
New Numerical Solver for Elastoplastic Problems

based on the Moreau-Yosida Theorem

Peter Gruber, Jan Valdman∗

Abstract

We discuss a new solution algorithm for solving elastoplastic problems
with hardening. The one time-step elastoplastic problem can be formulated
as a convex minimization problem with a continuous but non-smooth func-
tional dependening on unknown displacement smoothly and on the plastic
strain non-smoothly. It is shown that the functional structure allows the ap-
plication of the Moreau-Yosida Theorem known in convex analysis. It guar-
antees that the substitution of the non-smooth plastic-strain as a function of
the linear strain which depends on the displacement only yields an already
smooth functional in the displacement only. Moreover, the second derivative
of such functional exists in all continuum points apart from interfaces where
elastic and plastic zones intersect. This allows the efficient implementation
of the Newton-Ralphson method. For easy implementation most essential
Matlab c© functions are provided. Numerical experiments in two dimensions
state quadratic convergence of a Newton-Ralpshon method as long as the
elastoplastic interface is detected sufficiently precisely.

1 Introduction

We consider the quasi-static initial-boundary value problem for small strain elas-
toplasticity with an isotropic hardening. Starting from the classical formulation,
combining the equilibrium of forces with elastoplastic isotropic hardening law un-
der the assumption of small deformations, we can formulate the time-dependent
variational inequality. The uniqueness of a solution of such inequality has been for
instance proved in [Joh76] utilizing results for general variation inequalities [DL76].

The traditional numerical methods for solving the time-dependent variational in-
equality were based on the explicit Euler time-discretization with respect to the
loading history. In this case the idea of implicit return mapping discretization
[SH98] turned out fruitful for calculations. By implicit Euler time-discetization on

∗Special Research Program SFB F013 ’Numerical and Symbolic Scientific Computing’,
Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria, email:
Jan.Valdman@sfb013.uni-linz.ac.at

1

the other side, the time-dependent inequality is approximated by a sequence of time-
independent variational inequalities [KL84] for the unknown displacement u and the
plastic strain p. Each of these inequalities is equivalent to a minimization problem
with the convex but non-smooth functional [HR99]. We introduce a new algorithm
for solving such minimization problem. Our algorithm is of the Newton-Ralphson
type and it utilizes the dependence p = p(ε(u)) of the plastic strain on the total
strain ε(u) [AC00]. This makes it possible to reformulate the energy minimization
problem e(u) → min for the unknown displacement u only. Since the dependen-
cies of the minimization functional e(u, p) on the plastic strain p, and of the plastic
strain p on the total strain ε(u) are continuous but non-smooth, the Fréchet derivate
De(u) seems not to exist. The main theoretical result here is to show that e(u) is
in fact differentiable. More precisely, we show that the structure of the functional
e(u) satisfies the assumptions of the Moreau-Yoshida theorem from convex analysis
and therefore e(u) must be (Fréchet) differentiable.

For the space-discretization, the finite element method of the lowest order with the
nodal linear displacement and the piece-wise constant plastic strain is used. The
unknown discretized displacement u satisfies the neccesary condition De(u) = 0,
which represents the system of nonlinear equations. It is shown that the discretized
second derivative D2e(u) exists everywhere apart from the elastoplastic interface,
i.e., apart from the discrete points, which disjoin elastic zones from plastic zones.
The measure of the set of interface points is known to be zero in the continuous case.
Therefore, it is believed that the Newton-Raphson method would also converge in
the discrete case.

Numerical experiments in Matlab c© justify the theoretical expectations. Three nu-
merical examples in two dimentions are presented. First two examples, the L-shape
and wrench examples which include positive hardening parameters, provide the fol-
lowing conclusions:

• Number of Newton-Raphson steps is (almost) independent of the size of the
discretization.

• Newton-Raphson method converges quadratically after the elastoplastic zones
are identified sufficiently precisely. This remark has also been made indepen-
dently in the convergence analysis of [Bla97].

The last example of the plate with a hole serves as a benchmark problem in per-
fect plasticity, where theoretical conclusions mentioned above do not need to hold
anymore. The Newton method oscilates for finer meshes and additional damping or
nested iterations techniques are necessary in order obtain convergence.

The paper is organized as follows. Section 2 recalls the mathematical modelling
of elastoplasticity and also adresses the Moreau-Yoshida Theorem. Finite elements
discretization and the implementation of Newton-Raphson method are discussed in
Section 3. Numerical examples in Section 4 illustrate the behavior of the Newton-
Raphson method.

2

2 Mathematical Modelling

Let d ∈ N be the space dimension, Ω ∈ R
d be an open domain with a Lipschitz-

continuous boundary Γ := ∂Ω. Further let Γ be split into two distinct parts ΓD

(Dirichlet boundary) and ΓN (Neumann boundary), such that ΓD∪ΓN = Γ. The set
Θ be some time interval, and R+ := {x ∈ R | x > 0}. The matrix-scalar-product : is
defined for two equal size matrices A = (aij)ij and B = (bij)ij as A : B =

∑

ij aijbij .

The Frobenius-norm of matrix A reads ‖A‖F :=
√
A : A. Let I denote the (square)

identity matrix. The trace and the deviator of a matrix A ∈ Rd×d are defined by
trA := A : I and devA := A− tr A

d
I.

2.1 Classical Formulation of Elastoplasticity

The equilibrium of forces reads

− div(σ) = f in Ω , (1)

where σ denotes the stress tensor and f ∈ C(Ω)d describes volume forces acting in
each material point x ∈ Ω. The (linearized) strain ε describes the local deformation
defined as

ε(u) :=
1

2

(
∇u+ (∇u)T

)
, (2)

where u ∈
[
C2(Ω) ∩ C1(Ω ∪ ΓN) ∩ C(Ω)

]d
denotes the body displacement. The

plastic part of the strain is denoted by p ∈ [C(Ω) ∩ C1(Θ)]
d×d
sym . The relation between

stress and strain is given by Hook’s law

σ = C (ε− p) , (3)

where the fourth-order elasticity tensor C ∈ R
d×d
d×d is defined by Cijkl := λδijδkl +

µ(δikδjl + δilδjk). Here λ, µ ∈ R+ denote the Lamé-constants, and δij denotes the
Kronecker-symbol. As an alternative, one uses another material parameters Young’s
modulus E = µ3λ+2µ

λ+µ
and the Poisson ratio ν = λ

2(λ+µ)
. Further we assume boundary

conditions

u = uD on ΓD, (4)

σ · n = g on ΓN , (5)

where n denotes the exterior unit normal, uD ∈ C(ΓD)d denotes a prescribed dis-
placement and g ∈ C(ΓN)d denotes a prescribed surface tension. Purely elastic
behaviour of a body is given by the expressions (1) - (5) and p ≡ 0. In order to
model plasticity we need another two restrictions, which incorporate the time de-
velopment of p. We introduce the hardening parameter α ∈ C1(Θ)m. In case of
isotropic hardening [ACFK02] there holds m = 1. The tuple (σ, α) is called gener-
alized stress. A generalized stress is called admissible, if a dissipation functional ϕ
with

ϕ(σ, α) :=

{
0 if φ(σ, α) ≤ 0,
∞ if φ(σ, α) > 0,

(6)

3

satisfies
ϕ(σ, α) <∞. (7)

The function φ is convex and called the yield function. In case of isotropic hardening
it is defined

φ(σ, α) :=

{
‖ dev σ‖F − σy(1 +Hα) if α ≥ 0 ,
∞ if α < 0 ,

(8)

The material constants σy > 0 and H > 0 are called yield stress and modulus of
hardening. All admissible generalized stresses are characterized by φ(σ, α) ≤ 0. In
this sense we understand, that the hardening parameter α in ϕ(σ, α) < ∞ controls
the (convex) set of admissible stresses σ. Finally the Prandtl-Reuss normality law
states, that for all generalized stresses (τ, β) there holds

ṗ : (τ − σ) − α̇ (β − α) ≤ ϕ(τ, β) − ϕ(σ, α), (9)

where ṗ and α̇ denote the first time derivative of p and α.
Problem 1 (classical formulation). Find (u, p, α), such that expressions (1)–(5),
(7) and (9) are satisfied.

