 to 16 solutions) satisfying (6.51) and
(6.52), then for alli

P
(case4)i

1 := ξi
1X

i
1 and P

(case4)i

2 := ξi
2X

i
1,

whereX i
1 andX i

2 solve the linear system (6.44) with parametersξi
1, ξ

i
2.

(e) Determine(P1, P2) from

f(P1, P2) = min{f(P
(case2)
1 , P

(case2)
2 ), f(P

(case3)
1 , P

(case3)
1 ),min

i
{f(P

(case4)i

1 , P
(case4)i

2 )}

and output(P1, P2).

Remark 6.4. If the conditions in steps (b) or (c) of Algorithm 1 are not satisfied,P case2
1 , P case2

2

or P case3
1 , P case3

2 are not defined and therefore their values are not considered in step (e).

6.2.2 Iterative approach

In order to avoid the solving of a polynomial of the eight degree in step (d) of Algorithm 1 we
introduce a numerical algorithm solving the minimization problem (6.33) iteratively.

Algorithm 2 (Iterative approach for calculation of P1, P2). Givenµ, h1, h2, σ
y
1 , σ

y
2 ,

devA1,devA2 andtolerance ≥ 0.
(a) Choose an initial approximation(P 0

1 , P
0
2 ) ∈ devRd×d

sym × devRd×d
sym, seti := 0.

(b) FindP i+1
2 ∈ devRd×d

sym such that

f(P i
1, P

i+1
2 ) = min

Q2∈devRd×d
sym

f(P i
1, Q2).

(c) FindP i+1
1 ∈ devRd×d

sym such that

f(P i+1
1 , P i+1

2 ) = min
Q1∈devRd×d

sym

f(Q1, P
i+1
2 ).

(d) If ||P i+1
1 −P i

1||+||P
i+1
2 −P i

2||
||P i+1

1 ||+||P i
1||+||P

i+1
2 ||+||P i

2||
> tolerance set i := i + 1 and goto (b), otherwise output

(P i+1
1 , P i+1

2 ).

Remarks 6.1. (i) Algorithm 2 belongs to the class ofalternating directionalgorithms. The
minimization problems in steps (b) and (c) can be solved explicitly as

P i+1
2 =

(||devA2 − 2µP i
1|| − σy

2)+

2µ+ h2

devA2 − 2µP i
1

||devA2 − 2µP i
1||
, (6.56)

P i+1
1 =

(||devA1 − 2µP i+1
2 || − σy

1)+

2µ+ h1

devA1 − 2µP i+1
2

||devA1 − 2µP i+1
2 ||

. (6.57)
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(ii) The choice of the parametertolerance has significant effect of the computational complex-
ity of Algorithm 2. Theoretically, fortolerance = 0 the upgrade in steps (b) and (c) needs to
be performed infinitely many times. Rounding errors can cause this fortolerance > 0 as well.
If the rounding errors are neglected, one can show that Algorithm 2 converge to the minimizer
(P1, P2).

Lemma 6.6 (Uniform ellipticity and Lipschitz continuity). The functionals

Φ : dev(Rd×d
sym)× dev(Rd×d

sym) → R, Φ(P ) =
1

2
(Ĥ + Ĉ)P : P − A : P (6.58)

is Fréchet-differentiable andDΦ is uniformly elliptic and Lipschitz continuous with constants

α =
1

2
λmin(Ĉ + Ĥ) and L = ||Ĉ + Ĥ||, (6.59)

whereλmin(Ĉ + Ĥ) denotes the minimal eigenvalue of the matrix(Ĉ + Ĥ).

Proof. The direct calculation shows that for the symmetric matrixĈ + Ĥ, the functionalf is
Fréchet-differentiable,

DΦ(P ) = (Ĉ + Ĥ)P − A. (6.60)

By the definition of uniformly ellipticity ofDΦ, there exists a constantα > 0 such that for
all P,Q ∈ dev(Rd×d

sym)× dev(Rd×d
sym),

α||P −Q||2 +DΦ(P ;Q− P ) ≤ Φ(Q)− Φ(P ) (6.61)

The substitution of (6.60) into (6.61) and an orthonormal transformationQ = TQ′, P = TP ′

such thatT T (Ĉ + Ĥ)T = diag(λi) imply

α||P ′ −Q′||2 + diag(λi)P
′ : (Q′ − P ′) ≤ 1

2
diag(λi)P

′ : P ′ − 1

2
diag(λi)Q

′ : Q′, (6.62)

for all P ′, Q′ ∈ dev(Rd×d
sym) × dev(Rd×d

sym). Further we decompose the inequality (6.62) as the
sum of inequalities

αij(P
′
ij −Q′ij)

2 + λiP
′
ij : (Q′ij − P ′ij) ≤

1

2
λiP

′
ij : P ′ij −

1

2
λiQ

′
ij : Q′ij, (6.63)

over alli, j = 1, . . . 2d. Since for allx, y, λ ∈ R, λ > 0,

α(y − x)2 + λx(y − x) ≤ 1

2
λx2 − 1

2
λy2, (6.64)

for positiveα ≤ 1
2
λ, we estimate for alli, j = 1 . . . 2d,

αij ≤
1

2
λi (6.65)

Therefore, the choiceαij = α = mini{λi} finishes the part of the proof concerning the uniform
ellipticity. Lipschitz continuity ofDΦ with a constantL = ||Ĉ+ Ĥ|| follows immediately from
the multiplicativity of the Frobenius norm|| · ||,

||(Ĉ + Ĥ)P − (Ĉ + Ĥ)Q|| ≤ ||(Ĉ + Ĥ)|| · ||P −Q||, (6.66)

for all P,Q ∈ dev(Rd×d
sym)× dev(Rd×d

sym).
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Proposition 6.1 (Convergence of Algorithm 2).Let (P1, P2) be the minimizer off and let the
sequence(P i

1, P
i
2)
∞
i=0 be generated by Algorithm 2. Defineq := γ/(1+γ), γ := L2 ·α−2, C0 :=

2(1 + γ) ·α−1 · (f(P 0
1 , P

0
2 )− f(P1, P2)), whereα andL are given in Lemma 6.6. Then, for any

i ≥ 1 there holds
||P i

1 − P1||2 + ||P i
2 − P2||2 ≤ C0 · qi. (6.67)

Proof. Let us decompose the space ofX := dev(Rd×d
sym)× dev(Rd×d

sym) asX = X1 +X2, where

X1 := {(P1, 0) : P1 ∈ dev(Rd×d
sym)} and X2 := {(0, P2) : P2 ∈ dev(Rd×d

sym)}.

LetM1 : X → X1 andM2 : X → X2 be linear mappings defined as

M1(P1, P2) := (P1, 0) and M2(P1, P2) := (0, P2).

Then we can show that for all subsetsΛ ⊆ {1, 2} and allP = (P1, P2) ∈ X there holds

||
∑
λ∈Λ

Mλ(P1, P2)|| ≤ 1 · ||(P1, P2)||.

We decompose the functionalf as the sum of functionalsΦ andψ, where

Φ(P ) :=
1

2
(Ĥ + Ĉ)P : P − A : P and ψ(P ) := ||P ||σy = σy

1 ||P1||+ σy
2 ||P2||.

From Lemma 6.6 we know that the functionalΦ is Fŕechet-differentiable andDΦ is uniformly
elliptic Lipschitz continuous. The convex, lower-semicontinuous functionalψ is additive and
independent with respect to the partitionX = X1 +X2, i.e. in the sense that, for all(x1, x2) ∈
X1 ×X2,

ψ(
2∑

j=1

xj) =
2∑

j=1

ψ(xj).

and, for allj ∈ {1, 2}, for all xj ∈ Xj and for allyj ∈
∑2

k=1,k 6=j Xk, there holds

ψ(xj +Mjyj) = ψ(xj).

Finally, the estimate (6.67) is the consequence of the Theorem 2.1 in [Car97].

Remark 6.5. Proposition 6.1 states that Algorithm 2 converges with the convergence rate1/2.

The next example demonstrates the behavior of Algorithm 2.

Example 6.2. We consider parameters of Example 6.1,tolerance = 10−12 and the initial
approximation

P 0
2 =

||devA2|| − σy
2

2µ+ h2

devA2

||devA2||
and P 0

1 =
||devA1 − 2µP 0

2 || − σy
1

2µ+ h1

devA1 − 2µP 0
2

||devA1 − 2µP 0
2 ||
.

Algorithm 2 generates approximationsP i
1, P

i
2, i = 1, 2, . . . in the form

P i
1 =

(
xi 0
0 −xi

)
and P i

2 =

(
yi 0
0 −yi

)
,
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Figure 6.11: Example 6.2: The approximationsP i
1 = (xi, 0; 0,−xi), P i

2 = (yi, 0; 0,−yi), i =
0, 1, . . . of Algorithm 2 displayed as the points(xi, yi) in thex− y coordinate system.

wherex, y ∈ R and terminates after 34 approximations at the final approximation

P 34
1 =

(
2.14142 0

0 −2.14142

)
and P 34

2 =

(
1.43431 0

0 −1.4343

)
.

Note that the value||P 34
2 || = 2.02842712474404 is coincident with the value ofξ2 calculated by

Algorithm 1 in Example 6.1. Figure 6.11 displays the approximations(P i
1, P

i
2), i = 0, 1, 2, . . .

as the points(xi, yi) in thex− y coordinate system.





Chapter 7

Convergence analysis

This chapter is devoted to the analysis of the space and time discretization errors for Problem
(S). The arguments of the proof are partly based on the paper [AC00]. The first section con-
centrates on the derivation of the discretization error, the second section specifies results for
the problem with one discrete time step and introduces aresidualrefinement indicator as a tool
for the space discretization error control. Throughout this chapter,x = (u, p1, . . . , pM) solves
Problem 4.1 andX = (U, P1, . . . , PM) solves Problem(S).

7.1 Convergence of the discrete problem

Let the discretization error be
ej := x(tj)−X(tj)

and let a piecewise affine functioñx(t) ∈ C(0, T ;H) be defined by

x̃(t) :=
t− tj−1

kj

x(tj) +
tj − t

kj

x(tj−1), (7.1)

whereIj := (tj−1, tj), kj := tj−tj−1. Setẽ := x̃−X ∈ C(0, T ;H). Let tj−1/2 := (tj +tj−1)/2
and recalltj−1/2 ≤ t ≤ tj. Through a symmetric and positive definite bilinear forma(·, ·) we
can define the energy norm

|| · || := a(·, ·)1/2.

Proposition 7.1. For all Y1, . . . , YN ∈ S, tj−1/2 ≤ τj ≤ tj there existsn ∈ {0, 1, . . . , N} such
that

1/2 max
l=0,...,N

||el||2 ≤||e0||2 + 19/2||kẍ||2L1(0,tn)

+
n∑

j=1

2kj{a(X(τj), Yj − ẋ(τj))− l(τj)(Yj − ẋ(τj))}

+
n∑

j=1

2kj{ψ(Yj)− ψ(ẋ(τj))},

(7.2)
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wherek ∈ L∞(0, T ) is defined byk(t) = kj if tj−1 ≤ τj−1 ≤ tj, and

n∑
j=1

(θj − 1/2)||ej − ej−1||2 ≤ ||e0||2 + 1/2 max
l=0,...,N

||el||2 + 19/2||kẍ||2L1(0,T )

+
n∑

j=1

2kj{a(X(τj), Yj − ẋ(τj))− l(τj)(Yj − ẋ(τj)) + ψ(Yj)− ψ(ẋ(τj))}
(7.3)

In case thatk = kj = T/N and τj = tj−1/2 for all j = 1, . . . , N , we have somen ∈
{0, 1, . . . , N} such that

1/2 max
l=0,...,N

||el||2

≤||e0||2 + k4/2(||...x ||2L1(0,tn) + 7/8||ẍ||2L∞(0,tn))

+
n∑

j=1

2kj{a(X(tj−1/2), Yj − ẋ(tj−1/2))− l(tj−1/2)(Yj − ẋ(tj−1/2))}

+
n∑

j=1

2k{ψ(Yj)− ψ(ẋ(tj−1/2))},

(7.4)

Proof. [AC00], Proposition 5.1.

Definition 7.1 (ChoosingYj). Supposex = (u, p1, . . . , pM) solves Problem 4.1 andX =
(U, P1, . . . , PM) solves Problem (S). Then letWj ∈ S1

D(T ) be a fixed approximation tȯu(t)
and let

Qj = (Mṗ1(τj), . . . ,MṗM(τj)), (7.5)

whereM : L1(Ω) → S0(T ) denotes a mean operator defined by

(Mσ)|T :=

∫
T

σ dx/meas(T ) (T ∈ T ) (7.6)

and, for allj = 1, . . . , N , set
Yj := (Wj, Qj) ∈ S. (7.7)

For a special choice ofYj, j = 1, . . . , N from the Definition 7.1 we can prove the following
lemma.

Lemma 7.1. For all j = 1, . . . , N we have

ψ(Yj) ≤ ψ(ẋ(τj)). (7.8)

Proof. By a definition ofψ(·),

ψ(Yj) =

∫
Ω

(
D1(Mṗ1(τj)) + · · ·+DM(MṗM(τj))

)
dx

and

ψ(ẋ(τj)) =

∫
Ω

(
D1(ṗ1(τj, x)) + · · ·+DM(ṗM(τj, x))

)
dx.
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TheJensen inequalityfor convex functionsDi(·) = σy
i || · ||, i = 1, . . . ,M yields for every

triangleT ∈ T the inequality

Di(Mṗi(τj)) = Di

(∫
T

ṗi(τj, x) dx/meas(T )
)
≤
∫

T

Di(ṗi(τj, x)) dx/meas(T )

and after the integration of this overT it holds for alli = 1, . . .M that∫
T

Di(Mṗi(τj)) dx ≤
∫

T

Di(ṗi(τj, x)) dx (7.9)

We sum inequalities (7.9) overi = 1, . . . ,M and all elementsT ∈ T and deduce the inequality
(7.8).

Lemma 7.2. For all j = 1, . . . , N we have

a(X(τj), Yj − ẋ(τj))− l(τj)(Yj − ẋ(τj)) =

∫
Ω

(σ(τj)− Σ(τj)) : ε(u̇(τj)−Wj) dx. (7.10)

Proof. [AC00], Lemma 5.5.

Now we are in the position to prove

Theorem 7.1.a) If tj−1/2 ≤ τj ≤ tj for all j = 1, . . . , N , we have for allWj ∈ S1
D(T )

max
l=0,...,N

{1/4||C−1/2(σ − Σ)(tl)||2L2(Ω) + 1/2
M∑
i=1

||H1/2
i (pi − Pi)(tl)||2L2(Ω)}

≤ ||C−1/2(σ − Σ)(0)||2L2(Ω) +
M∑
i=1

||H1/2
i (pi − Pi)(0)||2L2(Ω)

+ 19/2||k(C−1/2σ̈,H1/2
1 p̈1, . . . ,H1/2

M p̈M)||2L1(0,T ;L2(Ω))

+ 1/2||k2C−1/2σ̈||2L2(0,T ;L2(Ω)) + (1/2 + 4T )
N∑

j=1

kj||C1/2ε(u̇(τj)−Wj)||2L2(Ω)

(7.11)

and, withθj := (τj − tj−1)/kj,

N∑
j=1

(θj − 1/2)
{
||C−1/2{(σ − Σ)(tj)− (σ − Σ)(tj−1)}||2L2(Ω)

+
M∑
i=1

||H1/2
i {(pi − Pi)(tj)− (pi − Pi)(tj−1)}||2L2(Ω)

}
≤ 3||C−1/2{(σ − Σ)(0)}||2L2(Ω) + 3

M∑
i=1

||H1/2
i (pi − Pi)(0)||2L2(Ω)

+ 57/2||k(C−1/2σ̈,H1/2
1 p̈1, . . . ,H1/2

M p̈M)||2L1(0,T ;L2(Ω)) + 3/2||k2C−1/2σ̈||2L2(0,T ;L2(Ω))

+ (3/2 + 12T )
N∑

j=1

kj||C1/2ε(u̇(τj)−Wj)||2L2(Ω).

(7.12)
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b) If k = kj = T/N andτj = tj−1/2 for all j = 1, . . . , N , we have for allWj ∈ S1
D(T )

max
l=0,...,N

{1/4||C−1/2(σ − Σ)(tl)||2L2(Ω) + 1/2
M∑
i=1

||H1/2
i (pi − Pi)(tl)||2L2(Ω)}

≤ ||C−1/2(σ − Σ)(0)||2L2(Ω) +
M∑
i=1

||H1/2
i (pi − Pi)(0)||2L2(Ω)

+ 1/2(||k2(C−1/2σ̈,H1/2
1 p̈1, . . . ,H1/2

M p̈M)||2L∞(0,T ;L2(Ω))

+ 7/8||k2(C−1/2...
σ,H1/2

1

...
p 1, . . . ,H1/2

M

...
pM)||2L1(0,T ;L2(Ω)))

+ 1/2||k2C−1/2σ̈||2L2(0,T ;L2(Ω)) + (1/2 + 4T )
N∑

j=1

kj||C1/2ε(u̇(τj)−Wj)||2L2(Ω).

(7.13)

Proof. According to the definition ofa, we have

||e||2 = a(x−X, x−X) = ||C−1/2(σ − Σ)||L2(Ω) +
M∑

j=1

||H1/2
j (pj − Pj)||2L2(Ω). (7.14)

Hence, with Lemma 7.1 and 7.2, the estimate (7.2) implies

1/2 max
l=0,...,N

(
||C−1/2(σ − Σ)(tl)||2L2(Ω) +

M∑
i=1

||H1/2
i (pi − Pi)(tl)||2L2(Ω)

)
≤||C−1/2(σ − Σ)(t0)||2L2(Ω) +

M∑
i=1

||H1/2
i (pi − Pi)(t0)||2L2(Ω)

+ 19/2||k(C−1/2σ̈,H1/2
1 p̈1, . . . , Ḧ1/2

M p̈M)||2L1(0,tn)

+ 2
n∑

j=1

kj

∫
Ω

(σ − Σ)(τj) : ε(u̇(τj)−Wj) dx.

(7.15)

Define the continuous, piecewise affine functionσ̃ by the nodal interpolation, fortj−1 ≤
t ≤ tj, j = 1, . . . , N

σ̃(t) :=
(tj − t)

kj

σ(tj) +
(t− tj)

kj

σ(tj−1). (7.16)

A simple one dimensional interpolation error estimate [AC00] yields

||C−1/2(σ − σ̃)(τj)||LΩ ≤
∫ tj

τj

||C−1/(σ̇ − σ̃)||L2(Ω) dt

≤kj/2||C−1/2σ̈||L1(tj−1,tj ;L2(Ω)).

(7.17)
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The last term in (7.15) is then bounded

2
n∑

j=1

kj

∫
Ω

((σ − Σ)(τj)) : ε(u̇(τj)−Wj) dx

≤2
N∑

j=1

kj||C−1/2(σ − Σ)(τj)||L2(Ω)||C1/2ε(u̇(τj)−Wj)||L2(Ω)

≤2
N∑

j=1

(
k

1/2
j ||C−1/2(σ − σ̃)(τj)||L2(Ω)

)(
k

1/2
j ||C1/2ε(u̇(τj)−Wj)||L2(Ω)

)
+ 2

N∑
j=1

(
||C−1/2(σ̃ − Σ)(τj)||L2(Ω)

)(
kj||C1/2ε(u̇(τj)−Wj)||2L2(Ω)

)
≤2

N∑
j=1

kj||C−1/2(σ − σ̃)(τj)||2L2(Ω) + 1/2
N∑

j=1

kj||C1/2ε(u̇(τj)−Wj)||2L2(Ω)

+ 1/4
N∑

j=1

||C−1/2(σ̃ − Σ)(τj)||2L2(Ω) + 4
N∑

j=1

k2
j ||C1/2ε(u̇(τj)−Wj)||2L2(Ω).

≤1/2
n∑

j=1

k3
j ||C−1/2σ̈||2L1(tj−1,tj ;L2(Ω)) + 1/4||C−1/2(σ̃ − Σ)(τj)||L2(Ω)

+ (1/2 + 4T )
N∑

j=1

kj||C1/2ε(u̇(τj)−Wj)||2L2(Ω)

≤1/2||k2C−1/2σ̈||2L2(0,T ;L2(Ω)) + 1/4||C−1/2(σ̃ − Σ)(τj)||L2(Ω)

+ (1/2 + 4T )
N∑

j=1

kj||C1/2ε(u̇(τj)−Wj)||2L2(Ω).

(7.18)

Substitution of (7.18) into (7.15) and the absorption of||C−1/2(σ̃ − Σ)(tj)||L2(Ω) together with
the estimate

||C−1/2(σ̃ − Σ)(τj)||L2(Ω) ≤ max
l=0,...,N

||C−1/2(σ − Σ)(tl)||L2(Ω), (7.19)

infer the estimate (7.11).

Similarly, an assertion (7.3) due to (7.1) and (7.2) implies

n∑
j=1

(θj − 1/2)||ej − ej−1||2 ≤||e0||2 + 1/2 max
l=0,...,N

||el||2 + 19/2||kẍ||2L1(0,T )

+ 2
n∑

j=1

kj

∫
Ω

((σ − Σ)(τj)) : ε(u̇(τj)−Wj) dx.

(7.20)
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Here, we can bound the term2
n∑

j=1

kj

∫
Ω

((σ − Σ)(τj)) : ε(u̇(τj) −Wj) dx by the inequality

(7.18). Besides

1/2 max
l=0,...,N

||el||2 ≤ 2 max
l=0,...,N

{1/4||C−1/2(σ−Σ)(tl)||2L2(Ω)+1/2
M∑
i=1

||H1/2
i (pi−Pi)(tl)||2L2(Ω)},

≤ 2{right-hand side of(7.11)},
(7.21)

which infers an assertion (7.12).

The same arguments as for (7.2) yield for (7.4) the claimed higher convergence estimate in
time (7.13).

7.2 One time step convergence

Let us analyze one discrete time step only, i.e.,N = 1. We recall the errorei is defined as

ei = (u− U, p1 − P1, . . . , pM − PM)(ti),

for i = 0, 1. (7.15) reads for the (energy) norm ofe1

1/2 ||e1||2 ≤ ||e0||2 + 19/2||k1(C−1/2σ̈,H1/2
1 p̈1, . . . , Ḧ1/2

M p̈M)||2L1(0,t1)

+2k1

∫
Ω

(σ − Σ)(τ1) : ε(u̇(τ1)−W1) dx. (7.22)

With the choiceW1 = U̇(τ1)−J (ė(τ1)), wheree(τ1) represents the displacement errore(τ1) :=
u(τ1)−U(τ1) andJ is an approximation operator defined in [CB00], one obtains the estimate∫

Ω

(σ(τ1)− Σ(τ1)) : ε(u̇(τ1)−W1) dx ≤
∫
Ω

(σ(τ1)− Σ(τ1)) : ε(ė(τ1)− J ė(τ1)) dx. (7.23)

We omit the time argumentτ1 for simplicity of notation. Sinceσ−Σ is a symmetric matrix, we
have

(σ − Σ) : ε(u̇−W1) = (σ − Σ) : ∇(u̇−W1)

and an elementwise integration by parts shows∫
Ω

(σ − Σ) : ε(ė−J ė) dx =

∫
Ω

(f + divT Σ) : (ė−J ė) dx−
∫
∪E

[Σ · n] : (ė−J ė) dx, (7.24)

where∪E is the skeleton of all edges inT , divT is the elementwise divergence and[Σ · n] ∈
L2(∪E) denotes ajumpof Σ defined on every edgeE ∈ E by

[Σ · n]E =


(Σ|T1 − Σ|T2) · n if E = T1 ∩ T2, T1, T2 ∈ T , n points out ofT1,
0 if E ∈ ΓD,
g|E − Σ|T · n if E ∈ ΓN ∩ ∂T, n points out ofT.

(7.25)
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SinceΣ is elementwise constant matrix, divT (Σ) = 0. Introducing the local mesh-size and the
edge-size denoted byhT andhE , the Cauchy-Schwartz inequality yields∫

Ω

f(τ1) : (ė− J ė) dx ≤ ||hT f ||L2(Ω)||h−1
T (ė− J ė)||L2(Ω), (7.26)

∫
∪E

[Σ · n] : (ė− J ė) dx ≤ ||h1/2
E [Σ · n]||L2(∪E)||h−1/2

E (ė− J ė)||L2(∪E). (7.27)

We notice thaṫe = (e(t1) − e(t0))/k1 and apply Theorem 2.1 in [CB00] concerning approxi-
mation properties of functions on finite element spaces,

||h−1
T (ė− J ė)||L2(Ω) ≤ (C4/k1)||∇(e(t1)− e(t0))||L2(Ω),

||h−1/2
E (ė− J ė)||L2(∪E) ≤ (C5/k1)||∇(e(t1)− e(t0))||L2(Ω),

(7.28)

where(hT , hE)-independent constantsC4, C5 > 0 only depend onΩ,ΓN ,ΓD and the shape
of the elementsT ∈ T and patches (not on their size). Ellipticity of the bilinear forma(·, ·),
formulated in Proposition 5.2, implies fori = 0, 1,

||∇e(ti)||L2(Ω) ≤ C6||ei||,

where the constantC6 > 0 depends on the number of plastic strainsM , elastoplastic material
parametersC,H1, . . . ,HM and the domainΩ. TakingC7 := C6 max{C4, C5}, we obtain

2k1

∫
Ω

(σ − Σ) : ε(ė− J ė) dx ≤ C7(||e0||+ ||e1||) (||hT f ||L2(Ω) + ||h1/2
E [Σ · n]||L2(∪E))︸ ︷︷ ︸

=:ηR

,

(7.29)

whereηR represents aresidualrefinement indicator, established in [JH92]. The substitution of
well-known inequalities for allα > 0,

||e0||ηR ≤
1

2C7α
||e0||+

C7α

2
η2

R,

||e1||ηR ≤
1

2C7α
||e1||+

C7α

2
η2

R

into (7.29) and into (7.22) deduces

α− 1

2α
||e1||2 ≤ (1 +

1

2α
)||e0||2 + αC2

7 η
2
R + 19/2||k1(C−1/2σ̈,H1/2

1 p̈1, . . . , Ḧ1/2
M p̈M)||2L1(t0,t1).

Takingα = 2 andC2
8 := 8C2

7 , we have proved the following proposition.

Proposition 7.2 (One time step discrete error).Lete0 be the discretization error in the initial
discrete timet0. That the discretization error in the first discrete timet1 satisfies

||e1||2 ≤ 5||e0||2 + C2
8 η

2
R + 38||k1(C−1/2σ̈,H1/2

1 p̈1, . . . , Ḧ1/2
M p̈M)||2L1(t0,t1). (7.30)





Chapter 8

Numerical Algorithms

8.1 FEM

Let T be a regular triangulation in triangles ofΩ in R2 and letN be the set of all nodes in
T , N = card(N ). For i = 1, . . . , N , let ϕ̂i be a hat function on the i-th node [Car00c]. As
it has been show in Chapter 6, the discrete problem (S2-two equations) involves the nonlinear
equality coupled with the minimization problems posed on every elementT of the triangulation
T .

Problem 8.1 (FEM problem). GivenU0 ∈ S1
D(T ), P 0

1 , P
0
2 ∈ devS0(T )d×d

sym, seekU1 ∈ S1
D(T )

satisfying, for allV ∈ S1
D(T ),∫

Ω

C(ε(U1)− P 1
1 − P 1

2 ) : ε(V ) dx−
∫

Ω

f(t)V dx−
∫

ΓN

gV dx = 0, (8.1)

whereP = (P1, P2)
T = (P 1

1 , P
1
2 )T − (P 0

1 , P
0
2 )T minimizes on every elementT ∈ T the func-

tional

min
Q

1

2
(Ĉ + Ĥ)Q : Q− Â : Q+ ||Q||σy , (8.2)

among allQ = (Q1, Q2)
T , Q1, Q2 ∈ Rd×d

sym, trQ1 = trQ2 = 0. MatricesĈ, Ĥ, Â are defined as

Ĉ :=

(
C C
C C

)
and Ĥ :=

(
H1 0
0 H2

)
,

Â :=

(
Cε(U)
Cε(U)

)
+

(
Cε(U0)
Cε(U0)

)
− (Ĉ + Ĥ)

(
P 0

1

P 0
2

)
.

(8.3)

and the norm|| · ||σy , ||Q||σy := σy
1 ||Q1||1 + σy

2 ||Q2||.

Let us denote the left size of (8.1) asF (U1, V ) and reformulate (8.1) as a nonlinear problem
in U1.

Problem 8.2 (abstract FEM problem). FindU1 ∈ S1
D(T ) satisfying

F (U1, V ) = 0 for all V ∈ S1
D(T ). (8.4)
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Note thatF (·, V ) is a nonlinear functional, that is generallynon-smooth. Finite element
basisϕi for i = 1, . . . , 2N in S1

D(T ) is generated as

ϕi :=

{
(ϕ̂ i+1

2
, 0) if i odd

(0, ϕ̂ i
2
) if i even.

(8.5)

We look forU1 in the form of the linear combination of finite element basis

U1 =
2N∑
i=1

U1
i ϕi

and assembly coefficients of the linear combination in a vector

U1 = (U1
1 , . . . , U

1
2N)T . (8.6)

Further, by substitutingv = ϕi for i = 1, . . . , 2N to (8.4), we obtain the vector form of the
nonlinear problem

Fi(U
1) := F (U1, ϕi) = 0 for all i = 1, . . . , 2N,

which can be reformulated as a nonlinear system of equations for2N unknowns inU1
i ,

Fi(U
1) = 0 for all i = 1, . . . , 2N. (8.7)

The nonlinear system (8.7) is solved iteratively. Starting with the initial approximation vector
U1

0 of the solutionU1 we generate thek-th approximationU1
k from thek−1-th approximation

U1
k−1 by theNewton-Raphsonmethod

U1
k = U1

k−1 +4U1
k, (8.8)

where the increment4U1
k solves a linear system of2N equations(
DF(U1

k−1) BT

B 0

)(
4U1

k

λ

)
=

(
−F(U1

k−1)
0

)
. (8.9)

A matrix B and the vector ofLagrange parametersλ are related to the incooperation of the
Dirichlet boundary conditions [CK01]. A matrixDF(U1

k) ∈ R2N×2N represents a sparsetan-
gential stiffness matrix

(DF(U))ij =
∂(F(U))i

∂Uj

.

Since we can not determineF(U) exactly, but only iteratively, the tangential matrixDF(U) is
approximated by acentral difference scheme

(DF(U))ij ≈
(F(U1, . . . , Uj + εj, . . . , U2N)− F(U1, . . . , Uj − εj, . . . , U2N))i

2εj
, (8.10)

with small difference parametersεj > 0, j = 1 . . . N . Typically we can choose for allj =
1, . . . , 2N

εj :=
√
εM max(1, |Uj|),

whereεM represents a computer relative accuracy of a number representation [Luk90].
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Figure 8.1: Example of the convergence behavior of Algorithm 3, displayed is residual versus
number of Newton iterations. The requiredtolerance = 1e−10 is reached already in the5-th
iteration, the algorithm terminates in the8-the step when residual growsr8 > r7.

Remark 8.1. Another kind of methods for solving (8.4) would be for instance theQuasi-
Newton methodsthat approximateDF(U) by least change secant methodssuch as theBroyden
method, DFP, BFGSmethods or some of their implementations for sparse matrices [Kos93].