We will transform Problem 1 to a dual classical formulation. In order to do so, we
have to summarize some convex analysis theory.
Definition 1 (conjugate function). For a function f : X → [−∞,∞] we define the
conjugate function f ∗ : X∗ → [−∞,∞] by

f ∗(x∗) = sup
x∈X

(〈x∗, x〉 − f(x)).

Definition 2 (subdifferential). Let f be a convex function on X. For any x ∈ X
the sub-differential ∂f(x) of x is the possibly empty subset of X∗ defined by

∂f(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f(y) − f(x) ∀y ∈ X}.
Definition 3 (lower semicontinuity). A function f : X → [−∞,+∞] is called lower
semi-continuous if

{xn}n∈N → x⇒ lim infn→∞f(xn) ≥ f(x).

Definition 4 (proper function). A function f : X → [−∞,+∞] is called proper if
there exists a point x ∈ X such that f(x) <∞.
Theorem 1. Let X be a Banach space, and f : X → [−∞,∞] be a proper, convex,
lower semi-continuous function. Then

x∗ ∈ ∂f(x) ⇔ x ∈ ∂f ∗(x∗).

Proof. See [Kos91].

Applying this theorem to (9) the following equivalences hold:

ṗ : (τ − σ) − α̇ (β − α) ≤ ϕ(τ, β) − ϕ(σ, α) (∀τ, β)
⇔ 〈(ṗ,−α̇), (τ, β) − (σ, α)〉 ≤ ϕ(τ, β) − ϕ(σ, α) (∀τ, β)
⇔ (ṗ,−α̇) ∈ ∂ϕ(σ, α)
⇔ (σ, α) ∈ ∂ϕ∗(ṗ,−α̇)
⇔ 〈(σ, α), (q, β)− (ṗ,−α̇)〉 ≤ ϕ∗(q, β) − ϕ∗(ṗ,−α̇) (∀q, β)
⇔ σ : (q − ṗ) + α (β + α̇) ≤ ϕ∗(q, β) − ϕ∗(ṗ,−α̇) (∀q, β).

4

Thus Problem 1 is equivalent to
Problem 2 (dual classical formulation). Find (u, p, α), such that

− div(σ) = f in Ω, (10)

ε(u) =
1

2

(
∇u+ (∇u)T

)
,

ε(u) = C
−1σ + p,

σ · n = g on ΓN ,

u = uD on ΓD,

ϕ(σ, α) < ∞,

σ : (q − ṗ) + α (β + α̇) ≤ ϕ∗(q, β) − ϕ∗(ṗ,−α̇) (∀q, β). (11)

2.2 Variational Formulation of Elastoplasticity

Let V := [H1(Ω)]
d
, VD := [H1

D(Ω)]
d
, V0 := [H1

0(Ω)]
d
, and W := [L2(Ω)]d×d

sym × L2(Ω).
We multiply (10) with test functions v ∈ V0, integrate (10) and (11) over Ω, partial
integrate (10), and obtain a variational problem
Problem 3 (Variational formulation). Find (u, p, α) ∈ VD ×W , such that for all
(v, q, β) ∈ V0 ×W there hold

∫

Ω

C (ε(u) − p) : ε(v) dx =

∫

Ω

f · v dx+

∫

ΓN

g · v dS(x)

and
∫

Ω

[C (ε(u) − p) : (q − ṗ) + α (β + α̇)] dx ≤
∫

Ω

ϕ∗(q, β) dx−
∫

Ω

ϕ∗(ṗ,−α̇) dx.

We discretize in time by backward Euler with the discretization parameter k, pre-
cisely by the substitution of

u = u1, p = p1, α = α1, ṗ =
p1 − p0

k
, α̇ =

α1 − α0

k
,

where the initial value α0 has to satisfy ϕ(·, α0) <∞, such that due to the definition
of ϕ and φ there must hold α0 ≥ 0. We obtain a one time-step problem
Problem 4 (One time-step). Find (u1, p1, α1) ∈ VD×W , such that for all (v, q, β) ∈
V0 ×W there holds

∫

Ω

C (ε(u1) − p1) : ε(v) dx =

∫

Ω

f · v dx+

∫

ΓN

g · v dS(x),

and
∫

Ω

[C (ε(u1) − p1) : (kq − p1 + p0) + α1 (kβ + α1 − α0)] dx

≤ k

∫

Ω

ϕ∗(q, β) dx− k

∫

Ω

ϕ∗(
p1 − p0

k
,
α0 − α1

k
) dx.

5

Problem 4 can be expressed in a more abstract way. Therefore, let x1 ∈ V , y1 ∈ V ,
(x2, x3) ∈W , (y2, y3) ∈W , X := (x1, x2, x3) and Y := (y1, y2, y3). Further let

a1(X, Y) :=

∫

Ω

C (ε(x1) − x2) : ε(y1) dx,

a2(X, Y) :=

∫

Ω

[x3y3 − C (ε(x1) − x2) : y2] dx,

a(X, Y) := a1(X, Y) + a2(X, Y), (12)

L(X) :=

∫

Ω

f · x1 dx+

∫

ΓN

g · x1 dS(x), (13)

Ψ(X) := k

∫

Ω

ϕ∗(
x2 − p0

k
,
α0 − x3

k
) dx. (14)

Note, that a(X, Y) =
∫

Ω
C (ε(x1) − x2) : (ε(y1) − y2) + x3y3 dx is a symmetric,

positive definite bilinear-form. Further L is linear and Ψ is convex in X. With the
special choice of x1 := u1, x2 := p1, x3 := α1, y1 := u1 − v, y2 := p0 + kq and
y3 := α0 − kβ Problem 4 reads
Problem 5. Find X ∈ VD ×W , such that for all Y ∈ VD ×W there holds:

a1(X,X − Y) = L(X − Y), (15)

a2(X,X − Y) ≤ Ψ(Y) − Ψ(X). (16)

Summation of (15) and (16) leads to
Problem 6. Find X ∈ VD ×W , such that for all Y ∈ VD ×W there holds:

a(X,X − Y) ≤ L(X − Y) + Ψ(Y) − Ψ(X). (17)

Lemma 1. Problems 5 and 6 are equivalent.

Proof. Problem 5 ⇒ Problem 6: trivial by adding (15) and (16).
Problem 6 ⇒ Problem 5: Let X := (x1, x2, x3) solve (17) for all Y = (y1, y2, y3).
Particularly, for the choice Y := (x1, y2, y3) there follows that X solves (16) for all
Y := (x1, y2, y3). Since the bilinear form a2(·, ·) and Ψ(·) are independent of y1, X
also solves (16) for arbitrary Y ∈ VD ×W . Similarly, X solves

a1(X, Y −X) ≤ L(Y −X). (18)

for the special choice Y := (y1, x2, x3). Since a1(·, ·) and L(·) are independent of y2

and y3, X solves (18) for arbitrary Y ∈ VD ×W . By the substitution Z = Y −X
in (18) one obtains the inequality

a1(X,Z) ≤ L(Z)

for all Z ∈ V0 ×W . The reversed inequality is then formulated by replacing Z by
−Z. Thus the equality (15) must be satisfied.

6

Definition 5 (energy functional in elastoplasticity). Let X ∈ VD×W , and let a(·, ·),
Ψ(·) and L(·) be defined as in (12)–(14). Then we define

e(X) :=
1

2
a(X,X) + Ψ(X) − L(X)

which is called the energy functional in elastoplasticity.
Lemma 2. Let a(·, ·), L(·) and Ψ(·) be defined as in (12)–(14). Further let e(·) be
defined as in Definition 5. Then expressions (i) and (ii) are equivalent:
(i) Find X ∈ VD ×W such that for all Y ∈ VD ×W there holds

L(Y −X) ≤ a(X, Y −X) + Ψ(Y) − Ψ(X) .

(ii) Find X ∈ VD ×W such that

e(X) = min
Y ∈VD×W

e(Y).

Proof. (ii) ⇒ (i) : Let Y ∈ VD×W and θ ∈ (0, 1) be arbitrary and fixed. Expression
(ii) implies

e(X + θ(Y −X)) ≥ e(X).

Hence

θa(X, Y −X)+
1

2
θ2a(Y −X, Y −X)+Ψ(X + θ(Y −X)) − Ψ(X)

︸ ︷︷ ︸

≤θ(Ψ(Y)−Ψ(X))

−θL(Y −X) ≥ 0,

and thus

a(X, Y −X) +
1

2
θa(Y −X, Y −X) + Ψ(Y) − Ψ(X) − L(Y −X) ≥ 0.

Taking the limit θ ↓ 0 leads to expression (i).

(i) ⇒ (ii) : Let X ∈ VD ×W solve (i), and Y ∈ VD ×W be arbitrary and fixed.

e(Y) = e(X + (Y −X))

=
1

2
a(X,X) + a(X, Y −X) +

1

2
a(Y −X, Y −X) + Ψ(X + Y −X)

−L(X) − L(Y −X)

= e(X) + a(X, Y −X) + Ψ(Y) − Ψ(X) − L(Y −X)
︸ ︷︷ ︸

≥0

≥ e(X).

Hence, there holds e(X) = minY ∈VD×W e(Y).

2.3 Minimization Problem

Thanks to Lemma 2, Problem 6 is equivalent to

7

Problem 7 (Minimization problem). Find (u1, p1, α1) ∈ VD ×W , such that

e(u1, p1, α1) =
1

2

∫

Ω

C (ε(u1) − p1) : (ε(u1) − p1) + α2
1 + 2k ϕ∗(

p1 − p0

k
,
α0 − α1

k
) dx

−
∫

Ω

f · u1 dx−
∫

ΓN

g · u1 dS(x) → min.

Lemma 3. Let R := Rd×d × R, the tuple (p, α) ∈ R, and the convex yield function
φ be defined as in (8). Then there holds

ϕ∗(p, α) =

{
σy‖p‖F if (tr p = 0) ∧ (α +Hσy‖p‖F ≤ 0) ,
∞ else.

(19)

Proof. Let M := {(q, β) ∈ R | (β ≥ 0) ∧ (‖ dev q‖F − σy (1 +Hβ) ≤ 0)}. The
definition of a conjugate function (Definition 1) yields

ϕ∗(p, α) = sup
(q,β)∈R

(q : p+ βα− ϕ(q, β)) . (20)

If the supremum differs from −∞, it can only be attained if ϕ(q, β) < ∞. Thus,
due to the definitions of ϕ in (6) and φ in (8) there holds

ϕ∗(p, α) = sup
(q,β)∈M

(q : p + βα) .

In the first instance, we will show

ϕ∗(p, α) ≥
{
σy‖p‖F if (tr p = 0) ∧ (α+Hσy‖p‖F ≤ 0) ,
∞ else ,

and then finally,

(tr p = 0) ∧ (α+Hσy‖p‖F ≤ 0) ⇒ ϕ∗(p, α) ≤ σy‖p‖F .

Let c ∈ R. We choose (q, β) = (cI, 0), which is element in M, since

‖ dev(cI)‖F = 0 and σy ≥ 0 .

The choice of (q, β) yields

ϕ∗(p, α) ≥ sup
c∈R

c p : I
︸︷︷︸

=tr p

,

and thus there holds

ϕ∗(p, α) ≥
{

0 if tr p = 0 ,
+∞ else .

Let θ := σy(1+Hβ)

‖p‖F
and tr p = 0. We choose (q, β) = (θp, β), which is element in M,

since
‖ dev(θp)‖F = θ‖ dev p‖F = θ‖p‖F = σy(1 +Hβ) .

8

The certain choice of (q, β) yields

ϕ∗(p, α) ≥ sup
β≥0

(p : θp+ αβ) = sup
β≥0

(σy (1 +Hβ) ‖p‖F + αβ)

= σy‖p‖F + sup
β≥0

((σyH‖p‖F + α) β) ,

and thus there holds

ϕ∗(p, α) ≥
{
σy‖p‖F if (tr p = 0) ∧ (σyH‖p‖F + α ≤ 0) ,
+∞ else .

Let tr p = 0 and σyH‖p‖F + α ≤ 0. There holds

ϕ∗(p, α) = sup
(q,β)∈M

(p : q + αβ) = sup
(q,β)∈M



(dev q) : p+
tr q

dim(q)
I : p
︸︷︷︸

=0

+αβ





≤ sup
(q,β)∈M

(‖ dev q‖F‖p‖F + αβ)

≤ sup
β≥0

(σy (1 +Hβ) ‖p‖F + αβ)

= σy‖p‖F + sup
β≥0

((σyH‖p‖F + α) β) = σy‖p‖F ,

so the proposition is true.

Combining the definition of ϕ∗ in (19) and the minimal value condition of the energy
fuctional in Problem 7 it is necessary to guarantee the condition

ϕ∗(
p1 − p0

k
,
α0 − α1

k
) < +∞.

Due to Lemma 3 we have to determine p1 and α1 such that tr (p1 − p0) = 0 and
α1 ≥ α0 + σyH‖p1 − p0‖F . Under this condition we can find the minimizer of α1

in Problem 7 by setting α1 = α0 + σyH‖p1 − p0‖F , which leads to a minimization
problem in u1 and p1.
Problem 8. Find (u1, p1) ∈ VD × [L2(Ω)]d×d

sym
such that

e(u1, p1) =
1

2

∫

Ω

C(ε(u1) − p1) : (ε(u1) − p1) dx+
1

2

∫

Ω

(α0 + σyH‖p1 − p0‖F)2 dx

+

∫

Ω

σy‖p1 − p0‖F dx−
∫

Ω

f · u1 dx−
∫

ΓN

g · u1 dS(x) → min.

The minimizer in p1 of Problem 8 can be calculated analytically (for a proof see
[ACZ99]):

p1 =
(‖ devA‖F − β)+

2µ+ σ2
yH

2

devA

‖ devA‖F
+ p0,

where A, β and the operator (·)+ are defined as

A := C [ε(u1) + p0] , β := σy(1 + α0H) and (·)+ =

{
· if · > 0,
0 else.

Problem 8 is equivalent to the following minimization problem, which depends on
the displacement u1 only.

9

Problem 9. Find u1 ∈ VD such that

e(u1) =
1

2

∫

Ω

C(ε(u1) − p1(ε(u1))) : (ε(u1) − p1(ε(u1))) dx

+
1

2

∫

Ω

(α0 + σyH‖p1(ε(u1)) − p0‖F)2 + σy‖p1(ε(u1)) − p0‖F dx

−
∫

Ω

f · u1 dx−
∫

ΓN

g · u1 dS(x) → min,

(21)

with

p1(ε(u1)) =
(‖ devA‖F − β)+

2µ+ σ2
yH

2

devA

‖ devA‖F
+ p0, (22)

where
A = C [ε(u1) + p0] and β = σy(1 + α0H).

2.4 Moreau-Yosida Theorem

We will make use of an abstract formulation of (21). Let

‖B‖C :=

(∫

Ω

CB(x) : B(x) dx

) 1

2

, and

ψ(p1) :=
1

2

∫

Ω

(α0 + σyH‖p1 − p0‖F)2 dx+

∫

Ω

σy‖p1 − p0‖F dx

define a new matrix scalar product and a (convex) functional. Expression (21) then
rewrites as

e(u1) =
1

2
‖ε(u1) − p1(ε(u1))‖2

C + ψ(p1(ε(u1))) − L(u1) → min . (23)

Minimizing functional e(u1) can be done by finding the root of its first derivative
D e(u1). The next theorem shows, that e(u1) is indeed smooth, no matter the
dependency ψ on p is non-smooth.
Theorem 2 (Moreau-Yosida). Let H be a Hilbert space with scalar product 〈·, ·〉H,
H∗ its dual space, ψ : H → R convex, and function f be defined as

f : H → R, y 7→ min
x∈H

[
1

2
‖y − x‖2

H + ψ(x)

]

.