The following algorithms is used for solving the nonlinear system (8.4).

Algorithm 3 (Newton-Raphson solver with three stages convergence control).Given initial
U1

0 ∈ R2N satisfying Dirichlet boundary condition, an integermaxstep, a tolerance > 0, set
r0 = ||F(U1

0)|| the initial residual,k = 0, close = 0.
(a) Setk = k + 1.
(b) If k = maxstep then setconvergence = 0 and stop.
(c) SetU1

k := U1
k−1 +4U1

k, where4U1
k solves the linear system(

DF(U1
k−1) BT

B 0

)(
4U1

k

λ

)
=

(
−F(U1

k−1)
0

)
.

(d) Setrk = ||F(U1
k)−BTλ||, rel =

||U1
k−U1

k−1||
||U1

k||+||U
1
k−1||

(or rel = 0, if ||U1
k−1||+ ||U1

k|| = 0 ).

(e) If close = 1 andrk ≥ rk−1 then setconvergence = 1, outputU1
k and stop.

(f) If rel < tolerance then setclose = 1.
(g) Goto (a).

Algorithm 3 works in the following way. Due to the upgrade in the step (c), we generate
approximationsU1

k,k = 1, 2, . . . of the exact solutionU1 iteratively. The iterative process
becomes stable, if

||U1
k −U1

k−1||
||U1

k||+ ||U1
k−1||

< tolerance or ||U1
k||+ ||U1

k−1|| = 0.
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We carry on iterating with the residual decreasing theoretically down to0. Due to the rounding
errors, the residualrk does not attain the zero value, however stops at certain value related to
the machine precision. For this reason we terminate the iterative process if the next residual is
smaller than the previous residualrk ≥ rk−1. The condition (b) controls the maximal number
of iterations. Ifk = maxstep the iteration process fails to give a good approximation of the
solution within given number of iterationsmaxstep.

Remark 8.2 (Choice ofmaxstep and damping). For the purely elastic problem is the sys-
tem of equations (8.7) linear and the one Newton step (8.9) is sufficient for reaching the zero
residual (apart from rounding effects). For plasticity problems (with present hardening), one
needs to apply more Newton steps (8.9) for reaching the residual under the given parameter
tolerance. Roughly speaking, the smaller the hardening is, the more Newton steps are required
and consequently the highermaxstep has to be given. In general, the Newton-Raphson method
does not convergence globally [Neč83]. In order to improve the convergence one introduces the
dampedNewton-Raphson method with the upgrade

U1
k+1 = U1

k + ρk+14U1
k+1, (8.11)

whereρk+1 is a (small) damping parameter> 0. The question of the proper choice ofρk+1 is not
studied here, and onlynon-damped Newton-Raphson methodwith ρk+1 = 1 for k = 1, 2, . . . is
applied in the numerical solver.

Algorithm 4 (Newton-Raphson solver with prescribed number of steps).Given initialU1
0 ∈

R2N satisfying Dirichlet boundary condition, an integersteps, setr0 = ||F(U1
0)|| the initial

residual,k = 0.
(a) Setk = k + 1.
(b) SetU1

k := U1
k−1 +4U1

k, where4U1
k solves the linear system(

DF(U1
k−1) BT

B 0

)(
4U1

k

λ

)
=

(
−F(U1

k−1)
0

)
.

(c) Setrk = ||F(U1
k)−BTλ||.

(d) If k=steps then end else goto (a).

Remark 8.3. There is no control over the residualrk calculated in step (c) and therefore no
guaranteed convergence. However, in our numerical experiments (Chapter 9), it turns out suffi-
cient to apply Algorithm 4 even with a small number ofsteps, e.g.,steps = 1.

8.2 Adaptive Mesh-Refining

LetX = (U, P1, . . . , PM) be the approximation of the (unknown) solutionx = (u, p1, . . . , pM)
calculated on the triangulationT . With the help of (exact) stressσ and the discrete stressΣ,

σ = C(ε(u)− p1 − · · · − pM) and Σ = C(ε(U)− P1 − · · · − PM),
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the energy norm of the errore = x−X can be expressed as

e2 = a(x−X, x−X) = ||C−1/2(σ − Σ)||2L2(Ω) +
M∑
i=1

||Hi(pi − Pi) : (pi − Pi)||2L2(Ω). (8.12)

Our numerical experiments focus on theZZ-error estimator[CF00]. SinceΣ is a piecewise
constant, we compute a continuous piecewise affine functionΣ∗ ∈ S1(T )d×d such that

||Σ− Σ∗||L2(Ω) = min
Σ′∈S1(T )d×d

||Σ− Σ′||L2(Ω). (8.13)

It is naturally required that the proper averaging functionΣ∗ of S1(T )d×d has to approx-
imate the Neumann boundary conditions. To make this possible, it is required that the aver-
aging functionΣ∗ ∈ S1(T )d×d may be non-symmetric and thatg satisfies some compatibil-
ity conditions. LetE denote the set of edges,N the set of nodes of the triangulationT and
EN := {E ∈ E : E ∈ ΓN} the set of edges at the Neumann boundary. For eachE ∈ EN , let
nE denote the (constant) outer unit normal along the flat surface pieceE. To enable a nodal
interpolation

Σ∗(z) · nE = g(z) for all z ∈ N with E ∈ EN (8.14)

we require some continuity ong, cf. [CF00] for details. We can define

Q(T , g) := {Σ∗ ∈ S1(T )d×d : Σ∗
h satisfies(8.14)}

and can calculate the global averaging functionΣ∗ from

||Σ− Σ∗||L2(Ω) = min
Σ′∈Q(T ,g)

||Σ− Σ′||L2(Ω). (8.15)

With the assumption of ’a small plastic error’,
∑M

i=1 ||pi − Pi||L2(Ω) ≈ 0 can one construct
the error estimatorη2 of e2 as

η2 := ||C−1/2(Σ− Σ∗)||2L2(Ω).

Since the calculation ofΣ∗ from (8.15) is expensive we construct instead the upper bound

||Σ−AΣ||L2(Ω) ≥ min
Σ′∈Q(T ,g)

||Σ− Σ′||L2(Ω), (8.16)

with an averagingoperatorA andAΣ satisfying (8.14), see [CF00] for more information.
Finally, we construct theZZ-error estimator

ηZ := ||C−1/2(Σ−AΣ)||L2(Ω)

and the elementwiseZZ-refinement indicatorηT,Z ,

ηT,Z := ||C−1/2(Σ−AΣ)||L2(T ).
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Remark 8.4 (residual error estimator). Another kind of the error indicator isresidualerror
indicatorηT,R defined by

η2
T,R = h2

T

∫
T

||f ||2 dx+

∫
∂T

hE[Σ · n]2 dx,

with the residual error estimatorηR already introduced in Chapter 7.

Theorem 8.1 (Equivalence ofηZ and ηR). Let f = 0 in T . Then there existλ andµ and the
smallest angle (in the triangulation)-depending constantsC ′ ≥ C ≥ 0 such that

CηR ≤ ηZ ≤ C ′ηR. (8.17)

Proof. The multiplicativity of the (Frobenius) matrix norm|| · || yields

1

||C+1/2||
||(Σ−AΣ)||L2(T ) ≤ ||C−1/2(Σ−AΣ)||L2(T ) ≤ ||C−1/2|| ||(Σ−AΣ)||L2(T ).

Moreover, Proposition 1.21. in [Ver96] states the existence of constantsC1 ≥ C2 ≥ 0, that
depend on the smallest angle in the triangulationT , such that

C1ηR ≤ ||(Σ−AΣ)||L2(T ) ≤ C2ηR.

Combining both estimates and definingC := C1

||C+1/2|| andC ′ := ||C−1/2||C2, the proof is
finished.

8.3 Nested Iteration Technique

The Newton-Raphson solver with three stages convergence control (Algorithm 3) performs well
on coarse meshes. Then the generation of the small system of linear equations (8.9) and its
solution is not very time consuming. For finer triangulations, we obtain a large system of linear
equations and every iteration step (c) in Algorithm 3 requires additional number of floating
point operations. In order to save the computational costs, one can implement anested iteration
technique, a technique of solving a nonlinear system of more meshes (triangulations). The
idea of this approach is the following: Assume we have a set ofF + 1 nested triangulations
{T0, T1, . . . , TF} satisfying

T0 ⊆ T1 ⊆ · · · ⊆ TF .

We solve a nonlinear system (8.9) using a (small) fixed number of iterationsk on a very coarse
initial meshT0. We prolongate the obtained approximation of the solution onto a finer meshT1

and use it as an initial approximation for an iterative solver onT1 and perform againk iterations.
This can be repeated on further meshesT2, . . . until we end up at solvingk iterations on the
finest triangulationTF .

Nested triangulationT1, . . . , TF can be generated by usingadaptive mesh-refinementtech-
niques. To the approximationU1

k of the solutionU1 on the meshTi we can calculate for every
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triangleT ∈ Ti anerror indicator ηT . For given0 ≤ θ ≤ 1, we mark the elementT for red-
refinement (it means the elementT of lengthsl1, l2, l3 will be split into four elements of lengths
l1/2, l2/2, l3/2) if

ηT ≥ θmax
T ′∈Ti

ηT ′ .

In order to avoid hanging nodes ared-green-bluerefinement is performed [Car00c]. In this way
is the next meshTi+1 from the meshTi generated. As the initial approximationU1

0 on the new
triangulationTi+1, we take the approximationU1

k defined on the triangulationTi prolongated
to the triangulationTi+1. More details about the nested iteration technique can be found in
[Hac85].

Algorithm 5 (Nested iteration technique with adaptivity).
(a) Start with coarse meshT0 and a ’good’ initial approximationU1

0 defined onT0, seti := 0.
(b) Compute the approximationU1

k applyingk Newton iterations with respect toTi.
(c) ComputeηT for all T ∈ Ti.
(d) Compute error bound

(∑
T∈Ti

η2
T

)1/2
and terminate or goto (e).

(e) Mark element T red ifηT ≥ θmax
T ′∈Ti

ηT ′.

(f) Perform red-green-blue refinement to avoid hanging nodes, update mesh toTi+1.
(g) GenerateU1

0 as the prolongation ofU1
k to Ti+1, seti := i+ 1 and goto (b).

Remark 8.5. The choiceθ = 0 leads to the refinement of every elementT ∈ T , to theuniform
mesh-refinement. The closerθ is to1 the less number of elements will be refined (possibly only
one element forθ = 1). Typical choice ofθ is thenθ = 1/2.

8.4 Time-stepping

Let {t0, . . . , tN} be a (ordered) set of discrete times, with a time stepki = ti − ki−1 for i =
1, . . . , N . LetT ∈ T be a (prescribed) triangulation ofΩ. Our objective is to solve the discrete
problem on triangulationT for all (prescribed) discrete timesti, i = 1, . . . , N with the least
possible computer complexity. Suppose for instance, Algorithm 3 is applied at every discrete
time ti with Si iteration steps needed for reaching the required convergence. It seems logical to
assume that the total number of iteration steps

∑N
i=1 Si reflects the complexity of the calculation.

From Proposition 7.2 we conclude that the smaller the time stepki, the smaller is the discrete
error and, consequently, the smaller is the number of iteration stepsSi in i-th discrete time. This
suggests an idea of solving the problem on a (ordered) larger set of discrete times

{t′0, . . . , t′N ′} ⊇ {t0, . . . , tN},

with t0 = t′0, tN = t′N ′ , N ′ ≥ N . The proposed algorithm calculates the discrete problem on
the original set{t0, . . . , tN} than is being adaptively ’enlarged’ in dependence of number of
iterationsSi.

Algorithm 6 (Adaptive time-stepping). Given{t0, . . . , tN} and two integers
0 ≤ Smin ≤ Smax ≤ ∞. Seti := 0, time step = t1 − t0.
(a) Solve the discrete problem with Algorithm 3. Output number of needed iterationsSi.
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(b) If Si < Smin settime step := time step/2 and goto (d).
(c) If Si > Smax settime step := 2 time step.
(d) If (i < N) and(ti + time step < ti+1) then insertti + time step betweenti andti+1, set
N := N + 1
(e) If i = N end, otherwise seti := i+ 1 and goto (a).

Remarks 8.1. (i) IntegersSmin, Smax determinate size of ’the next’ time step. If the number of
needed iterationsSi is sufficiently small respectively large (condition (b) respectively condition
(c) of Algorithm 6 the time step is divided by 2 respectively doubled.)

(ii) The choiceSmin = 0, Smax = ∞ leads to the ’uniform’ time discretization. If the ini-
tial set of discrete times is{t0, t0 + ∆t, t0 +N∆t}. Algorithm 6 performs calculations for the
discrete times{t0, t0 + ∆t, t0 + 2∆t, . . . , t0 +N∆t}.



Chapter 9

Numerical Experiments

Presented numerical experiments report on simulations in MATLAB 5.3 run on an Ultra SPARC
- II processor with 14 GB RAM and 250 MHz CPU speed. The implemented MATLAB solver
runs calculations for either elastic, single-yield or two-yield material models, involves the nested
iteration technique combined with adaptive or uniform mesh-refinement and adaptive time-
stepping. The numerical experiments demonstrate:

1. Two-yield plastic effects that arise in addition to single-yield plastic effects, such as dif-
ferent hysteresis curves and the evolution of elastoplastic zones.

2. Properties of the nested iteration technique such as experimental convergence rates for
adaptive (ZZ-refinement indicator) and uniform mesh-refinements, an influence of the
number of used Newton steps on the convergence.

3. The different computational complexity for elastic, single-yield and two-yield material
models.

Remark 9.1 (Meaning of colors in figures).In pictures, at those we would like to stress out
different elastoplastic zones of the deformed material, the following colors are used:

• black - denotes the material zones in purely elastic phase (plastic strainsP1 = 0, P2 = 0),

• dark gray (brown in the color scale) - denotes the material zones in the first plastic phase
(plastic strainsP1 6= 0, P2 = 0),

• light gray (light yellow in the color scale) - denotes the material zones in the second
plastic phase (plastic strainsP1 6= 0, P2 6= 0).

Remark 9.2 (Approximation of error). Since there is no example in two-yield plasticity with
known exact solution available, the error of the discrete approximation can not be computed
exactly. However, we calculate a reference solution(U ref , P ref

1 , P ref
2 ) on a sufficiently fine

reference triangulationTref . Let T0 ⊂ T1 ⊂ · · · ⊂ TF denote the nested triangulations in
the nested iteration technique. The reference triangulationTref is chosen for all numerical
experiments as the two times uniformly refined triangulationTF (see Figure 9.1 for comparison
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Figure 9.1: Estimated error is displayed versus the degrees of freedomN for the uniform and
adaptive mesh-refining, then the reference solution is calculated on once (curves with ’1 refine-
ment’ legend) or two times (curves with ’2 refinements’ legend) uniformly refined triangulation
TF . The difference of the convergence rates is more obvious for the adaptive refinements (the
expected convergence rate is0.5): ’two refinements’ give more realistic convergence rate than
’one refinement’.

with ’one uniform refinement’ strategy). IfΣ andΣref denote the stresses of the discrete and
the reference solutions, i.e.,Σref is the solution onTref , then

||C−1/2(Σ− Σref )||L2(Tref ),

estimates the error in the energy norm.

9.1 Beam with 1D effects

The problem of a beam to show one dimensional effects is displayed in Figure 9.2. We consider
the unit square shapeΩ = (0, 1)2 in ax − y coordinate system. The edge1 is a Dirichlet edge
with fixed y coordinate. The intersection point(0, 0) of edges1 and2 remains fixed in both
coordinatesx andy, i.e.,

u(0, y) = (0, u2) for 0 < y < 1,

u(0, 0) = (0, 0).
(9.1)

The edges2 and3 represent the Neumann edges with zero Neumann condition (tension free
surfaces)

g(x, 0) = g(x, 1) = (0, 0) for 0 < x < 1 (9.2)

and the edge4 is also a Neumann edge with a nonzero Neumann condition representing the
constant surface force that deforms the beam inx coordinate

g(1, y) = (gx, 0) for 0 < y < 1. (9.3)
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Figure 9.2: Geometry and coarse meshT0

of a beam problem with 1D effects.
Figure 9.3: Geometry and coarse meshT0

of a beam with 2D effects.