Further let x̃(y) denote the (unique) function, which yields

f(y) =
1

2
‖y − x̃(y)‖2

H + ψ(x̃(y)) .

for all y ∈ H. Then there holds:

1. f is convex.

10

2. f is Fréchet-differentiable with Df(y) = y − x̃(y) ∈ H∗.

Proof. ad 1 (convexity): Let y1, y2 ∈ H , t ∈ (0, 1) be arbitrary and fixed. Further
let x := x̃((1 − t)y1 + ty2), x1 := x̃(y1) and x2 := x̃(y2). Due to the definition of f
there holds

f((1 − t)y1 + ty2) =
1

2
‖(1 − t)y1 + ty2 − x‖2

H + ψ(x) .

Since x is the minimizer, the expression is certainly not getting any lower if x is
substituted by any other element in H . Thus

f((1 − t)y1 + ty2) ≤
1

2
‖(1 − t)y1 + ty2 − (1 − t)x1 − tx2‖2

H + ψ((1 − t)x1 + tx2) .

Triangle inequality and convexity of ψ yield

f((1 − t)y1 + ty2) ≤ (1 − t)

[
1

2
‖y1 − x1‖2

H + ψ(x1)

]

+ t

[
1

2
‖y2 − x2‖2

H + ψ(x2)

]

,

and thus
f((1 − t)y1 + ty2) ≤ (1 − t)f(y1) + tf(y2).

ad 2 (differentiability): Let y ∈ H and ∆y ∈ H be arbitrary and fixed. All sub-
gradients g ∈ H∗ of f yield

f(y + ∆y) ≥ f(y) + 〈g(y),∆y〉H . (24)

On the other hand there holds

f(y + ∆y) = min
x∈H

[
1

2
‖y + ∆y − x‖2

H + ψ(x)

]

≤ 1

2
‖y + ∆y − x̃(y)‖2

H + ψ(x̃(y))

=
1

2
〈y + ∆y − x̃(y), y + ∆y − x̃(y)〉H + ψ(x̃(y)) .

Hence,

f(y + ∆y) ≤ f(y) + 〈y − x̃(y), ∆y〉H +
1

2
‖∆y‖2

H . (25)

Subtracting expression (24) from (25) one obtains

0 ≤ 〈y − x̃(y),∆y〉H − 〈g(y),∆y〉H +
1

2
‖∆y‖2

H .

The same inequality must be valid, if we replace ∆y by −∆y, such that there holds

−1

2
‖∆y‖2

H ≤ 〈y − x̃(y) − g(y),∆y〉H ≤ 1

2
‖∆y‖2

H .

Hence, one obtains y− x̃(y)−g(y) = 0 resp. g(y) = y− x̃(y) (proof by contradiction,
draft: assume, that z := y − x̃(y) − g(y) would not equal zero; choose γ ∈ (0, 1);
choose ∆y = γz; contradiction). The sub-differential g(y) is uniquely defined for
all y ∈ H , thus a Fréchet-derivative, which is denoted by the symbol Df := g, or
explicitly

Df(y) = 〈y − x̃(y), · 〉H .

11

Theorem 2 is essential in the so called Moreau-Yosida regularization (see [Mor65]
and [Yos94]), which has its origin in convex analysis. Hence in this paper we are
calling it Moreau-Yosida theorem. Applying Theorem 2 and the chain rule to the
energy function (23), we can now build its Gâteaux-differential.

D e(u1, v) = 〈ε(u1) − p1(ε(u1)) , ε(v)〉C
− L(v)

=

∫

Ω

C (ε(u1) − p1(ε(u1))) : ε(v) dx− L(v),
(26)

with p1 and L defined as in (22) and (13).

3 Discretization and Implementation

Subsections 3.1 and 3.2 are based on [ACFK02].

3.1 Discretization in Space

We decompose the polygonal 2D domain Ω into a triangulation with NT ∼ h−d

triangles and NN nodes xi ∈ {1, . . . ,NN}. Here NT means number of elements
and NN means number of nodes. Let T be such a domain decomposition in 2D
where all T ∈ T are triangles with nodes xi for i ∈ {1, . . . ,NN}. Let E be a set
of edges E ∈ E and let EN be its intersection with the Neumann boundary ΓN .
We approximate the infinite-dimensional space V by a finite-dimensional subspace
Vh := {u1h ∈ V | u1h|T is a linear polynomial ∀T ∈ T }. The base functions ηi,j ∈
Vh, i ∈ {1, . . . ,NN}, j ∈ {1, 2} are of the form ηi,j(x) := ϕi(x)ej , where ϕi(x) is a
1D linear nodal shape (hut) function and ej is the j-th unit vector. Therefore, uh

can be expressed uh(x) :=
∑

i,j ui,jηi,j(x), where ui,j := (u(xi))j . We are interested
in finding u1h ∈ VhD := Vh ∩ VD such that D e(u1h) = 0. For implementation, u1h

is stored as a vector u = ((ui,j)
2
j=1)

NN

i=1 ∈ R2NN . Analogously a test function vh is
represented by the vector v. Let (k1, k2, k3) := ((x1, y1) , (x2, y2) , (x3, y3)) be the
vertices of one single element T ∈ T . For linear elements there holds

∇





ϕk1

ϕk2

ϕk3



 =





1 1 1
x1 x2 x3

y1 y2 y3





−1



0 0
1 0
0 1



 .

3.2 Vector Representation

We consider the so called plain model, which assumes the strain ε or the stress σ to
have zero components in direction, where the domain Ω is thin (plain strain model
or plain stress model). The following formulations hold for the plain strain model
only, a modification for the plain stress model can be done as well. We assume the

12

total strain ε, the plastic strain p and the stress tensor σ in forms

ε =





ε11 ε12 0
ε12 ε22 0
0 0 0



 , p =





p11 p12 0
p12 p22 0
0 0 p33



 , σ =





σ11 σ12 0
σ12 σ22 0
0 0 σ33



 .

The information about ε can be saved in the vector −→ε := (ε11, ε22, 2ε12)
T . Since p

is trace-free, there must hold p33 = −p11 − p22. Therefore it is sufficient to store p
in the vector −→p := (p11, p22, p12)

T . Due to σ33 = σ11 + σ22 the stress σ can be saved
in the vector −→σ := (σ11σ22, σ12)

T too. For the calculation of the energy functional
derivative we will make an extent use of identifiers in vector representation. Table
1 summarizes in which way these identifiers will transform. It follows for instance
σε : ε = (−→σ ε)

T −→ε and σp : ε = (−→σ p)
T −→ε . Let RT and RE be element and edge

restriction operators which map the global vector u on the local element uT or edge
uE vectors

uT = RT u , uE = REu . (27)

Since ε(u1h) is constant on each element T there holds

εV (u1h(x)|T) =





∂xϕk1
0 ∂xϕk2

0 ∂xϕk3
0

0 ∂yϕk1
0 ∂yϕk2

0 ∂yϕk3

∂yϕk1
∂xϕk1

∂yϕk2
∂xϕk2

∂yϕk3
∂xϕk3















uk1,x

uk1,y

uk2,x

uk2,y

uk3,x

uk3,y











or, in a more compact way,

εV (u1h(x)|T) = BT uT . (28)

The implementation of BT in Matlab c© reads:

function [B,area] = elem_B(vertices)

F = [ones(1,3);vertices’];

area = det(F)/2;

phiGrad = F\[zeros(1,2);eye(2)];

B([1,3],[1,3,5]) = phiGrad’; B([3,2],[2,4,6]) = phiGrad’;

end

Integration over body and surface forces may be realized by the midpoint rule. We
approximate f and g by

fT := f(xT) and gE := g(xE),

where xT , and xE respectively, denote the center of mass of the element T , and the
edge E respectively. Defining

fT :=
|T |
3
RT

T fT , and gE :=
|E|
2
RT

E gE ,

on each T ∈ T and on each E ∈ E there hold
∫

T

f · v dx ≈ fT
T v , and

∫

E

g · v dS(x) ≈ gT
Ev . (29)

This can be realized by the following two Matlab c© functions:

13

Common (Tensor) Representation Vector Representation

ε :=

(
ε11 ε12 0
ε12 ε22 0
0 0 0

)

−→ε :=

(ε11
ε22
2 ε12

)

p :=

(
p11 p12 0
p12 p22 0
0 0 − (p11 + p22)

)

−→p :=

(p11
p22
p12

)

with ‖p‖2
F = −→p T N −→p

where N :=

(
2 1 0
1 2 0
0 0 2

)

σε := C ε =

(
σε,11 σε,12 0
σε,12 σε,22 0

0 0 σε,33

)

−→σ ε :=

(σε,11
σε,22
σε,12

)

= C −→ε

with C := λδijδkl + µ(δikδjl + δilδjk) with C :=

(
λ + 2µ λ 0

λ λ + 2µ 0
0 0 µ

)

and σε,33 =
λ

2 (λ + µ)
︸ ︷︷ ︸

=ν

(1 1 0) −→σ ε

σp := C p = 2µ p + λ tr(p)
︸︷︷︸

=0

I = 2µ p −→σ p :=

(σp,11
σp,22
σp,12

)

= 2µ−→p

and σp,33 = − (1 1 0) −→σ p

σ := C (ε − p) = σε − σp
−→σ = −→σ ε −−→σ p and σ33 = σε,33 − σp,33

tr σε :=
∑

i σε,ii tr σε = ν+1
ν σε,33

dev σε := σε − tr σε

dim(σε) I
−−−→
dev σε :=





(dev σε)11
(dev σε)22
(dev σε)12



 = −→σ ε − tr σε

dim(σε)

(
1
1
0

)

⇒ −−−→
dev σε =

(

I − ν + 1

dim(σε)

(
1 1 0
1 1 0
0 0 0

))

︸ ︷︷ ︸

=:K

−→σ ε

dev σ = dev σε − dev σp
︸ ︷︷ ︸

=σp

−−−→
dev σ =

−−−→
dev σε −−→σ p

(dev σ)33 = − (1 1 0) −→σ

‖dev σ‖2
F :=

∑

i,j (dev σ)2ij ‖dev σ‖2
F =

(−−−→
dev σ

)T
N

−−−→
dev σ

Table 1: Table of Vector Representation

14

function f_ = elem_volumeforce(vertices)

T = det([ones(3,1),vertices]);

fs = f(sum(vertices)/3)’;

f_ = [fs; fs; fs]*T/6;

end

function g_ = elem_surfaceforce(vertices)

n = (vertices(2,:) - vertices(1,:))*[0,-1; 1,0];

T = norm(n);

gs = g_neumann(sum(vertices)/2,n/norm(n))’;

g_ = [gs; gs]*T/2;

end

3.3 Calculation of the Discrete Formulation and Newton

Method

The Gâteaux-derivative in (26) will now be lead into its discrete analogon. First, the
whole integral over Ω will be split into a sum of integrals on single finite elements.
Combining (27), (28) and (29) we obtain the discrete formulation of the Gâteaux-
differential

D e(u,v) =
∑

T∈T

[

|T | (C BTuT − 2µ−→p1(BTuT))
T
BT RT − fT

T

]

v −
∑

E∈EN

gT
E v

with

−→p1(BTuT) =

{ −→p0 if ‖ devA‖ < β,
1
δ

−−−→
devA

(

1 − β
‖dev A‖

)

+ −→p0 else,

where
−−−→
devA = KC BT uT + 2µ−→p0 ,

‖ devA‖ =

((−−−→
devA

)T

N
−−−→
devA

) 1

2

=: ‖−−−→devA‖N ,

β = σy (1 + α0H) ,

δ = 2µ+ σ2
yH

2.

Since D e(u,v) is linear in v we can obtain the Fréchet-derivative

D e(u) =
∑

T∈T

(

|T | (CBTuT − 2µ−→p1(BTuT))
T
BT RT − fT

)

−
∑

E∈EN

gE, (30)

which represent the discrete form of (26). Note that the second derivative D 2e(u)
can be calculated everywhere appart from the the material points satisfying the
condition ‖ devA‖ 6= β and reads

D 2e(u) = D

(
∑

T∈T

|T | (CBTuT − 2µ−→p1(BTuT))
T
BT RT

)

=
∑

T∈T

|T |RT
T B

T
T (C − 2µDBT uT

−→p1(BTuT))
T
BT RT ,

15

with

D BT uT

−→p1(BT uT) =







0 if ‖ devA‖ < β

1
δ
w′ − β

δ

(

w′

(wT Nw)
1

2

− w wT Nw′

(wT Nw)
3

2

)

if ‖ devA‖ > β,
(31)

where w(u) :=
−−−→
devA and w′ := D BT uT

−−−→
devA = K C. In other words, the second

derivative exists in purely elastic material points as well as in purely plastic material
points. It only does not exist in the elastoplastic interface points where ‖ devA‖ =
β. For numerical computations we will use the value corresponding to the case
‖ devA‖ > β also in the critical interface case, where ‖ devA‖ = β.

The Newton method is applied for the calculation of u ∈ Rd·NN such that De(u) = 0
and u satisfies the Dirichlet boundary condition:

ui = ui−1 + ∆ui (∀i ∈ N), (32)

where ∆ui solves
−D 2e(ui−1) ∆ui = D e(ui−1) .

The assembly of the stiffness matrix EnergyDD (it stands for D2e(u)) and the right
hand side EnergyD (De(u)) is implemented in the Matlab c© as:

function [EnergyD,EnergyDD] = energy_derivatives(u,p0Initial, ...

nodes,elements,neumann,N,K,C,param)

SU = size(u,1);

EnergyD = zeros(SU,1); EnergyDD = sparse(SU,SU);

for j = 1:size(elements,1)

vertices = nodes(elements(j,:),:);

I = 2*elements(j,[1,1,2,2,3,3]) - [1,0,1,0,1,0];

[B,area] = elem_B(vertices);

eps = B*u(I);

p0 = p0Initial(:,j);

[p,pD_eps] = elem_p(j,eps,p0,N,K,C,param);

ED(I) = ED(I) + area*B’*(C*eps - 2*param.mu*p);

ED(I) = ED(I) - elem_volumeforce(vertices);

EDD(I,I) = EDD(I,I) + area*B’*(C - 2*param.mu*pD_eps)*B;

end

for j = 1:size(neumann,1)

vertices = nodes(neumann(j,:),:);

I = 2*neumann(j,[1,1,2,2]) - [1,0,1,0];

ED(I) = ED(I) - elem_surfaceforce(vertices);

end

The calculation of p(ε(u)) and Dε(u) p(ε(u)) on the j− th element Tj can be realized
by the Matlab c© function elem_p:

function [p,pD_eps] = elem_p(j,eps,p0,N,K,C,param)

p = p0;

16

pD_eps = zeros(3,3);

devAD_eps = K*C;

devA = devAD_eps*eps - 2*param.mu*p0;

norm_devA = sqrt(devA’*N*devA);

posFac = norm_devA - param.beta(j);

if (posFac > 0)

p = devA*posFac/(param.delta*norm_devA) + p0;

pD_eps = (devAD_eps - (param.beta(j)/norm_devA)* devAD_eps ...