The deformation of the beam is expected in the form

u(x, y) = (u1, u2)(x, y) = (x · u1(1, 0), y · u2(0, 1)) for (x, y) ∈ Ω, (9.4)

which implies for the strain tensor

ε(u) =

(
u1(1, 0) 0

0 u2(0, 1)

)
in Ω. (9.5)

Besides that, the Neumann boundary conditions admit the stress tensor

σ =

(
gx 0
0 0

)
in Ω. (9.6)

There holds the Hook’s law in the purely elasticity phase (no plasticity),σ = 2µε + λ(tr ε)I,
i.e., gx

0
0

 =

2µ+ λ λ 0
λ 2µ+ λ 0
0 0 2µ

u1(1, 0)
u2(0, 1)

0

 . (9.7)

Simple inverse rule2µ+ λ λ 0
λ 2µ+ λ 0
0 0 2µ

−1

=


2µ+λ

4µ(µ+λ)
− λ

4µ(µ+λ)
0

− λ
4µ(µ+λ)

2µ+λ
4µ(µ+λ)

0

0 0 1
2µ


implies that the deformation of the beam can be expressed as

u(x, y)(t) = (x · 2µ+ λ

4µ(µ+ λ)
,−y · λ

4µ(µ+ λ)
) · gx(t). (9.8)
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Figure 9.4: Displayed loading-deformation relation in terms of the uniform surface loading
gx(t) versus thex-displacement of the point(0, 1) for problem of the single-yield beam with
1D effects.

Figure 9.5: Displayed loading-deformation relation in terms of the uniform surface loading
gx(t) versus thex-displacement of the point(0, 1) for problem of the two-yield beam with 1D
effects.
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material model CPU time total number CPU time spent on
(in sec) of Newton steps Algorithm 2 (in %)

single-yield 347 492 13.8
two-yield 1603 588 77.4

Table 9.1: Performance of MATLAB solver for the problem of beam with 1D effects. The
calculation was run for the discrete timest = {0, 0.5, 1, . . . , 50}, and uniform meshT0 with 16
Elements.

material model CPU time total number CPU time spent on
(in sec) of Newton steps Algorithm 2 (in %)

single-yield 430 589 14.8
two-yield 1647 677 74.2

Table 9.2: Performance of MATLAB solver for the first numerical experiment for the problem
of beam with 2D effects. The calculation was run for the discrete timest = {0, 0.5, 1, . . . , 50},
and uniform meshT0 with 16 Elements.

Remark 9.3 (Limitation of our model). For the critical valuegx = 4µ(µ+λ)
λ

is obviously
u2(0, 1) = −1 and the shifted edge3 originally located above the edge2 coincides with the
edge2. It would mean that the original volume1 of the elastic beam becomes0, which is not
mechanically allowed. The reason for it is that we have considered the linear elastic tensorε,
which only gives realistic description of an elastic medium for small deformations.

The elasticity phase lasts till||devσ|| ≤ σy
1 or equivalently till it holds
√

2gx ≤ σy
1 ,

the plasticity phase occurs forgx >
σy
1√
2
.

The numerical experiment for the hysteresis behavior demonstration was the calculation on
the coarse meshT0 with 16 elements, discrete times{0, 0.5, 1,. . . , 50}, in case of the uniform
cyclic surface loading

gx = 12 sin(tπ/20).

MATLAB solver was specified by these properties: no time-stepping, no nested iteration tech-
nique, Newton-Raphson solver with three stages convergence control (Algorithm 3). In order
to compare two different material models, we firstly considered the two-yield material specified
by parameters

µ = 1000, λ = 1000, σy
1 = 5, h1 = 100, σy

2 = 7, h2 = 50

and secondly the single-yield material specified by parameters

µ = 1000, λ = 1000, σy = 5, h = 100.

Figures 9.4 and 9.5 showhysteresis curvesin terms of the dependence ofgx(t) on the x-
displacementux(t) of the point(x = 1, y = 0) for the single and two-yield material models.
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According to theoretical prediction, the calculated hysteresis curve for the two-yield material
consists of the two plastic parts, whereas there is only one plastic part for the single-yield ma-
terial.

9.2 Beam with 2D effects

In order to take two dimensional effect into account, we study another beam problem. Its geom-
etry is identical to the problem of beam with 1D effects, and the only difference being modified
is the Dirichlet boundary condition, see Figure 9.3. We prescribe the Dirichlet boundaryΓD in
both directions (i.e, the beam is fixed in both directions atΓD), i.e.,

u(0, y) = (0, 0) for 0 < y < 1. (9.9)

It is expected that there is no known analytical solution of this problem.

The first numerical experiment demonstrates two-dimensional hysteresis effects. Material
and time parameters, the shape of the mesh and the solver properties are identical to the nu-
merical experiment for the problem of the beam with 1D effects. Figures 9.6 and 9.7 show the
hysteresis curvesfor the single and the two-yield material. A comparison of Figures 9.6 and
9.7 with Figures 9.4 and 9.5 indicates that two-dimensional deformation effects smooth out the
elasto-plastic transition. Besides of that, the beam with 2D effects is less deformed than the
beam with 1D effects.

The second numerical experiment describes an elasto-plastic transition during the deforma-
tion process. The calculation was performed at discrete times{0, 0.5, 1, ..., 10}, applying the
uniform surface loading

gx = t

and the same materials as in the first experiment. MATLAB solver was specified by these
properties: no time-stepping, nested iteration technique (Algorithm 5) with uniformly refined
meshesT0 ⊂ T1 ⊂ T2 ⊂ T3 ⊂ T4 ⊂ T5 (with 16, 64, 256, 1024, 4096 and16384 elements),
Newton-Raphson solver with one step (Algorithm 4). Figures 9.8 and 9.9 display the evolution
of elastoplastic zones at chosen discrete times in the deformed configuration. As the deforma-
tion process starts (at discrete timest = {0, 0.5, . . . , 4.5}), material behaves purely elastically.
At discrete timet = 5.0 there appear the first plastic zones in corners (where the material is
fixed) and also in the right part of the domainΩ (where external forcesg act). For the two-yield
model there appear the second plastic zones after the discrete timet = 5.5, and they develop in
the same way as the first plastic zones at the timet = 5. For the final discrete timet = 10, both
material models are in entirely plastic phases.

The third numerical experiment indicates properties of the nested iteration technique. We
consider one discrete time-step problem witht0 = 0 and t1 = 8.5, the material with same
properties as in the second numerical experiment. MATLAB solver was specified by these
properties: no time-stepping, nested iteration technique (Algorithm 5) with uniformly (T0 ⊂
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material model CPU time total number CPU time spent on
(in hours) of Newton steps Algorithm 2 (in %)

single-yield 15.59 126 3.5
two-yield 29.57 126 49.6

Table 9.3: Performance of MATLAB solver in the second numerical experiment for the problem
of beam with 2D effects. The calculation was run for the discrete timest = {0, 0.5, 1, . . . , 10},
and uniform meshT5 with 16384 elements.

T1 ⊂ T2 ⊂ T3 ⊂ T4 ⊂ T5 with 16, 64, 256, 1024, 4096 and16384 elements) or adaptively re-
fined meshed, Newton-Raphson solver with 1, 2, or 3 steps (Algorithm 4). Figures 9.10 and
9.11 display uniform and adaptive mesh-refinements. Figures 9.12 display the (estimated) error
and the ZZ-error estimator versus degrees of freedom in each nested iteration for1, 2 or 3 New-
ton steps. The experimental convergence rate is0.2 in case of the uniform mesh-refinement,
while the adaptive mesh-refinement strategy improves the experimental convergence rate to
0.5. Note that the convergence rate0.5 is optimal and it indicates the linear convergence (then
errore ∼ O(N−1/2) for two dimensional problems). There is one practically important aspect
of the nested iteration technique evident in this numerical experiment. The application of more
(2, 3, . . . ) Newton steps within every nested iteration does not improve the experimental con-
vergence rate in comparison to one Newton step. Since every extra Newton step requires more
computational effort, it is therefore recommendable to apply just one Newton step for every
nested iteration.

9.3 Rotationally symmetric ring

The model of a rotationally symmetric ring is shown in Figure 9.13 which represents a two
dimensional section of a tube of inner radius ofr = 1 and an outer radius ofr = 2. We assume
no volume forcesf = 0 but radially applied surface forces defined with the help of the vector
er = (cosφ, sinφ) in polar coordinates systemr − φ via

g(r, φ, t) =

{
ter for r = 1,
−t/4er for r = 2.

(9.10)

Due to the radial symmetry of the geometry and the applied surface forces, one expects a ro-
tationally symmetric solutionu(r, φ, t) = u(r, t), p1(r, φ, t) = p1(r, t), p2(r, φ, t) = p2(r, t)
for all r, φ, t. Indeed, an analytical calculation [Alb01] admits in the single-yield case (i.e.,
p = p1, p2 = 0) the solution

u(r, φ, t) = ur(r, t) · er,

p(r, φ, t) = Pr(r, t) · (er ⊗ er − eφ ⊗ eφ),
(9.11)

eφ = (− sinφ, cosφ) and the exact formulae forur(r, t) andPr(r, t) given in [Alb01]. Possible
generalization to the two-yield case is however not known to the author. For reason of the sym-
metrical solution property, we discretize one quarter of the ring only; see Figure 9.14, which



88 CHAPTER 9. NUMERICAL EXPERIMENTS

Figure 9.6: Displayed loading-deformation relation in terms of the uniform surface loading
gx(t) versus thex-displacement of the point(0, 1) in the first numerical experiment for the
problem of the single-yield beam with 2D effects.

Figure 9.7: Displayed loading-deformation relation in terms of the uniform surface loading
gx(t) versus thex-displacement of the point(0, 1) in the first numerical experiment for the
problem of the two-yield beam with 2D effects.
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Figure 9.8: Evolution of elastoplastic zones at discrete timest = 4.5, 5, 5.5, 6, 6.5, 7, 8, 9 in the
second numerical experiment with problem of the single-yield beam with 2D effects. The black
color shows elastic zones, darker gray color zones in the plastic phase. The displayed meshes
consists of16334 elements, CPU time= 15.59 hours.
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Figure 9.9: Evolution of elastoplastic zones at discrete timest = 4.5, 5, 5.5, 6, 6.5, 7, 8, 9 in the
second numerical experiment with problem of the two-yield beam with 2D effects. The black
color shows elastic zones, darker and lighter gray color zones in the first and second plastic
phase. The displayed meshes consist of16334 elements, CPU time= 25.17 hours.
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Figure 9.10: Uniformly refined meshesT0, T1, T2, T3, T4, T5 (with 16, 64, 256, 1024, 4096,
16384 elements) and elastoplastic zones for the one time-step witht0 = 0 andt1 = 8.5 in the
third numerical experiment for the problem of the two-yield beam with 2D effects.
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Figure 9.11: Adaptively refined meshesT0, T2, T4, T6, T8, T10, T12, T14 (with 16, 46, 136, 420,
712, 1432, 1752, 9952 elements) and elastoplastic zones for the one time-step witht0 = 0 and
t1 = 8.5 in the third numerical experiment for the problem of the two-yield beam with 2D
effects.
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(Estimated) error for 1, 2 and 3 Newton
steps.

ZZ-error estimator for 1, 2 and 3 Newton
step.

(Estimated) error and ZZ-error estimator for 3 Newton steps.

Figure 9.12: The third numerical experiment for the problem of the two-yield beam with 2D ef-
fects, one time-step witht0 = 0, t1 = 9. (Estimated) error and ZZ-error estimator are displayed
versus the degrees of freedomN .
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Figure 9.13: Ring problem.
Figure 9.14: Geometry and coarse mesh
T0 of Ring problem.

also shows the coarse meshT0.

The first numerical experiment describes an elasto-plastic transition during the deformation
process. The calculation was performed at discrete times{0, 10, 20, . . . , 430} on a finest mesh
generated by6 uniform refinements of the meshT0 with 12288 elements smoothing the non-
polygonal boundary. For the two-yield material model, we choose material parameters

E = 70000, ν = 0.33, σy
1 = 243

√
2/3, h1 = 1, σy

2 = 250
√

2/3, h2 = 1.

MATLAB solver was specified by these properties: no time-stepping, nested iteration technique
(Algorithm 5) with uniformly refined meshesT0 ⊂ T1 ⊂ T2 ⊂ T3 ⊂ T4 ⊂ T5 ⊂ T6 (with 3,
12,48, 192, 768, 3072 and12288 elements), Newton-Raphson solver with one step (Algorithm
4). Figure 9.15 displays the evolution of elastoplastic zones at chosen discrete times. For the
initial discrete times, the whole ring is in the elastic phase only. As the time increases, we ob-
serve first plastic and later second plastic phase zones moving radically the original boundary
r = 1 towards the boundaryr = 2. In the last discrete time the whole ring is completely in the
second plastic phase.

The second numerical experiment indicates properties of the nested iteration technique. We
consider one discrete time-step problem witht0 = 0 andt1 = 200 and the single-yield material
with

E = 70000, ν = 0.33, σy = 220
√

2/3, h = 1.

MATLAB solver was specified by these properties: no time-stepping, nested iteration technique
(Algorithm 5 with uniformly (T0, T1, T2, T3, T4, T5, T6 with 3, 12, 48, 192, 768, 3072 and12288
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Figure 9.15: Evolution of elastoplastic zones at discrete timest = 150, 180, 210, 260, 290,
320, 350, 380 in the first numerical experiment with problem of the two-yield ring. The black
color shows elastic zones, darker and lighter gray color zones in the first and second plastic
phase. The displayed meshes consist of12288 elements, CPU time= 21.9 hours.
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(Estimated) error for 1, 2 and 3 Newton
steps.

ZZ-error estimator for 1, 2 and 3 Newton
steps.

(Estimated) error and ZZ-error estimator for 3 Newton steps.

Figure 9.16: The second numerical experiment for the single-yield ring, one time-step with
t0 = 0 andt1 = 200. Exact error, estimated error and ZZ-error estimator are displayed versus
the degrees of freedomN .



SECTION 9.4. L SHAPE 97

material model CPU time total number CPU time spent on
(in hours) of Newton steps Algorithm 2 (in %)

single-yield 18.08 264 3.3
two-yield 25.17 264 21.9

Table 9.4: Performance of MATLAB solver for the first numerical experiment with the sym-
metric ring problem. The calculation was run at discrete timest = {0, 12, 20, . . . , 430}, and
uniform meshT6 with 12288 elements.

elements) or adaptively refined meshes, Newton-Raphson solver with 1, 2, or 3 steps (Algorithm
4). Figure 9.16 displays the exact error, the estimated error and the ZZ-error estimator versus
degrees of freedom in each nested iteration for1, 2 or 3 Newton steps. The ZZ-error estimator
shows for both uniform and adaptive mesh-refinements the optimal experimental convergence
rate0.5. After some minor preasymptotic differences, the exact error and the ZZ-error estimator
are practically identical (cf. [AC00]).

9.4 L Shape

The model of an L shape body is shown in Figure 9.17. As the result of surface forces (van-
ishing volume forcesf are assumed) L-shaped body is deformed. The final deformation at the
time t1 = 1 is expressed by a non-homogeneous boundary conditionu = uD on the Dirichlet
boundaryΓD. uD is defined in the polar coordinate systemr ∈ [0,∞), θ ∈ [−π, π] by

ur(r, θ) = 1
2µ
rα[−(α+ 1) cos

(
(α+ 1)θ)

)
+
(
C2 − (α+ 1)

)
C1 cos

(
(α− 1)θ

)
],

uθ(r, θ) = 1
2µ
rα[(α+ 1) sin

(
(α+ 1)θ)

)
+
(
C2 + α− 1)

)
C1 sin

(
(α− 1)θ

)
].

The constantsα,C1, C2 have the values

α = 0.544483737, C1 =
cos
(
(α+ 1)3

4
π
)

cos
(
(α− 1)3

4
π
) , C2 =

2(λ+ 2µ)

λ+ µ
.

The first numerical experiment indicates properties of the nested iteration technique. We
consider one discrete time-step problem witht0 = 0 andt1 = 1. Calculations are performed for
the two-yield material specified by parameters

E = 100000, ν = 0.3, σy
1 = 1, h1 = 1, σy

2 = 1.41, h2 = 0.02.

MATLAB solver was specified by these properties: no time-stepping, nested iteration technique
(Algorithm 5) with uniformly (T0 ⊂ T1 ⊂ T2 ⊂ T3 ⊂ T4 ⊂ T5 ⊂ T5 with 6, 24, 96, 384, 1536
and6144 elements) or adaptively refined meshes, Newton-Raphson solver with with 1, 2 or 3
steps (Algorithm 4). Figure 9.19 displays adaptive mesh-refinements, Figure 9.20 (estimated)
error and the ZZ-error estimator versus degrees of freedom in nested iterations step for 1, 2
or 3 Newton steps. The ZZ-error estimator shows the experimental convergence rate0.3 for
the uniform mesh-refinements and the rate0.6 for the adaptive mesh-refinements. For adaptive
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Figure 9.17: Geometry of the L shape problem and coarse meshT0.

mesh-refinements the conditional number of the global matrix in the Newton upgrade (8.9) be-
comes for higher number of refinements (more than103 degrees of freedom) very large (Figure
9.18). We do not observe the same effect for the calculation with the purely elastic material.
A possible explanation is that the global convergence of the Newton-Raphson method is not
guaranteed without damping.

The second numerical experiment compares the computational complexity of the nested
iteration technique and the direct calculation. The problem is specified as in the first experiment,
four techniques for the computation of the discrete solution onTi for i = 1, . . . , 6 are analyzed:

• The nested iteration technique (Algorithm 5) with Newton-Raphson solver with 1, 2 or 3
steps (Algorithm 4)

• The nested iteration technique (Algorithm 5) with Newton-Raphson solver with three
stages convergence control (Algorithm 3)

• The direct calculation onTi with Newton-Raphson solver with 1, 2 or 3 steps (Algorithm
4)

• The direct calculation onTi with with Newton-Raphson solver with three stages conver-
gence control (Algorithm 3)

CPU times and the (ZZ-) error estimators for are given in Table 9.5. The nested iteration
technique with the three stages convergence control always converged on every triangulation
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Figure 9.18: Condition number of the global stiffness matrix versus the degrees of freedom in
the first numerical experiment for the L shape problem.

T1, . . . , T6 for the zero initial approximationU |T0 = 0. The direct calculation onTi converged
for the zero initial approximationU |Ti

= 0 on the triangulationsT0, T1, T2, T3, however we
observe the divergence onT4 andT5. The possible reason is that the considered initial approxi-
mation for the Newton-Raphson

method was not close enough to the discrete solution. If convergence is obtained, then the
nested iteration technique performs faster then the direct calculation (with exception of the
triangulationT1), and it is therefore more efficient. The direct calculation with 1, 2, or 3 steps
requires smaller computation costs than the nested iteration technique (with the same number
of steps) coarser meshesT0, . . . , Ti−1. Corresponding error estimates (the column error est.ηZ

in Table 9.5) indicate that the direct calculation would require more steps (than considered 1, 2,
or 3) for reaching the convergence. The nested iteration technique provides ’sufficiently’ good
approximation, even after 1 step. It is therefore recommendable to apply the nested iteration
technique with Newton-Raphson solver with one step (Algorithm 4).

9.5 Cook’s membrane

Cook’s membrane with a coarse meshT0 is visualized in Figure 9.21, where a panel is clamped
at one end and subjected to a shear loadg = (0, gy) along the opposite end (and vanishing
volume forcef = 0).

The first numerical experiment demonstrates two-dimensional hysteresis effects. Material,
time parameters and the solver properties are identical to the model of the beam with 1D effects.
The coarse meshT0 consists of6 elements. The uniform cyclic load is acting in they-coordinate
and is of the form

gy = 12 sin(tπ/20).
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6 elements 24 elements 96 elements
SOLVER TYPE CPU time error CPU time error CPU time error

(sec) est.ηZ (sec) est.ηZ (sec) est.ηZ

DIRECT (1 New. step) 0.35 1.10 e-2 1.55 7.79 e-3 5.20 6.90 e-3
NESTED (1 New. step) 0.35 −||− 1.33 7.91 e-3 5.71 5.06 e-3
DIRECT (2 New. steps) 0.47 −||− 2.14 7.97 e-3 8.84 5.47 e-3
NESTED (2 New. steps) 0.47 −||− 2.07 7.93 e-3 9.18 5.10 e-3
DIRECT (3 New. steps) 0.67 −||− 2.88 7.93 e-3 11.38 5.09 e-3
NESTED (3 New. steps) 0.67 −||− 2.71 7.93 e-3 13.07 5.10 e-3
DIRECT (three stages) 0.17 −||− 4.67 7.93 e-3 49.98 5.10 e-3
NESTED (three stages) 0.17 −||− 4.78 7.93 e-3 46.66 5.10 e-3

384 elements 1536 elements 6114 elements
SOLVER TYPE CPU time error CPU time error CPU time error

(sec) est.ηZ (sec) est.ηZ (sec) est.ηZ

DIRECT (1 New. step) 15.79 5.39 e-3 61.53 3.98 e-3 433.76 2.88 e-3
NESTED (1 New. step) 24.07 3.32 e-3 107.87 2.21 e-3 623.72 1.58 e-3
DIRECT (2 New. steps) 31.11 5.39 e-3 123.57 5.60 e-3 765.47 4.82 e-3
NESTED (2 New. steps) 40.18 3.31 e-3 174.31 2.20 e-3 930.23 1.47 e-3
DIRECT (3 New. steps) 44.82 4.17 e-3 200.57 1.65 e-3 1147.55 2.85 e-2
NESTED (3 New. steps) 57.88 3.31 e-3 243.10 2.20 e-3 1194.75 1.52 e-3
DIRECT (three stages) 344.14 3.31 e-3 divergence divergence
NESTED (three stages) 300.19 3.31 e-3 1227.48 2.20 e-3 7136.45 1.46 e-3

Table 9.5: Comparison: direct calculation versus the nested iteration technique in the second
numerical experiment for the L shape problem. Considered is one time-step witht0 = 0 and
t1 = 1 and six uniform triangulations with6, 24, 94, 384, 1536 and6114 elements.
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Figure 9.19: Adaptively refined meshesT0, T1, T2, T4, T6, T8, T10, T12 (with 6, 22, 34, 88, 170,
366, 694, 1372 elements) and elastoplastic zones for the one time-step witht0 = 0 andt1 =
1 in the first numerical experiment for the problem of the two-yield L shape. Displacement
factor=10000.
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(Estimated) error for 1, 2 and 3 Newton
steps.

ZZ-error estimator for 1, 2 and 3 Newton
steps.

(Estimated) error and ZZ-error estimator for 3 Newton steps.

Figure 9.20: The first numerical experiment for the two-yield the L shape problem, one time-
step witht0 = 0, t1 = 1. (Estimated) error and ZZ-error estimator are displayed versus the
degrees of freedomN .
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Figure 9.21: Geometry and coarse meshT0 of a Cook’s membrane problem.

material model CPU time total number CPU time spent on
(in sec) of Newton steps Algorithm 2 (in %)

single-yield 430 589 14.8
two-yield 1647 677 74.2

Table 9.6: Performance of MATLAB solver in the first numerical experiment with the Cook’s
membrane problem effects. The calculation was run at discrete timest = {0, 0.5, 1, . . . , 50},
and uniform meshT0 with 6 elements.

Figures 9.22 and 9.23 show thehysteresis curvesin terms of the dependence ofgy(t) on the
y-displacementuy(t) of the point(46, 60) for single and two-yield models. In both curves we
observe strong two-dimensional effects causing the smoothing of the elasto-plastic transition.

The second numerical experiment indicates properties of the nested iteration technique. We
consider one discrete time-step problem witht0 = 0 andt1 = 1.7, the material with same prop-
erties as in the first numerical experiment. MATLAB solver was specified by these properties:
no time-stepping, nested iteration technique (Algorithm 5 with uniformly or adaptively refined
meshes), Newton-Raphson solver with 1, 2 or 3 steps (Algorithm 4). Figure 9.25 displays the
(estimated) error and the ZZ-error estimator versus degrees of freedom in nested iteration step
for 1, 2 or 3 Newton steps. The ZZ-error estimator shows the experimental convergence rate0.4
for the uniform and the experimental convergence rate0.5 for the adaptive mesh-refinements.

9.6 Plate with a hole

A two dimensional squared plate with a hole is under the time-dependent tension as shown in
Figure 9.26. Due to the symmetry reasons, only the quarter of the square, depicted in Figure
9.27, is discretized. For a calculation we consider the single-yield material with

E = 206900, ν = 29, σy = 450
√

2/3, h = 1
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Figure 9.22: Displayed loading-deformation relation in terms of the uniform surface loading
gy(t) versus they-displacement of the point(0, 1) in the first numerical experiment for the
problem of the single-yield Cook’s membrane.

Figure 9.23: Displayed loading-deformation relation in terms of the uniform surface loading
gy(t) versus they-displacement of the point(0, 1) in the first numerical experiment for the
problem of the two-yield Cook’s membrane.
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Figure 9.24: Adaptively refined meshesT0, T2, T4, T6, T8, T9, T10, T11 (with 32, 104, 259, 584,
1088, 1329, 1645, 2021 elements) and elastoplastic zones for the one time step problem with
t0 = 1 andt1 = 0.7 in the second numerical experiment for the problem of the two-yield Cook’s
membrane.
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(Estimated) error for 1, 2 and 3 Newton
steps.

ZZ-error estimator for 1, 2 and 3 Newton
steps.

(Estimated) error and ZZ-error estimator for 3 Newton steps.

Figure 9.25: The second numerical experiment for the two-yield Cook’s membrane problem,
one time-step witht0 = 0, t1 = 1.7. (Estimated) error and ZZ-error estimator are displayed
versus the degrees of freedomN .
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Figure 9.26: Problem of the plate with a
hole.

Figure 9.27: Geometry of the plate with a
hole and coarse meshT0.

or the two-yield material with

E = 206900, ν = 29, σy
1 = 450

√
2/3, h = 1, σy

2 = 500
√

2/3, h2 = 1

subjected to the time-dependent surface tensiong = (0, 600t).

The first numerical experiment indicates properties of the nested iteration technique. We
consider one discrete time-step problem witht0 = 0 and t1 = 0.7 and the two-yield mate-
rial with material parameters given above. MATLAB solver was specified by these properties:
nested iteration technique (Algorithm 5 with uniformly or adaptively refined meshes, Newton-
Raphson solver with 1, 2, or 3 steps (Algorithm 4). Figure 9.28 displays the exact error, the es-
timated error and the ZZ-error estimator versus degrees of freedom in each nested iteration for
1, 2 or 3 Newton steps. The ZZ-error estimator shows the (experimental) convergence rate0.3
for uniform mesh-refinements and the (experimental) convergence rate0.5 for adaptive mesh-
refinements .

The second numerical experiment demonstrates the adaptive time-stepping strategy de-
scribed in Section 8.4. For time and space discretization, we sett = {0.4, 0.5, 0.6, 0.7} and
T0. For solving of the discrete problem, the adaptive time-stepping algorithm (Algorithm 6)
with the following parameters is used:

• Smin = 0, Smax = ∞. This choice leads to no (uniform) time-stepping, i.e., the initial set
of the discrete times remains unchanged.

• Smin = 0, Smax = 3. This means the adaptive time-stepping, i.e., if the number of
Newton step in the timeti is smaller thanSmax, the time step∆ti = ti − ti−1 will be
divided by 2.
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material model CPU time total number CPU time spent on
(in sec) of Newton steps Algorithm 2 (in %)

elastic 129 115 0
single-yield 384 255 8.7
two-yield 472 248 18.9

Table 9.7: Performance of MATLAB solver for the elastic, the single-yield and the two-yield
plate with with a hole. The calculation was run for the times{0.4, 0.41, 0.42, . . . , 0.8} and the
meshT1 (generated by one uniform refinement ofT0) with 124 elements.

The calculation shows that the number of Newton steps increases from 1 at timet = 0.4 to 5 at
time t = 0.8 for the uniform time-stepping algorithm (Figure 9.29). The adaptive time-stepping
algorithm attempts to reduce the original time step∆t1 = 0.1 so that the number of Newton
steps is 3 or less. As the result of it, the time step∆t at the timet = 0.8 equals0.0001. The total
calculation time is11.8 seconds for the case of uniform (no) time-stepping and497 seconds for
the case of the adaptive time-stepping. We can observe that Algorithm 6 is sensitive to the
choice of parametersSmin, Smax. (The choiceSmax = 4 would enforce the uniform time-time
stepping in this experiment).

9.7 Comments concerning numerical performance

The developed MATLAB solver enables the calculations of simple two-dimensional problems.
It has been tested for meshes with up to 50.000 elements. Solving problems with higher number
elements is very time consuming, from a couple of hours to days. What concerns the choice
of the material model, computations based on the two-yield material are more expensive if
compared to the single-yield model and the purely elastic model. The main reason for this
is the expensive calculation of plastic dependencies (Algorithm 2) and a different number of
Newton steps necessary for reaching convergence. This is illustrated by the second numerical
experiment for the plate with a hole. The Newton-Raphson solver with the three stages control
(Algorithm 3) is applied to the meshT1 with 124 elements (generated by one uniform refinement
of T0) at discrete times{0.4, 0.41, 0.42, . . . , 0.8}. A comparison of the calculation complexity
for the single-yield and the two-yield model for other numerical experiments are provided in
Tables 9.1, 9.2, 9.3, 9.4, 9.6.

For the elastic material model, both plastic componentsP1 andP2 are zero and therefore the
Algorithm 2 need not be applied. Besides, the system (8.1) is linear and its solution is found
within only one Newton step (in fact, more steps are needed with respect to the termination
property of the three stage algorithm, see Figure 8.1). Solving the (indeed nonlinear) system
(8.4) in case of the single and two-yield models requires more Newton steps. Longer time,
that Algorithm 2 needs for the two-yield material calculation compare to the single-yield mate-
rial calculation is the consequence of the principal difference of both material models: for the
single-yield material the plastic dependence can be calculated analytically, or equivalently, one
iteration of Algorithm 2 yields the solution, however for the two-yield material more Newton
steps are required.
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(Estimated) error for 1, 2 and 3 Newton
steps.

ZZ-error estimator for 1, 2 and 3 Newton
steps.

(Estimated) error and ZZ-error estimator for 3 Newton steps.

Figure 9.28: The first numerical experiment for the two-yield plate with a hole, one time-step
with t0 = 0, t1 = 0.7. (Estimated) error and ZZ-error estimator are displayed versus the degrees
of freedomN .
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Time-steps∆t versus timet. Newton steps versus timet.

Figure 9.29: The second numerical experiment for the problem of the two-yield plate with a
hole. Time-step∆t and the number of Newton step are displayed versus the timet for the
uniform and adaptive time-stepping.

Adaptive mesh-refining strategies led in all numerical examples (with exception of L shape
model) to optimal converge rates.



Chapter 10

Conclusions and open questions

We summarize the main results we have obtained in this thesis.