- (devA*((devA’*N)*devAD_eps)) norm_devA^2))/param.delta;

end

Note, that ui must satisfy (generally inhomogeneous) Dirichlet boundary conditions
for all i ∈ N. Therefore it is sufficient for the initial approximation u0 to solve the
inhomogeneous Dirichlet conditions, and for ∆ui to solve the homogeneous Dirichlet
conditions. For the termination of the Newton method we check, whether the relative
error of the discrete approximation

|ui − ui−1|ε
|ui|ε + |ui−1|ε

(33)

is smaller than a given prescribed bound ǫ ∈ R+. Note that the seminorm

| · |ε := (

∫

Ω

||ε(·)||2 dx)1/2

is more easily computable than an equivalent H1 norm

|| · ||1 := (

∫

Ω

(|| · ||2 + ||∇ · ||2) dx)1/2.

The quality of the Newton iterations is measured by the relative error of the energy
as

|e(ui) − e(ui−1)|
|e(ui)| + |e(ui−1)|

. (34)

The implementation of (33) reads:

function norm_delta_u = termination_criterion(u,u_old,Delta_u,...

nodes, elements)

N_eps = [1,0,0; 0,1,0; 0,0,0.5];

norm_u_old_sq = 0; norm_u_sq = 0; norm_du_sq = 0; norm_ED_sq = 0;

for j = 1:size(elements,1)

vertices = nodes(elements(j,:),:);

[B,area] = elem_B(vertices);

eps_u_old = B*u_old(I); eps_u = B*u(I);

eps_Delta_u = B*Delta_u(I);

norm_u_old_sq = norm_u_old_sq + ...

area*(eps_u_old’*N_eps*eps_u_old);

norm_u_sq = norm_u_sq + area*(eps_u’*N_eps*eps_u);

norm_Delta_u_sq = norm_Delta_u_sq + ...

17

area*(eps_Delta_u’*N_eps*eps_Delta_u);

end

norm_Delta_u = sqrt(norm_Delta_u_sq);

norm_u = sqrt(norm_u_sq);

norm_u_old = sqrt(norm_u_old_sq);

norm_delta_u = norm_Delta_u / (norm_u_old + norm_u);

The implementation of Newton method is realized via the Matlab c© file fem.m.

d = [1; 1; 0];

K = eye(3) - d*d’*(1 + param.nu)/3;

N = [2,1,0;1,2,0;0,0,2];

C = param.lambda*[1,1,0;1,1,0;0,0,0] + param.mu*[2,0,0;0,2,0;0,0,1];

u = zeros(2*size(nodes,1),1); Delta_u = u; ED = u;

p0Initial = zeros(size(elements,1),3);

isPlasticElement = zeros(1,size(elements,1));

EDD = sparse(size(u,1),size(u,1));

[I,J] = separate_into_prescribed_and_free_nodes(...)

u = apply_dirichlet_boundary_conditions(...)

newton_epsilon = 1e-12; newton_iterations = 0;

norm_delta_u = newton_epsilon;

while (norm_delta_u >= newton_epsilon)

[ED,EDD] = energy_derivatives(u,p0Initial,nodes,elements, ...

neumann,N,K,C,param);

ED(J) = ED(J) + EDD(J,:)*u(J);

u_old = u;

Delta_u(I) = solve_linear_system(EDD(I,I),ED(I),Delta_u(I));

u(I) = u(I) - Delta_u(I);

newton_iterations = newton_iterations + 1;

norm_delta_u = termination_criterion(u_old, u, Delta_u);

end

post_processing

end

3.4 Other techniques used

There are two additional numerical techniques implemented for the solution of the
elastoplastic problem with perfectly plastic material (H = 0) in Example 3.

Nested Iteration Technique In order to obtain a reasonable initial approxima-
tion for the Newton method on the finer mesh, one can prolongate the solution u
from the coarser mesh and take this value as the initial approximation u0. This so
called nested iteration technique, for a detailed info see [Hac85].

18

Damping Technique The idea of damping is to replace the upgrade of ui defined
in (32) by

ui = ui−1 + αi∆ui

with a damping parameter αi ≤ 1. The following strategy to determine αi is based
on the comparison of energies: αi is originally set to 1 and halfened until the energy
functional is reduced, i.e., it holds

e(ui−1 + αi∆ui) < e(ui−1). (35)

4 Numerical Examples

The following tests were calculated on a computer with 2.4 GHz CPU, 2 Gb RAM
using Matlab c© version 7.0 on Linux OS. The quality of the discrete solution is
measured by a global error estimator η defined as

η =

√
∑

T∈Th
η2

T
√
∑

T∈Th

∫

T
σ∗

h : C−1σ∗
h dx

, (36)

where

η2
T =

∫

T

(σh − σ∗
h) : C

−1 (σh − σ∗
h) dx ,

and σ∗
h is a nodal Clement interpolation of the piecewise constant σh defined as

σ∗
h(v) =

∑

{k|v∈Tk}
|Tk|σh(Tk)

∑

{k|v∈Tk}
|Tk|

.

We define ’DOF’ as the short form of degrees of freedom, and ’VPZ’ to be the short
form of variation in plastic zones which is calculated as follows: In the i-th Newton
step the boolean vector wi stores the information about which elements are plastic
and which are not by defining its components

wi
j :=

{
1 if Tj is a plastic element,
0 else.

Let the starting vector w0 = 0. Variation in plastic zones VPZi
i−1 from the (i−1)-st

to the i-th Newton step is defined by

VPZi
i−1 =

100

NT

n∑

j=1

|wi
j − wi−1

j |.

It all numerical examples, the termination bound ǫ = 1e− 12 was used.

19

1

2
3

4
5

6

1

2

3

4

5

6

7

8

Figure 1: Problem geometry and the coarse triagulation of Example 1. The L-shape
domain Ω is described by the polygon (−1,−1), (0,−2), (2, 0), (0, 2), (−1, 1), (0, 0).

Example 1 (L-Shape). This example is taken from [ACFK02] and its geometry and
the coarse grid triangulation are displayed in Figure 1. We assume nonhomogeneous
Dirichlet boundary conditions in polar coordinates r, θ

ur(r, θ) =
1

2µ
rα [−(α + 1) cos((α + 1) θ) + (C2 − (α + 1))C1 cos((α− 1) θ)] ,

uθ(r, θ) =
1

2µ
rα [(α + 1) sin((α + 1) θ) + (C2 + (α− 1))C1 sin((α− 1) θ)] .

(37)

The critical exponent α ≈ 0.544483737 is the solution of the equation

α sin(2ω) + sin(2ωα) = 0

with ω = 3π
4

and C1 = −(cos((α + 1)ω))/ cos((α − 1)ω),C2 = (2(λ + 2µ))/(λ+ µ).
It can be shown that the formulae (37) describe the solution of the purely elastic
problem with the same nonhomogeneous Dirichlet boundary conditions also in the
interior of the Lshape domain. Thus there is an strain-singularity in the reentrant
corner, which can also be expected for the elastoplastic case. The material parameters
are defined as

E = 1e5, ν = 0.3, σY = 2.2, H = 1.

Figure 2 shows the yield function (right) and the elastoplastic zones (left), where
purely elastic zones are colored green (light gray in case of a non-color print re-
spectively), and elastoplastic zones are colored pink (dark grey respectively). The
domain’s displacement is multiplied by factor 3e3. Table 2 reports on convergence
behaviour of Newton method for graduated uniform meshes.

20

Figure 2: Elastoplastic zones (left) and yield function (right) of the deformed domain
in Example 1. The displacement is magnified by factor 3e3.