• Similarly to the linear kinematic hardening model, the weak form of Prandtl-Ishlinskii
model of play type can be rewritten as a variational inequality on a Hilbert spaceH
which involves a bilinear forma(·, ·), a linear functional̀ (·) and a nonlinear functional
ψ(·).

• The bilinear forma(·, ·), the linear functional̀(·) and the nonlinear functionalψ(·) satisfy
sufficient conditions (i.e., ellipticity ofa(·, ·), Lipschitz continuity ofψ(·) and others) that
guarantee the existence and uniqueness of the variational inequality solution in a Hilbert
spaceH.

• For the one time-step discrete problem, the vector of incremental plastic strainsP =
(P1, . . . , PM)T depends on every elementT of the triangulationT on the displacement
U only. In contrast to the linear kinematic hardening model, this dependency can not be
expressed analytically, but has to be calculated by a numerical algorithm.

• Numerical examples indicate the priority of adaptive mesh-refinements over uniform
mesh-refinements. Besides, one Newton iteration in the nested iteration technique is suffi-
cient, more iterations only increase computational costs without large improvements with
respect to accuracy.

The following questions stay so-far unanswered and their study might become a part of a
future research.

• The Prandtl-Ishlinskii model of play type generalizes the model of linear kinematic hard-
ening only. It would be chalenging to extend the Prandtl-Ishlinskii model of play type in
order to respect isotropic hardening effects as well.

• Is there any example in two-yield plasticity with a known analytical solution?

• Is it possible to prove sufficient regularity of the solutions and clarify superiority of adap-
tive refinement techniques theoretically?





Notation

(a, b) open interval

[a, b] closed interval

N natural numbers (without0)

Rd Euclidian space of (column-) vectors ind components

Rm×d space ofm× d-matrices with real entries

Rd×d
sym space of symmetricd× d-matrices with real entries

devRd×d
sym space of deviatoric symmetricd× d-matrices with real entries

MT transposed matrix toM ∈ Rm×d

xT transposed vector tox ∈ Rd

||X||F or ||X|| Frobenius norm of matrixX ∈ Rd×d

X : Y or 〈X,Y 〉 (Euclidian) scalar product of matricesX, Y ∈ Rd×d

x⊗ y dyadic product ofx, y

det determinant of a square matrix

diag(α1, . . . , αn) diagonal matrix with entriesα1, . . . , αn

∇ gradient (as row-vector)

div divergence

∂A boundary of setA

A closure of setA

Ω bounded Lipschitz domain inRd

Γ (= ∂Ω) boundary of domainΩ
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ΓD Dirichlet boundary of domainΩ

ΓN Neumann boundary of domainΩ

n (outer) unit normal vector onΓ = ∂Ω

f |A restriction off : X → Y toA ⊆ X

X∗ dual space of normed spaceX

Cm(Ω) space of continuous functions onΩ with continuous (partial)
derivatives up to orderm

Lp(Ω) Lebesque space of Lebesque measurable functions onΩ,
that are inp-th order integrable,1 ≤ p ≤ ∞

W 1,p(Ω) Sobolev space of functions inLp(Ω), with weak derivatives inLp(Ω)d

H1(Ω) = W 1,2(Ω)

H1
D(Ω) space of functions inH1(Ω) that vanish on Dirichlet boundaryΓD

Wm,p(Ω) Sobolev space ofm-th order, i.e., all partial derivatives
up tom-th order exist in weak sence and belong toLp(Ω)

Hm(Ω) = Wm,2(Ω)

‖ · ‖X norm on the normed spaceX, e.g.‖ · ‖`p , ‖ · ‖Lp(Ω), ‖ · ‖W 1,p(Ω)

‖ · ‖p,Ω, ‖ · ‖p norm on Lebesgue spaceLp(Ω)

‖·‖m,p,Ω, ‖·‖m,p norm on Sobolev spaceWm,p(Ω)

(xn) → x sequence(xn) converges strongly tox

B open ball at0 with radiusr = 1

T triangulation of domainΩ

T element (triangle) of triangulationT
N set of nodes (vertices)

E set of edges

EN set of edges onΓN

S1(T ) lowest order finite element space onT (elementwise affine)

S1
D(T ) finite element functions fromS1(T ) which vanish onΓD

S0(T ) piecewise constant functions onT
hE diameter of an edge

hT diameter of an element

[λh · nE] jump of the normal component ofλh acrossE

divT elementwise application of div
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ηT , η local error-indicator and error estimator

u orU displacement

σ or Σ Cauchy stress tensor

ε Green strain tensor

p or P plastic strain

C, λ, µ elastic tensor and Laḿe coefficients

H (kinematic) hardening tensor

D dissipation function





MAPLE programs

Program ’maple.ms’ displays the functionalf(P ) = 1
2
(Ĉ + Ĥ)P : P − P : A + ||P ||σy

and its parts1
2
(Ĉ + Ĥ)P : P, P : A, ||P ||σy in x − y coordinate system. Two components

plastic strainP = (P1, P2)
T for modeling of two-yield plasticity assumesP1 andP2 in the

form P1 = (x, 0; 0,−x), P2 = (y, 0; 0,−y). It also displays the nonlinear system (6.48) for
ξ1 = ||P1||, ξ2 = ||P2|| in coordinate systemξ1 − ξ2. For a different elastoplastic material pa-
rametersµ, σy

1 , σ
y
2 , h1, h2 and values ofA1, A2 ∈ R2×2

sym can be changed in lines2 and3.

maple.ms
1 > with(linalg):n:=2;
2 > mu:=1;sigma1:=1; sigma2:=2;h1:=1;h2:=1;
3 > A1:=10*array([[2,0],[0,0]]); A2:=10*array([[2,0],[0,0]]);
4 > Identity:=evalm(array(identity, 1..n,1..n)):
5 devA1:=evalm(A1-(1/n)*trace(A1)*Identity);
6 devA2:=evalm(A2-(1/n)*trace(A2)*Identity);
7 > l1:=evalm((sigma1+(2*mu+h1)*xi1)*devA2-2*mu*xi1*devA1);
8 l2:=evalm((sigma2+(2*mu+h2)*xi2)*devA1-2*mu*xi2*devA2); r:=
9 simplify(((2*mu+h1)*xi1+sigma1)*((2*mu+h2)*xi2+sigma2)-4*muˆ2*xi1*xi2);

10 > Phi1:=expand(trace(multiply(transpose(l1),l1)))-rˆ2;
11 Phi2:=expand(trace(multiply(transpose(l2),l2)))-rˆ2;
12 > implicitplot({Phi1=0,Phi2=0}, xi1=-10..10,xi2=-10..10,grid=[50,50]);
13 > with(linalg):P1:=array(1..2,1..2,[[x,0],[0,-x]]);
14 P2:=array(1..2,1..2,[[y,0],[0,-y]]);
15 > f1:=1/2*(((2*mu+h1)*norm(P1,’frobenius’)ˆ2)+
16 2*(2*mu*trace(multiply(P1,P2)))+((2*mu+h2)*norm(P2,’frobenius’)ˆ2));
17 > f2:=trace(multiply(P1,devA1))+trace(multiply(P2,devA2));
18 > f3:=sigma1*norm(P1,’frobenius’)+sigma2*norm(P2,’frobenius’);
19 > f:=f1+f3-f2;f_scaled:=subs({x=x/sqrt(2),y=y/sqrt(2)},f);
20 > plot3d(f1,x=-100..100,y=-100..100,axes=FRAME,style=PATCHCONTOUR,
21 shading=ZGREYSCALE);
22 > plot3d(f2,x=-100..100,y=-100..100,axes=FRAME,style=PATCHCONTOUR,
23 shading=ZGREYSCALE);
24 > plot3d(f3,x=-100..100,y=-100..100,axes=FRAME,style=PATCHCONTOUR,
25 shading=ZGREYSCALE);
26 > plot3d(f,x=1..3,y=1..2,axes=FRAME,style=PATCHCONTOUR,
27 shading=ZGREYSCALE);





MATLAB programs

MATLAB programs for the calculation of two-yield plasticity are partly listed below. The
complete listing can be obtained via http://www.numerik.uni-kiel.de/∼ jva. The nested iteration
solver with adaptivity (ZZ-estimator) is run by calling the program ’start.m’. Lines4 − 13 can
be modified:

• Newtonsteps means the number (given as a string) of Newton-Raphson iterations (Al-
gorithm 4) on every mesh, typically′1′,′ 2′,′ 3′, the choice′three stages′ leads to the
Newton-Raphson solver with the three stages solver (Algorithm 3).

• theta is the (adaptive) mesh-refinement parameter with the value between0 and1, typ-
ical choices aretheta = 0.5 (adaptive mesh-refinement) ortheta = 1 (uniform mesh-
refinement).

• step min, step max - the time-stepping parameters; the choicestep min = 0,
step max = ∞ leads to no (uniform) time stepping.

• refinements denote the number of mesh-refinements for every time step.

• tolerance specifies the stopping criterion for the calculation of the plastic dependence in
Algorithm 2.

• tolerance Newton - determines the parametertolerance for the Newton-Raphson solver
with the three stages convergence control (Algorithm 3).

• maximum Newton step - specifies the maximal number of Newton-Raphson steps for
reaching convergence in case of the Newton-Raphson solver with the three stages conver-
gence control (Algorithm 3).

• yield type determines the type of material behavior, i.e.,′multi′, ′single′ or ′elastic′ for
the two-yield, single-yield or elastic material behavior.

• problem specifies the example for calculation:′beam2D′, ′beam1D′, ′ring′ or ′Lshape′

or ′platehole′ are available.

For the observation of convergence behavior, a function′test adaptive′ can be used. The
function is called together with two parametersrefinements andmaxNewtonsteps. The
function runs the program ’start.m’ and it generates a coarse solution of according to the
solver setup. Then, the nested iteration technique withrefinements refinements (uniform
of adaptive, how it is set up in ’start.m’) is applied. It is performed in the cycle for the
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fixed number of Newton steps1, . . . ,maxNewtonsteps. The reference solution is calcu-
lated on the meshTrefinements according to Remark 9.2. The (estimated) error in the energy
norm and the value of the error estimator (ZZ-estimator) for approximations on coarser meshes
1, . . . , refinements− 2 are evaluated.

start.m
1 declaration_of_variables % specifies global variables

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 Newtonsteps=’3’; %number of Newtonsteps (as a string)
4 %or ’three_stages’ or ’fixed_residual’
5 theta=0; %0.5 adaptive, 0 uniform
6 maximum_Newton_step=100;
7 step_min=0; step_max=100; %time adaptivity
8 refinements=0;
9 tolerance=1e-4; %for the plastic-dependence scheme

10 tolerance_Newton=10e-6;
11 maximum_Newton_step=100;
12 yield_type=’multi’; % ’multi’ or ’single’ or ’elastic’;
13 problem=’beam2D’; %’beam2D’ or ’beam1D’ or ’ring’ or ’Lshape’
14 %or ’cook’or ’platehole’;
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
16 last_uniform_refinements=1; %minimal value=1, for the generation of the
17 %reference solution

18 material;
19 mu_times_2=mu*2;
20 C=mu*[2 0 0;0 2 0;0 0 1] + lambda*[1 1 0;1 1 0;0 0 0];

21 %Generation of the coarse mesh
22 while size(Elemente,1)<10
23 [Koordinaten,Elemente,Dirichlet,Neumann]=Rotverfeinerung(Koordinaten,...
24 Elemente,Dirichlet,Neumann);
25 end

26 Koordinaten_coarse=Koordinaten;
27 Elemente_coarse=Elemente;
28 Dirichlet_coarse=Dirichlet;
29 Neumann_coarse=Neumann;

30 %initial conditions
31 Uprev=zeros(size(Koordinaten,1),2); %defined on every node
32 P1prev=zeros(size(Elemente,1),2); %defined on every element - constant
33 P2prev=zeros(size(Elemente,1),2); %defined on every element - constant

34 %set up
35 condestA=[]; N=[]; hysteresis_u=[]; hysteresis_g=[];
36 state=[]; %0 -elastic, 1-first plastic, 2-second plastic
37 counter=1;
38 numberoftimes=size(t,2);
39 further=1;
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40 %cycle over all discrete times
41 while further
42 %switching to coarse mesh
43 Koordinaten=Koordinaten_coarse;
44 Elemente=Elemente_coarse;
45 Dirichlet=Dirichlet_coarse;
46 Neumann=Neumann_coarse;

47 %testing the convergence on the coarse mesh for the time adaptivity
48 %disp(’Running FEM + Newton method on the coarse mesh’);
49 %[U,U_coarse,P1,P1_coarse,P2,P2_coarse,iterations_coarse]=...
50 %nested_iteration_refinements(P1prev,...
51 % P2prev,Uprev,t(counter),’fixed_residual’,0);

52 %improving the space error - mesh-refining
53 [U,U_coarse,P1,P1_coarse,P2,P2_coarse,iterations_fine]=...
54 nested_iteration_refinements(P1prev,...
55 P2prev,Uprev,t(counter),Newtonsteps,refinements);

56 iterations(:,counter)=iterations_fine;
57 iterations_coarse=iterations_fine(1);

58 Uprev=U_coarse;
59 P1prev=P1_coarse;
60 P2prev=P2_coarse;

61 %which state - elastic, single-yield or two-yield?
62 if (norm(P1)+norm(P2)==0)
63 disp(’elasticity’); state=[state 0];
64 else
65 if (norm(P2)>0)
66 disp(’two-yield plasticity’); state=[state 2];
67 else disp(’single-yield plasticity’); state=[state 1];
68 end
69 end

70 %generating figures
71 cd MATRICES
72 save(strcat(’zones_’,problem,’_’,yield_type,’_’,num2str(counter)),...
73 ’Elemente’,’Koordinaten’,’U’,’P1’,’P2’,’lambda’,’mu’);
74 cd ..
75 generate_zones(strcat(’zones_’,problem,’_’,yield_type,’_’,...
76 num2str(counter)));

77 %output for hysteresis behavior
78 %generate_hysteresis;
79 %figure(30);
80 %plot(hysteresis_u,hysteresis_g,’x-’);
81 %M(counter)=getframe;

82 %adaptive time-stepping
83 if (counter==numberoftimes)
84 further=0;
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85 else
86 if iterations_coarse>step_max
87 t=adaptive_time(t,counter+1,0.5);
88 else
89 if iterations_coarse<step_min
90 t=adaptive_time(t,counter+1,2);
91 else
92 t=adaptive_time(t,counter+1,1);
93 end
94 end

95 numberoftimes=size(t,2);
96 counter=counter+1;
97 end
98 save time_adaptivity
99 end

100 save
101 %animation
102 %movie(M);
103 %movie2avi(M,’plasticity.avi’,’FPS’,2);

nestediteration refinement.m
1 function [U,U_coarse,P1,P1_coarse,P2,P2_coarse,iterations]=...
2 nested_iteration_refinements(P1prev,P2prev,U,time,Newtonsteps,refinements)
3 global Koordinaten Elemente Neumann Dirichlet %mesh invariants
4 global problem
5 iterations=[];

6 disp(’Number of elements’);
7 disp(size(Elemente,1));

8 mesh_preparation; %gets mesh ready - STEMAelastic + maske and others
9 incorporate_Dirichlet;

10 if strcmp(problem,’Lshape’)
11 for j=1:size(Dirichlet,1)
12 U(Dirichlet(j,1),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,1),:));
13 U(Dirichlet(j,2),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,2),:));
14 end
15 end
16 evaluate_fv(time);
17 evaluate_gv(time);

18 [U,P1,P2,iterations_Newton]=FEM_Newton(P1prev,P2prev,U,Newtonsteps);
19 iterations=[iterations;iterations_Newton];

20 if ˜isempty(Neumann)
21 NKV = Koordinaten(Neumann(:,2),:)- Koordinaten(Neumann(:,1),:);
22 NKV = NKV./[sqrt(sum(NKV.*NKV,2)),sqrt(sum(NKV.*NKV,2))];
23 % Neumann-Kanten % Vektoren, normiert
24 NNV = [NKV(:,2),-NKV(:,1)]; % Neumann-Kanten Normalenvektoren
25 else NKV=[]; NNV=[];
26 end
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27 [Kantennr,Elemente]=GeneriereKantennr(Elemente,Koordinaten);
28 Sigma=evaluate_sigma(U,P1,P2);
29 [eta,eta_s]=ZZ_Estimate(Elemente, Koordinaten, Dirichlet, ...
30 Neumann, NKV, NNV, Sigma,time);
31 disp(’ZZ-error estimator’);
32 disp(norm(eta));

33 %cd MATRICES
34 %save(strcat(’eta_’,num2str(0)),’eta’);
35 %cd ..

36 VK=AAlg1(eta’,Elemente,Koordinaten,Kantennr);
37 VK = BlauGruen(Elemente,Koordinaten,Kantennr,VK);

38 U_coarse=U;
39 P1_coarse=P1;
40 P2_coarse=P2;

41 for i=1:refinements
42 % generate mesh refinement
43 triangles=howmanytriangles(Elemente,Kantennr,VK);
44 [Koordinaten,Elemente,Dirichlet,Neumann]=Verfeinerung(Koordinaten,...
45 Elemente,Dirichlet,Neumann,Kantennr,VK);
46 if strcmp(problem,’ring’)
47 Koordinaten=correct_ring_coordinates(Koordinaten,Neumann);
48 end

49 Prolongation_linear = GeneriereProlongation(Kantennr,VK);
50 %generate Prolongation_constant matrix
51 Prolongation_constant=sparse(size(P1prev,1),size(triangles,2));
52 index=0;
53 for j=1:size(triangles,2)
54 Prolongation_constant(index+1:index+triangles(j),j)=1;
55 index=index+triangles(j);
56 end

57 disp(’Number of elements’);
58 disp(size(Elemente,1));

59 %Prolongation
60 U=Prolongation_linear*U;
61 P1prev=Prolongation_constant*P1prev;
62 P2prev=Prolongation_constant*P2prev;

63 mesh_preparation; %gets mesh ready - STEMAelastic + maske and others
64 incorporate_Dirichlet;
65 if strcmp(problem,’Lshape’)
66 for j=1:size(Dirichlet,1)
67 U(Dirichlet(j,1),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,1),:));
68 U(Dirichlet(j,2),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,2),:));
69 end
70 end
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71 evaluate_fv(time);
72 evaluate_gv(time);

73 [U,P1,P2,iterations_Newton]=FEM_Newton(P1prev,P2prev,U,Newtonsteps);
74 iterations=[iterations;iterations_Newton];

75 if ˜isempty(Neumann)
76 NKV = Koordinaten(Neumann(:,2),:)- Koordinaten(Neumann(:,1),:);
77 NKV = NKV./[sqrt(sum(NKV.*NKV,2)),sqrt(sum(NKV.*NKV,2))];
78 % Neumann-Kanten % Vektoren, normiert
79 NNV = [NKV(:,2),-NKV(:,1)]; % Neumann-Kanten Normalenvektoren
80 else NKV=[]; NNV=[];
81 end

82 [Kantennr,Elemente]=GeneriereKantennr(Elemente,Koordinaten);
83 Sigma=evaluate_sigma(U,P1,P2);
84 [eta,eta_s]=ZZ_Estimate(Elemente, Koordinaten, Dirichlet, ...
85 Neumann, NKV, NNV, Sigma,time);

86 disp(’ZZ-error estimator’);
87 disp(norm(eta));

88 %cd MATRICES
89 %save(strcat(’eta_’,num2str(i)),’eta’);
90 %cd ..

91 VK=AAlg1(eta’,Elemente,Koordinaten,Kantennr);
92 VK = BlauGruen(Elemente,Koordinaten,Kantennr,VK);

93 %figure(i+1);
94 %show_zones(U,P1,P2);
95 %cd FIGURES
96 %print(gcf,’-depsc’,strcat(’zones’,num2str(i+1)));
97 %cd ..
98 end

FEM Newton.m
1 function [U,P1,P2,iterations]=FEM_Newton(P1prev,P2prev,U,Newtonsteps)
2 switch Newtonsteps
3 case {’three_stages’}
4 [U,P1,P2,iterations]=FEM_Newton_three_stages(P1prev,P2prev,U);
5 disp(’Newton step needed for convergence’);
6 disp(iterations);
7 case {’fixed_residual’}
8 [U,P1,P2,iterations]=FEM_Newton_fixed_residual(P1prev,P2prev,U);
9 disp(’Newton step needed for convergence’);

10 disp(iterations);
11 otherwise
12 [U,P1,P2]=FEM_Newton_fixed_steps(P1prev,P2prev,U,str2num(Newtonsteps));
13 iterations=Newtonsteps;
14 end
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FEM Newton fixed steps.m
1 function [U,P1,P2]=FEM_Newton_fixed_steps(P1prev,P2prev,U,number_of_steps)
2 global STEMAelastic B W
3 global condestA N
4 [help,feste2DKnoten]=find(B);

5 disp(’Evaluating Phi’);
6 [Phi,plasticelements,P1,P2]=evaluate_Phi(U,P1prev,P2prev);

7 residualvector=Phi; residualvector(feste2DKnoten)=[];
8 residual=sqrt(residualvector’*(residualvector));
9 disp(’residual = ’);

10 disp(residual);

11 for i=1:number_of_steps
12 if isempty(find(plasticelements)) %elasticity only
13 disp(’Substituting elastic DPhi’);
14 %global matrix - set up
15 stabilization=max(max(STEMAelastic));
16 A=[STEMAelastic, stabilization*B’;stabilization*B,...
17 sparse(size(B,1),size(B,1))];
18 else %plasticity!!
19 disp(’Evaluating plastic DPHi’);
20 DPhi=evaluate_DPhi_plastic(U,P1prev,P2prev,plasticelements);
21 %global matrix - set up
22 stabilization=max(max(DPhi));
23 %stabilization=1;
24 A=[DPhi,stabilization*B’;stabilization*B,sparse(size(B,1),...
25 size(B,1))];
26 end
27 %condestA=[condestA condest(A)];
28 %N=[N size(STEMAelastic,2)];
29 b=[Phi; stabilization*W];
30 % one Newton iteration
31 solution=A\b;
32 lambda=solution(size(STEMAelastic,1)+1:end);
33 Udeltavector=solution(1:size(STEMAelastic,1));
34 Udelta=matrix2form(Udeltavector);
35 U=U-Udelta;
36 [Phi,plasticelements,P1,P2]=evaluate_Phi(U,P1prev,P2prev);
37 %residualvector=Phi;residualvector(feste2DKnoten)=[];
38 %residual=sqrt(residualvector’*(residualvector));
39 residual=norm(stabilization*B’*lambda-Phi);
40 disp(’residual = ’);
41 disp(residual);
42 end

FEM Newton three stages.m
1 function [U,P1,P2,step]=FEM_Newton_three_stages(P1prev,P2prev,U)
2 global STEMAelastic B W
3 global tolerance maximum_Newton_step;
4 global condestA N
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5 [help,feste2DKnoten]=find(B);

6 disp(’Evaluating Phi’);
7 [Phi,plasticelements,P1,P2]=evaluate_Phi(U,P1prev,P2prev);

8 residualvector=Phi; residualvector(feste2DKnoten)=[];
9 residual=sqrt(residualvector’*(residualvector));

10 disp(’residual = ’);
11 disp(residual);

12 if residual==0
13 further=0;
14 else
15 further=1;
16 end

17 tolerance_reached=0;
18 step=0;
19 residualold=residual;

20 while (further==1) & (step<=maximum_Newton_step)
21 if isempty(find(plasticelements)) %elasticity only
22 disp(’Substituting elastic DPhi’);
23 %global matrix - set up
24 stabilization=max(max(STEMAelastic));
25 A=[STEMAelastic, stabilization*B’;stabilization*B,...
26 sparse(size(B,1),size(B,1))];
27 else %plasticity!!
28 disp(’Evaluating plastic DPHi’);
29 DPhi=evaluate_DPhi_plastic(U,P1prev,P2prev,plasticelements);
30 %global matrix - set up
31 stabilization=max(max(DPhi));
32 A=[DPhi,stabilization*B’;stabilization*B,sparse(size(B,1),...
33 size(B,1))];
34 end

35 %condestA=[condestA condest(A)];
36 %N=[N size(STEMAelastic,2)];
37 b=[Phi; stabilization*W];
38 % one Newton iteration
39 solution=A\b;
40 lambda=solution(size(STEMAelastic,1)+1:end);
41 Udeltavector=solution(1:size(STEMAelastic,1));
42 Udelta=matrix2form(Udeltavector);
43 U=U-Udelta;
44 disp(’Evaluating Phi’);
45 [Phi,plasticelements,P1,P2]=evaluate_Phi(U,P1prev,P2prev);
46 %residualvector=Phi; residualvector(feste2DKnoten)=[];
47 %residual=sqrt(residualvector’*(residualvector));
48 residual=norm(stabilization*B’*lambda-Phi);
49 %fprintf(’residual =%10.8f \n’,residual);
50 disp(’residual = ’);
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51 disp(residual);

52 if residual<=tolerance
53 tolerance_reached=1;
54 end
55 if (tolerance_reached==1) & (residual>residualold)
56 further=0;
57 end
58 residualold=residual;
59 step=step+1;
60 end

61 if step==maximum_Newton_step
62 display(’Maximum number of Newton steps exceeded!!!’);
63 pause
64 end

evaluatePhi.m
1 function [Phi,plasticelements,P1,P2]=evaluatePhi(U,P1prev,P2prev)
2 global fv gv STEMAelastic Rglobal Areaglobal Elemente

3 %calculating Phi - right side for the Newton matrix - elementwise
4 %plasticelements=[];
5 Phi=zeros(1,2*size(U,1));
6 %Calculation C\epsilon(U):\epsilon(V), V=V_i ==> vector
7 Phi=(vectorform(U)’*STEMAelastic);
8 %-int_\Omega fv dx
9 Phi=Phi-fv-gv;

10 [P1,P2,plasticelements]=evaluate_P_global(U,P1prev,P2prev);
11 for j=1: size(Elemente,1);
12 %assignment of real indices
13 I=2*Elemente(j,[1 1 2 2 3 3])-[1,0,1,0,1,0];

14 P1local=P1(j,:);
15 P2local=P2(j,:);
16 if plasticelements(j)˜=0
17 Rlocal=Rglobal(:,:,j);
18 Arealocal=Areaglobal(j);
19 %Calculating CP0:\epsilon(V), V=V_i ==> vector
20 STEMA3Plasticlocal=integral_plastic(Rlocal,Arealocal,...
21 P1local+P2local);
22 Phi(I)=Phi(I)-STEMA3Plasticlocal;
23 end
24 end
25 Phi=Phi’;

evaluateDPhi plastic.m
1 function DPhi=evaluate_DPhi_plastic(U,P1prev,P2prev,plasticelements)
2 global STEMAelastic Koordinaten Elemente Rglobal Areaglobal

3 DPhi=STEMAelastic;
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4 for j=1:size(Elemente,1);
5 if plasticelements(j)>0
6 %assignment of real indices
7 I=2*Elemente(j,[1 1 2 2 3 3])-[1,0,1,0,1,0];
8 P1prevlocal=P1prev(j,:);
9 P2prevlocal=P2prev(j,:);

10 Koordinatenlocal=Koordinaten(Elemente(j,:),:);
11 Ulocal=U(Elemente(j,:),:);
12 Rlocal=Rglobal(:,:,j);
13 Arealocal=Areaglobal(j);

14 for i=1:6
15 Uvectorlocal=vectorform(Ulocal);
16 %setting up the increment for the approximation of DPhi
17 epsilon=sqrt(eps)*max(1,abs(Uvectorlocal(i)));
18 Upluslocal=Uvectorlocal;
19 Uminuslocal=Uvectorlocal;
20 Upluslocal(i)=Upluslocal(i)+epsilon;
21 Uminuslocal(i)=Uminuslocal(i)-epsilon;
22 Upluslocal=matrix2form(Upluslocal);
23 Uminuslocal=matrix2form(Uminuslocal);

24 [P1pluslocal,P2pluslocal]=evaluate_P_on_element(Rlocal,...
25 Upluslocal,P1prevlocal,P2prevlocal);
26 [P1minuslocal,P2minuslocal]=evaluate_P_on_element(Rlocal,...
27 Uminuslocal,P1prevlocal,P2prevlocal);

28 %approximation of the derivation by the difference
29 STEMA3Plastic(i,:)=integral_plastic(Rlocal,Arealocal,...
30 (P1pluslocal+P2pluslocal-P1minuslocal-P2minuslocal)/2/epsilon);
31 end
32 DPhi(I,I)=DPhi(I,I)-STEMA3Plastic’;
33 end
34 end

STEMA3.m
1 function STEMA3=STEMA3(Knoten)
2 %calculates \int_elemet C epsilon_i:\epsilon_j,
3 %i,j=1..6 for tracefree and symmetic Plasticstrain
4 global C
5 Rlocal=R(Knoten);
6 STEMA3=det([1 1 1;Knoten’])/2*Rlocal’*C*Rlocal;

integral plastic.m
1 function integral=integral_plastic(Rlocal,Arealocal,Plasticstrain)
2 %calculates \int_element CPlasticstrainn:\epsilon_i, i=1..6
3 %for trace-free and symmetric Plasticstrain
4 global mu
5 Plasticvector=[Plasticstrain(1) -Plasticstrain(1) Plasticstrain(2)];
6 integral=mu*Arealocal*(Plasticvector*Rlocal); %Area/2 * R’*2*mu*Plastic
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evaluateP on element.m
1 function [P1local,P2local]=evaluate_P_on_element(Rlocal,Ulocal,...
2 P1prevlocal,P2prevlocal)
3 global C h1 h2 mu

4 P1prevlocalmatrix=[P1prevlocal;P1prevlocal(2) -P1prevlocal(1)];
5 P2prevlocalmatrix=[P2prevlocal;P2prevlocal(2) -P2prevlocal(1)];
6 Ulocalvector([1 3 5])=Ulocal(:,1);
7 Ulocalvector([2 4 6])=Ulocal(:,2);

8 %gamma (epsilon11,epsilon22,epsilon12) on the element
9 gamma=Rlocal*Ulocalvector’;

10 CepsU=matrixform(C*gamma);

11 %A=C epsilon(U)-(C+H)Pprev
12 A1=CepsU-((2*mu+h1)*P1prevlocalmatrix+2*mu*P2prevlocalmatrix);
13 A2=CepsU-(2*mu*P1prevlocalmatrix+(2*mu+h2)*P2prevlocalmatrix);
14 devA1=dev(A1);
15 devA2=dev(A2);

16 [deltaP1localmatrix,deltaP2localmatrix]=dependence(devA1,devA2);

17 P1local=deltaP1localmatrix(1,:)+P1prevlocal;
18 P2local=deltaP2localmatrix(1,:)+P2prevlocal;

dependence.m
1 function [P1,P2]=dependence(devA1,devA2)
2 global yield_type
3 switch yield_type
4 case ’elastic’
5 P1=zeros(2);
6 P2=P1;
7 case ’single’
8 global sigmay1 mu_times_2 h1
9 P1=dependence_single_general(devA1,mu_times_2,sigmay1,h1);

10 P2=zeros(2);
11 case ’multi’
12 global sigmay1 sigmay2 mu_times_2 h1 h2 tolerance
13 %estimation of the solution
14 P2=dependence_single_general(devA2,...
15 mu_times_2,sigmay2,h2);
16 P1=dependence_single_general(devA1-mu_times_2*P2,...
17 mu_times_2,sigmay1,h1);
18 %x=[P1(1,1)]; y=[P2(1,1)];
19 normold=norm(P1,’fro’)+norm(P2,’fro’);