Level 1 2 . . . 6 7 8

DOF 10 66 . . . 20466 97282 391170

relative error:
step 1 2.8383e-02 3.9827e-02 . . . 7.2243e-02 7.0236e-02 6.8321e-02
step 2 1.0467e-04 1.2352e-03 . . . 1.1004e-02 1.1063e-02 1.1022e-02
step 3 2.3781e-09 6.1409e-07 . . . 1.1453e-03 1.2746e-03 1.3552e-03
step 4 1.0944e-16 2.9589e-13 . . . 2.0826e-05 4.0743e-05 5.9611e-05
step 5 . . . 6.8005e-09 5.1957e-08 2.0693e-07
step 6 . . . 5.2211e-15 1.3866e-13 4.3361e-12
step 7 . . . 1.8774e-14

VPZ (%):
step 0-1 16.67 10.42 . . . 10.59 10.61 10.62
step 1-2 0 2.083 . . . 2.873 2.816 2.752
step 2-3 0 0 . . . 0.2686 0.2218 0.1638
step 3-4 0 0 . . . 0.04069 0.02848 0.01882
step 4-5 . . . 0 0 0
step 5-6 . . . 0 0 0
step 6-7 . . . 0

Time (sec.) 2.00537 2.25042 . . . 142.29 590.106 2692.87

Error est. 0.401437 0.2482 . . . 0.0409114 0.0272622 0.0181553

Table 2: Convergence table in Example 1 (Lshape). The table displays the relative
error in displacements (33) and the variation of plastic zones (VPZ) in Newton
steps for various uniformly refined meshes. The quality of the discrete solutions is
measured by the global error estimator (36).

21

g
1.4

1

1

1

0.8 8 0.2

4.2

Figure 3: Problem geometry in Example 2.

Figure 4: Elastoplastic zones (left) and yield function (right) of the deformed domain
in Example 2. The displacement is magnified by factor 10.

Example 2 (Wrench). This example simulates the deformation of a screw-wrench
under pressure. Problem geometry is shown in Figure 3: A screw-wrench sticks on
a screw (homogeneous Dirichlet boundary condition) and a surface load g is applied
to a part of the wrench’s handhold in interior normal direction (Neumann boundary
condition). The material parameters are set

E = 2e8, ν = 0.3, σY = 2e6, H = 0.001

and the problem was calculated traction g(x) = 6e4. Figure 4 shows the yield function
(right) and the elastoplastic zones (left), where purely elastic zones are colored green
(light gray in case of a non-color print respectively), and elastoplastic zones are
colored pink (dark grey respectively). The displacement of the domain is multiplied
by factor 10. Table 3 reports on the convergence of the Newton method for graduated
uniform meshes.
Example 3 (Plate with a Hole). This example is taken from [ea02] and serves as a
benchmark problem in computational plasticity. The example domain is a thin plate
represented by the square (−10, 10)×(−10, 10) with a circular hole of the radius r = 1

22

Level 0 1 . . . 5 6 7

DOF 60 202 . . . 41662 165246 658174

relative error:
step 1 2.3834e-14 3.6169e-03 . . . 1.3194e-01 1.4872e-01 1.5846e-01
step 2 2.3598e-06 . . . 5.6966e-02 6.9302e-02 7.9603e-02
step 3 1.5324e-11 . . . 7.5805e-03 1.3223e-02 2.9909e-02
step 4 4.5752e-15 . . . 4.0307e-04 2.4344e-03 3.5626e-03
step 5 . . . 5.9665e-06 2.1840e-04 1.2013e-04
step 6 . . . 2.9485e-10 1.5089e-05 1.0364e-05
step 7 . . . 7.8696e-14 3.8914e-09 1.1642e-09
step 8 . . . 1.5508e-13 2.9988e-13

VPZ (%):
step 0-1 0 1.25 . . . 1.819 1.83 1.828
step 1-2 0 . . . 0.9741 1.168 1.27
step 2-3 0 . . . 0.3564 0.5591 0.7588
step 3-4 0 . . . 0.05127 0.1501 0.1418
step 4-5 . . . 0.002441 0.02563 0.02319
step 5-6 . . . 0 0.00183 0.004425
step 6-7 . . . 0 0 0
step 7-8 . . . 0 0

Time (sec.) 1.31385 2.58625 . . . 262.304 1177.64 4892

Error est. 0.780432 0.53131 . . . 0.0868307 0.0758023 0.0421956

Table 3: Convergence table in Example 2 (wrench). The table displays the relative
error in displacements (33) and the variation of plastic zones (VPZ) in Newton
steps for various uniformly refined meshes. The quality of the discrete solutions is
measured by the global error estimator (36).

10 90

g

g

g

12

3 4

1

Figure 5: Problem geometry in Example 3.

23

0 2 4 6 8
0

2

4

6

8

10

12

0 2 4 6 8
0

2

4

6

8

10

12

−300

−250

−200

−150

−100

−50

0

Figure 6: Elastoplastic zones (left) and yield function (right) of the deformed domain
in Example 3 . The displacement is magnified by factor 100.

in the middle, as can be seen in Figure 5. A surface load g is applied on the plate’s
upper and lower edge. Due to symmetric geometry only the right upper quarter
of the domain is discretized. Therefore it is necessary to incorporate homogeneous
Dirichlet boundary conditions in the normal direction (gliding conditions) to both
symetric edges. The material parameters are set

E = 206900, ν = 0.29, σY =

√

2

3
450, H = 0.

It means our model is a perfect plasticity model. Figure 6 shows the yield function
(right) and the elastoplastic zones, where purely elastic zones are colored green (light
gray in case of a non-color print respectively), and elastoplastic zones are colored
pink (dark grey respectively). The domains’s displacement is multiplied by 100. Table
4 reports on the convergence of the Newton method for graduated uniform meshes.
It turns out that the non-nested iteration technique which was successful in other
previous example does not work here for finest mesh. Therefore, the nested iteration
technique or the Newton damping technique are used, see Table 5 for more details.

Acknowledgments

The authors are pleased to acknowledge support by the Austrian Science Fund
’Fonds zur Förderung der wissenschaftlichen Forschung (FWF)’ for their support
under grant SFB F013/F1306 in Linz, Austria. The idea of looking at the elasto-
plastic formulation in terms of the Moreau-Yosida Theorem came out during working
progresses with H. Gfrerer, J. Kienesberger and U. Langer.

24

Level 0 1 . . . 3 4 5

DOF 245 940 . . . 14560 57920 231040

Non-nested iteration technique

relative error:
step 1 2.4308e-02 5.4158e-02 . . . 8.0495e-02 8.4982e-02 8.6934e-02
step 2 9.8924e-03 2.6174e-02 . . . 7.0273e-02 8.2874e-02 9.7932e-02
step 3 1.0180e-03 4.1482e-03 . . . 2.6452e-02 3.8208e-02 1.4122e-01
step 4 1.1566e-06 4.6425e-04 . . . 3.5268e-03 6.1751e-03 4.6951e-01
step 5 4.0331e-12 1.6937e-05 . . . 1.7461e-04 4.5520e-04 8.3690e-01
step 6 4.3289e-16 1.3371e-09 . . . 3.6869e-06 6.0711e-05 9.5657e-01
step 7 9.3330e-16 . . . 2.4166e-10 4.5021e-07 9.8160e-01
step 8 . . . 3.6081e-15 5.4823e-12 . . .
step 9 . . . 7.3296e-15 diverging

VPZ (%):
step 0-1 2.667 4.778 . . . 5.299 5.345 5.356
step 1-2 3.11 5 . . . 7.104 7.252 7.498
step 2-3 0.4444 2.444 . . . 4.674 5.045 5.509
step 3-4 0 0.6667 . . . 1.639 2.08 0.5994
step 4-5 0 0.1111 . . . 0.3472 0.4948 1.815
step 5-6 0 0 . . . 0.02778 0.07465 0.3416
step 6-7 0 . . . 0 0.006944 0.1141
step 7-8 . . . 0 0 . . .
step 8-9 . . . 0 diverging

Time (sec.) 3.23081 8.16373 . . . 106.88 468.615 -

Nested iteration technique

relative error:
step 1 2.4308e-02 5.5612e-02 . . . 5.1909e-02 3.9135e-02 2.4310e-02
step 2 9.8924e-03 1.8466e-02 . . . 1.0428e-02 7.3208e-03 3.1321e-03
step 3 1.0180e-03 2.6082e-03 . . . 1.2247e-03 1.6236e-03 5.9788e-04
step 4 1.1566e-06 2.1786e-04 . . . 7.0150e-05 1.6808e-04 1.4709e-04
step 5 4.0330e-12 1.6854e-05 . . . 6.1389e-08 3.3952e-06 3.1330e-06
step 6 5.6042e-16 1.3203e-09 . . . 8.1421e-14 2.4807e-10 1.1140e-09
step 7 7.9697e-16 . . . 6.8650e-15 1.5225e-14

VPZ (%):
step 0-1 2.667 6.333 . . . 14.7 15.24 15.28
step 1-2 3.11 3.889 . . . 2.257 1.307 0.6021
step 2-3 0.4444 2.111 . . . 0.8125 0.3594 0.1402
step 3-4 0 0.3333 . . . 0.1458 0.1181 0.03472
step 4-5 0 0.1111 . . . 0.006944 0.0191 0.007378
step 5-6 0 0 . . . 0 0 0
step 6-7 0 . . . 0 0

Time (sec.) 3.2685 11.1333 . . . 119.328 492.936 2119.71

Error est. 0.0519797 0.0456903 . . . 0.0244116 0.0153209 0.00881961

Table 4: Convergence table in Example 3 (plate with a hole). The table displays
the relative error in displacements (33) and the variation of plastic zones (VPZ)
in Newton steps for various uniformly refined meshes. The quality of the discrete
solutions is measured by the global error estimator (36).

25

Problem ’Plate with a Hole’ at Level 5 (DOF=231040)

Standard Newton Method Damped Newton Method

Error in e(u) Error in u Error in e(u) Error in u k

step 1 -3.1619e-01 8.6934e-02 -3.4320e-03 8.6934e-02 0
step 2 -5.1283e-02 9.7932e-02 -5.5442e-04 9.7932e-02 0
step 3 2.8336e-01 1.4122e-01 -6.2037e-04 1.4517e-01 2
step 4 2.1854e+00 4.6951e-01 -1.3852e-04 4.8643e-02 0
step 5 7.2304e+00 8.3690e-01 -1.9002e-04 7.9731e-02 2
step 6 2.1073e+01 9.5657e-01 -6.3455e-05 2.3192e-02 1
step 7 5.9547e+01 9.8160e-01 -2.0840e-05 1.1869e-02 1
step 8 1.3702e+02 9.8480e-01 -1.2660e-05 7.7685e-03 1
step 9 3.6256e+02 9.8221e-01 -6.1992e-06 2.3371e-03 0

step 10 9.0941e+02 9.8513e-01 -6.5443e-08 5.3965e-04 0
step 11 1.5903e+03 9.8493e-01 -9.1647e-09 2.9142e-04 0
step 12 3.1730e+03 9.7935e-01 -4.5144e-11 2.3221e-05 0
step 13 1.0887e+04 9.7633e-01 -1.3790e-15 1.3469e-07 0
step 14 -2.8347e-15 4.4192e-12 0
step 15 not converging 9.9597e-16 1.4070e-14 0

Table 5: Complementary convergence table in Example 3 (plate with a hole).
Standard Newton method with a zero initial approximation does not converge in
Example 3 for refinement level 5 with 231040 degrees of freedom. Thus the Newton
damping technique is applied. Both standard (non-damped with α = 1) and damped
Newton method (αi = 2−k, where k denotes the number of damping steps) are
compared: the relative errors in the displacement ui and the relative errors in the
energy e(ui) at the i-th Newton iteration step are computed by (33) and (34). The
right most column reports on how many damping steps k have been necessary to
guarantee the energy reduction (35).

26

References

[AC00] J. Alberty and C. Carstensen, Numerical analysis of time-depending pri-
mal elastoplasticity with hardening, SIAM J. Numer. Anal. 37 (2000),
no. 4, 1271–1294.

[ACFK02] J. Alberty, C. Carstensen, S. A. Funken, and R. Klose, Matlab implemen-
tation of the finite element method in elasticity, Computing 69 (2002),
no. 3, 239–263. MR 1 954 562

[ACZ99] J. Alberty, C. Carstensen, and D. Zarrabi, Adaptive numerical analysis
in primal elastoplasticity with hardening, Comput. Methods Appl. Mech.
Eng. 171 (1999), no. 3-4, 175–204.

[Bla97] R. Blaheta, Numerical methods in elasto-plasticity, Comp. Meth. Appl.
Mech. Engrg. 147 (1997), 167–185.

[DL76] G. Duvaut and Lions J. L., Numerical analysis of variational inequalities,
Springer-Verlag Berlin Heidelberg, 1976.

[ea02] Stein et al. (ed.), Error-controlled adaptive finite elements in solid me-
chanics, 2002.

[Hac85] W. Hackbusch, Multi-grid methods and applications, Springer-Verlag
Berlin, Heidelberg, 1985.

[HR99] W. Han and B.D. Reddy, Plasticity: Mathematical theory and numerical
analysis, Springer-Verlag New York, 1999.

[Joh76] C. Johnson, Existence theorems for plasticity problems, J. math. pures
et appl. 55 (1976), 431–444.

[KL84] V. G. Korneev and U. Langer, Approximate solution of plastic flow the-
ory problems, Teubner-Texte zur Mathematik, vol. 69, Teubner-Verlag,
Leipzig, 1984.

[Kos91] P. Kosmol, Optimierung und Approximation, Walter de Gruyter, 1991.

[Mor65] J.J. Moreau, Proximité et dualité dans un espace hilbertien, Bulletin de
la Société Mathématique de France 93 (1965), 273–299.

[SH98] J.C. Simo and T.J.R. Hughes, Computational inelasticity, Springer-
Verlag New York, 1998.

[Yos94] K. Yosida, Functional Analysis, Springer, 1994, Reprint of the 6th edi-
tion.

27

d ∈ N, space dimension
Ω ⊂ Rd, open domain
Γ = ∂Ω, domain boundary
ΓD ⊂ Γ, Dirichlet boundary (prescribed deformations)
ΓN ⊂ Γ, Neumann boundary (prescribed surface forces)
n outer normal of Γ
σ ∈ C1(Ω)d×d, stress
ε ∈ C1(Ω)d×d, elastic strain
u ∈ C2(Ω)d, deformation
f ∈ C(Ω)d, body forces
uD ∈ C(ΓD)d, prescribed deformations on ΓD

g ∈ C(ΓN)d, prescribed surface forces on ΓN

λ ∈ R
+, “Lamé modulus”, Lamé constant

µ ∈ R+, “sheer modulus”, Lamé constant
E ∈ R+, “Young’s modulus”
ν ∈

[
0, 1

2

]
, “Poisson ratio”

δij “Kronecker delta”
C ∈ R

d×d
d×d with Cijkl = λδijδkl + µ(δikδjl + δilδjk), elasticity tensor

p ∈ C1(Ω)d×d, plastic strain
α ∈ C(Ω,R+), hardening parameter (function)
H ∈ R+, “modulus of hardening”
σy ∈ R+, yield stress
ϕ dissipation functional
φ yield function

ḟ = ∂f
∂t

, time derivative of a function f

∇f =
(

∂fi

∂xj

)

i,j
, gradient of a (vector) function f

∆f =
∑

i
∂2fi

∂2xi
, Laplace of a vector function f

D f Fréchet Derivative of function f

divA =
(
∑

j
∂aij

∂xj

)

i
, divergence of a matrix A

trA =
∑

i aii, trace of a matrix A
devA = A− tr A

dim(A)
I, deviator of a matrix A

‖A‖F =
√∑

i,j a
2
ij, Frobenius norm of a matrix A

Table 6: Used Symbols

28

	Introduction
	Mathematical Modelling
	Classical Formulation of Elastoplasticity
	Variational Formulation of Elastoplasticity
	Minimization Problem
	Moreau-Yosida Theorem

	Discretization and Implementation
	Discretization in Space
	Vector Representation
	Calculation of the Discrete Formulation and Newton Method
	Other techniques used

	Numerical Examples