20 while 1
21 P2=dependence_single_general(devA2-mu_times_2*P1,...
22 mu_times_2,sigmay2,h2);

23 P1=dependence_single_general(devA1-mu_times_2*P2,...
24 mu_times_2,sigmay1,h1);
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25 normnew=norm(P1,’fro’)+norm(P2,’fro’);
26 difference=abs(normnew-normold);
27 if difference>0
28 difference=difference/(normnew+normold);
29 end

30 if difference<tolerance
31 break
32 end
33 normold=normnew;
34 end
35 end

dependencesingle general.m
1 function P=dependence_single_general(devA,mu_times_2,sigmay,h)
2 normdevA=norm(devA,’fro’);
3 if normdevA<sigmay
4 P=zeros(2);
5 else
6 P=devA*(normdevA-sigmay)/normdevA/(mu_times_2+h);
7 end

meshpreparation.m
1 function mesh_preparation
2 global Koordinaten Elemente Dirichlet
3 global STEMAelastic maske Areaglobal maske DirichletKnoten Rglobal
4 %global SCALINGmatrix

5 Areaglobal=[];
6 Rglobal=[];
7 STEMAelastic=sparse(2*size(Koordinaten,1),2*size(Koordinaten,1));
8 %SCALINGmatrix=STEMAelastic;
9 %node_in_element=sparse(size(Koordinaten,1),size(Elemente,1));

10 for j=1: size(Elemente,1);
11 I=2*Elemente(j,[1 1 2 2 3 3])-[1,0,1,0,1,0];
12 Elementelocal=Elemente(j,:);
13 Koordinatenlocal=Koordinaten(Elementelocal,:);
14 Rglobal(:,:,j)=R(Koordinatenlocal);
15 Areaglobal(j)=det([1 1 1;Koordinatenlocal’]);
16 %CepsUlocal(:,:,j)=matrixform(C*gamma);
17 STEMAelastic(I,I)=STEMAelastic(I,I)+STEMA3(Koordinatenlocal);
18 %SCALINGmatrix(I,I)=SCALINGmatrix(I,I)+STEMAH1(Koordinatenlocal);
19 end
20 %SCALINGmatrix=STEMAelastic;

21 %Preparation - extracting Dirichlet nodes
22 maske=zeros(size(Koordinaten,1),1);
23 maske(Dirichlet)=ones(size(Dirichlet));
24 DirichletKnoten=find(maske);
25 freieKnoten=find(˜maske);
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R.m
1 function R=R(Knoten)
2 PhiGrad=[1 1 1;Knoten’]\[zeros(1,2);eye(2)];
3 R([1,3],[1,3,5])=PhiGrad’;
4 R([3,2],[2,4,6])=PhiGrad’;

material.m
1 switch problem
2 case ’beam1D’,
3 t=[0 0.5 10*5]; %first experiment - hysteresis
4 mu=1000;lambda=1000;
5 sigmay1=5; h1=100; sigmay2=7; h2=50;
6 [Koordinaten,Elemente,Dirichlet,Neumann]=beam_1D_symetric_mesh(0);
7 case ’beam2D’,
8 t=[0 0.5 10*5]; %first experiment - hysteresis
9 t=[3:0.5:10]; %second experiment - evolution

10 t=8.5; %third experiment - one time step adaptivity
11 mu=1000;lambda=1000;
12 sigmay1=5; h1=100; sigmay2=7; h2=50;
13 [Koordinaten,Elemente,Dirichlet,Neumann]=beam_2D_symetric_mesh(0);
14 case ’ring’,
15 t=[0 10 430]; %evolution
16 t=200; % one time step adaptivity
17 E=70000; nu=0.33; lambda=E*nu/((1+nu)*(1-2*nu)); mu=E/(2+2*nu); %glass
18 sigmay1=243*sqrt(2/3); h1=1; sigmay2=250*sqrt(2/3); h2=1; %only for
19 %comparison with JA
20 [Koordinaten,Elemente,Dirichlet,Neumann]=ring_mesh(0);
21 case ’Lshape’
22 t=1; %one time step adaptivity
23 E=100000; nu=0.3; lambda=E*nu/((1+nu)*(1-2*nu)); mu=E/(2+2*nu); %glass
24 sigmay1=1; h1=2; sigmay2=1.41; h2=0.02;
25 h1=1;
26 [Koordinaten,Elemente,Dirichlet,Neumann]=Lshape_mesh(0);
27 case ’cook’
28 t=[0 0.5 10*5]; %hysteresis
29 t=1.7; %one time step adaptivity
30 mu=1000; lambda=1000;
31 sigmay1=5; h1=100; sigmay2=7; h2=50; % - hysteresis
32 sigmay2=6; % - one time step
33 [Koordinaten,Elemente,Dirichlet,Neumann]=cook_mesh(0);
34 case ’platehole’
35 t=[0.4 0.41 0.8];
36 %t=[0.7]; %one time step adaptivity
37 E=206900; nu=0.29; lambda=E*nu/((1+nu)*(1-2*nu)); mu=E/(2+2*nu); %glass
38 mu=1000; lambda=1000;
39 sigmay1=450*sqrt(2/3); h1=1; sigmay2=500*sqrt(2/3); h2=1;
40 [Koordinaten,Elemente,Dirichlet,Neumann]=platehole_mesh(0);
41 end

dev.m
1 function A=dev(B)
2 tr_over_2=(B(1,1)+B(2,2))/2;
3 A=B-[tr_over_2 0; 0 tr_over_2];
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test adaptive.m
1 function [norm_error,norm_eta]=test_adaptive(number_of_refinements,...
2 maxNewtonsteps)
3 global problem yield_type
4 global last_uniform_refinements;

5 evaluate_U_coarse
6 close all

7 for j=1:maxNewtonsteps
8 evaluate_U_exact(number_of_refinements,j);
9 cd MATRICES

10 load exact_solution;
11 cd ..

12 for k=0:(number_of_refinements-last_uniform_refinements)
13 cd MATRICES
14 load(strcat(’U_’,num2str(k)));
15 load(strcat(’P1_’,num2str(k)));
16 load(strcat(’P2_’,num2str(k)));
17 load(strcat(’eta_’,num2str(k)));
18 cd ..

19 number_of_flops(j,k+1)=flops;
20 number_of_unknowns(j,k+1)=size(U,1)*2;
21 number_of_elements(j,k+1)=size(P1,1);

22 for l=k:(number_of_refinements-1)
23 cd MATRICES
24 load(strcat(’Prolongation_linear_’,num2str(l)));
25 load(strcat(’Prolongation_constant_’,num2str(l)));
26 cd ..

27 U=Prolongation_linear*U;
28 P1=Prolongation_constant*P1;
29 P2=Prolongation_constant*P2;
30 end

31 error_U=U-U_exact;
32 error_P1=P1-P1_exact;
33 error_P2=P2-P2_exact;

34 norm_eta(j,k+1)=norm(eta);
35 %mesh_preparation
36 norm_error(j,k+1)=NormEnergy(error_U,error_P1,error_P2,...
37 Elemente_exact,Koordinaten_exact,...
38 Areaglobal_exact,Rglobal_exact);

39 %normaL2(j,k+1)=NormL2(U,Elemente_exact,Koordinaten_exact);
40 end
41 end

42 %exact solution for the single-yield ring
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43 if strcmp(yield_type,’single’) & strcmp(problem,’ring’)
44 for k=0:(number_of_refinements-last_uniform_refinements)
45 cd MATRICES
46 load(strcat(’mesh_’,num2str(k)));
47 cd ..
48 Koordinaten=[zeros(size(Koordinaten,1),1) Koordinaten];
49 Elemente=[zeros(size(Elemente,1),1) Elemente];
50 Dirichlet=[zeros(size(Dirichlet,1),1) Dirichlet];
51 Neumann=[zeros(size(Neumann,1),1) Neumann];
52 od=cd;
53 cd ../JOCHEN_SOLVER
54 save Koordinaten Koordinaten
55 save Elemente Elemente
56 save Dirichlet Dirichlet
57 save Neumann Neumann
58 [relTmSpcError,ZZ_Est,Res_Est,SpcError,dof]=...
59 fem_plast([0 200],1,10,1e-12,1,1,0,[0])
60 cd(od)
61 norm_error_exact(k+1)=SpcError;
62 end
63 end

64 %clear Rglobal_exact Prolongation_constant Prolongation_linear
65 %clear U P1 P2 error_U error_P1 error_P2

66 if strcmp(yield_type,’single’) & strcmp(problem,’ring’)
67 save matlab norm_eta norm_error norm_error_exact number_of_unknowns
68 else
69 save matlab norm_eta norm_error number_of_unknowns
70 end

71 x1=number_of_unknowns(1,:);
72 y1=norm_error(1,:);
73 z1=norm_eta(1,:);
74 x2=number_of_unknowns(2,:);
75 y2=norm_error(2,:);
76 z2=norm_eta(2,:);
77 x3=number_of_unknowns(3,:);
78 y3=norm_error(3,:);
79 z3=norm_eta(3,:);
80 loglog(x1,y1,’-o’,x2,y2,’-.o’,x3,y3,’--o’);
81 hold on
82 loglog(x1,z1,’-o’,x2,z2,’-.o’,x3,z3,’--o’);
83 if strcmp(yield_type,’single’) & strcmp(problem,’ring’)
84 loglog(x3,norm_error_exact,’-d’);
85 end

86 xlabel(’N’);
87 ylabel(’\eta_{Z} and error’);

evaluateU coarse.m
1 function evaluate_U_coarse
2 start
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3 clear Newtonsteps number_of_refinements U Elemente Koordinaten ...
4 Dirichlet Neumann
5 cd MATRICES
6 save coarse_solution
7 cd ..

evaluateU exact.m
1 function evaluate_U_exact(number_of_refinements,Newtonsteps)
2 global last_uniform_refinements; %minimal value=1

3 declaration_of_variables
4 cd MATRICES
5 load coarse_solution; %only structure, not solution
6 cd ..

7 Elemente=Elemente_coarse;
8 Koordinaten=Koordinaten_coarse;
9 Dirichlet=Dirichlet_coarse;

10 Neumann=Neumann_coarse;

11 time=t(counter);

12 Uprev=zeros(size(Koordinaten,1),2); %defined on every node
13 P1prev=zeros(size(Elemente,1),2); %defined on every element - constant
14 P2prev=zeros(size(Elemente,1),2); %defined on every element - constant

15 U=Uprev; %initial approximation for Newton method

16 for i=0:(number_of_refinements-1)
17 mesh_preparation; %gets mesh ready - STEMAelastic + maske and others
18 incorporate_Dirichlet;
19 evaluate_fv(time);
20 evaluate_gv(time);

21 if strcmp(problem,’Lshape’)
22 for j=1:size(Dirichlet,1)
23 U(Dirichlet(j,1),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,1),:));
24 U(Dirichlet(j,2),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,2),:));
25 end
26 end

27 disp(’Number of elements’);
28 disp(size(Elemente,1));

29 if i>=(number_of_refinements-last_uniform_refinements+1)
30 global theta
31 thetaold=theta;
32 theta=0;
33 [U,P1,P2]=FEM_Newton_fixed_steps(P1prev,P2prev,U,1);
34 theta=thetaold;
35 else
36 [U,P1,P2]=FEM_Newton_fixed_steps(P1prev,P2prev,U,Newtonsteps);
37 end
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38 cd MATRICES
39 save(strcat(’U_’,num2str(i)),’U’);
40 save(strcat(’P1_’,num2str(i)),’P1’);
41 save(strcat(’P2_’,num2str(i)),’P2’);
42 global Elemente Koordinaten Dirichlet Neumann
43 save(strcat(’mesh_’,num2str(i)),’Elemente’,’Koordinaten’,...
44 ’Neumann’,’Dirichlet’);
45 cd ..

46 if ˜isempty(Neumann)
47 NKV = Koordinaten(Neumann(:,2),:)- Koordinaten(Neumann(:,1),:);
48 NKV = NKV./[sqrt(sum(NKV.*NKV,2)),sqrt(sum(NKV.*NKV,2))];
49 % Neumann-Kanten % Vektoren, normiert
50 NNV = [NKV(:,2),-NKV(:,1)]; % Neumann-Kanten Normalenvektoren
51 else
52 NKV=[]; NNV=[];
53 end
54 [Kantennr,Elemente]=GeneriereKantennr(Elemente,Koordinaten);
55 Sigma=evaluate_sigma(U,P1,P2);
56 [eta,eta_s]=ZZ_Estimate(Elemente, Koordinaten, Dirichlet, ...
57 Neumann, NKV, NNV, Sigma,time);

58 cd MATRICES
59 save(strcat(’eta_’,num2str(i)),’eta’);
60 cd ..

61 if i>=(number_of_refinements-last_uniform_refinements)
62 global theta
63 thetaold=theta;
64 theta=0;
65 VK=AAlg1(eta’,Elemente,Koordinaten,Kantennr);
66 theta=thetaold;
67 else
68 VK=AAlg1(eta’,Elemente,Koordinaten,Kantennr);
69 end
70 VK = BlauGruen(Elemente,Koordinaten,Kantennr,VK);

71 % Generiere neue Triangulierung
72 trianglesdistribution=howmanytriangles(Elemente,Kantennr,VK);
73 [Koordinaten,Elemente,Dirichlet,Neumann]=Verfeinerung(Koordinaten,...
74 Elemente,Dirichlet,Neumann,Kantennr,VK);

75 if strcmp(problem,’ring’)
76 Koordinaten=correct_ring_coordinates(Koordinaten,Neumann);
77 end
78 Prolongation_linear = GeneriereProlongation(Kantennr,VK);

79 Prolongation_constant=sparse(size(P1prev,1),...
80 size(trianglesdistribution,2));
81 index=0;
82 for j=1:size(trianglesdistribution,2)
83 Prolongation_constant(index+1:index+trianglesdistribution(j),j)=1;
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84 index=index+trianglesdistribution(j);
85 end

86 cd MATRICES
87 save(strcat(’Prolongation_linear_’,num2str(i)),’Prolongation_linear’);
88 save(strcat(’Prolongation_constant_’,num2str(i)),...
89 ’Prolongation_constant’);
90 cd ..

91 U=Prolongation_linear*U;
92 P1prev=Prolongation_constant*P1prev;
93 P2prev=Prolongation_constant*P2prev;
94 end

95 mesh_preparation; %gets mesh ready - STEMAelastic + maske and others
96 incorporate_Dirichlet;
97 evaluate_fv(time);
98 evaluate_gv(time);

99 if strcmp(problem,’Lshape’)
100 for j=1:size(Dirichlet,1)
101 U(Dirichlet(j,1),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,1),:));
102 U(Dirichlet(j,2),:)=Lshape_Dirichlet(Koordinaten(Dirichlet(j,2),:));
103 end
104 end

105 disp(’Number of elements’);
106 disp(size(Elemente,1));

107 %enforced uniform refinement
108 thetaold=theta;
109 theta=0;
110 [U_exact,P1_exact,P2_exact]=FEM_Newton_fixed_steps(P1prev,P2prev,U,1);
111 theta=thetaold;

112 Koordinaten_exact=Koordinaten;
113 Elemente_exact=Elemente;

114 global STEMAelastic Areaglobal
115 STEMAelastic_exact=STEMAelastic;
116 Areaglobal_exact=Areaglobal;
117 number_of_refinements_exact=number_of_refinements;
118 Rglobal_exact=Rglobal;

119 cd MATRICES
120 save exact_solution U_exact Koordinaten_exact Elemente_exact P1_exact ...
121 P2_exact Areaglobal_exact Rglobal_exact number_of_refinements_exact
122 cd ..
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versiẗat Darmstadt, 2000.
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