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Abstract

This paper concentrates on fast calculation techniques for the two-
yield elastoplastic problem, a locally defined, convex but non-smooth
minimization problem for unknown plastic-strain increment matrices
P1 and P2. So far, the only applied technique was an alternating min-
imization, whose convergence is known to be geometrical and global.
We show that symmetries can be utilized to obtain a more efficient
implementation of the alternating minimization. For the first plastic
time-step problem, which describes the initial elasto-plastic transition,
the exact solution for P1 and P2 can even be obtained analytically. In
the later time-steps used for the computation of the further develop-
ment of elastoplastic zones in a continuum, an extrapolation technique
as well as a Newton-algorithm are proposed. Finally, we present a real-
istic example for the first plastic time-step, where the new techniques
decrease the computation time by a factor of 10.

1 Introduction

In the following we briefly present the equations that appear in the two-yield
plasticity problem. An elaborate discussion of the model is given in [BCV04,
BCV05].

The time-dependent deformation process of the the two-yield elastoplastic
continuum (which is defined by an open bounded domain Ω in d = 1, 2, 3
dimensions) is described by a displacement field u and two plastic strain
fields p1, p2. These fields are considered space- and time-dependent,

u = u(x, t), p1 = p1(x, t), p2 = p2(x, t)

with the space parameters x ∈ Ω and the time parameter t ∈ [0, T ]. The
displacement u(x, t) is represented pointwise as a vector in R

d; the plas-
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tic strains p1(x, t), p2(x, t) as symmetric and trace-free matrices in R
d×d
sym ,

i. e., tr p1(x, t) = tr p2(x, t) = 0. The trace operator tr is defined as tr A =
∑d

i=1 Aii for a matrix A ∈ R
d×d. Furthermore, dev : R

d×d → R
d×d defines

the deviatoric operator which transforms a matrix A into a trace-free form
via dev A = A − 1

d
(tr A) I (here I denotes the identity matrix in d dimen-

sions). Then, the conditions on the pointwise values of the plastic strains
read

p1(x, t), p2(x, t) ∈ dev R
d×d
sym .

Additional mechanical fields, such as the (linearized) deformation field ε and
the stress field σ can be calculated pointwise as

ε(x, t) =
1

2

(

(∇xu(x, t))T + ∇xu(x, t)
)

, (1)

σ(x, t) = C(ε(x, t) − p1(x, t) − p2(x, t)), (2)

using an elasticity matrix C from the isotropic case, defined by Cε(x, t) =
2µε(x, t) + λ(tr ε(x, t))I, for the (positive) Lamé coefficients µ and λ.

After discretization in time, using the values 0 = t0 < t1 < · · · < tn−1 <

tn = T, we define the plastic strain increment fields

P1(x, ti) := p1(x, ti) − p1(x, ti−1), P2(x, ti) := p2(x, ti) − p2(x, ti−1).

Since the elastoplastic continuum is expected undeformed at time t = 0, we
have initial conditions u(x, 0) = 0 and p1(x, 0) = p2(x, 0) = 0. Until the
stresses in the continuum (which are caused by external deforming forces)
exceed plasticity limits in the discrete time tp, p ∈ 1 . . . n, there are only
elastic deformations indicated by conditions p1(x, ti) = p2(x, ti) = 0, i < p

observed. The discrete time tp is denoted as the first plastic time-step. After
tp is reached, the plastic strains in the later time-steps ti > tp remain per-
manently nonzero even though the external deforming forces might vanish.
This behaviour occurs due to the hysteresis effect in plasticity [BS96].

The plastic strain increment fields are collected in a generalized plastic strain
increment field

P (x, ti) := (P1(x, ti), P2(x, ti))
T ,

for all x ∈ Ω, i = 1 . . . n. It is shown in [BCV05], that the value P (x, ti)
satisfies

{

Â(x, ti) − (Ĉ + Ĥ)P (x, ti)
}

: (Q− P (x, ti)) ≤ |Q|σy − |P (x, ti)|σy (3)

for arbitrary Q = (Q1, Q2)
T , Q1, Q2 ∈ dev R

d×d
sym . The generalized elasticity

matrix Ĉ and the generalized hardening matrix Ĥ read

Ĉ :=

(

C C

C C

)

and Ĥ :=

(

H1 0
0 H2

)

, (4)
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where H1 = h1I, H2 = h2I denote hardening matrices; h1, h2 > 0 are
hardening coefficients. The generalized loading Â reads

Â(x, ti) :=

(

A1(x, ti)
A2(x, ti)

)

=

(

Cε(x, ti)
Cε(x, ti)

)

−
(

Ĉ + Ĥ
)

(

p1(x, ti−1)
p2(x, ti−1)

)

. (5)

The matrix norm | · |σy is defined as |Q|σy := σ
y
1 |Q1| + σ

y
2 |Q2|, where | · |

denotes the Frobenius norm. Due to the modeling of two-yield plasticity (cf.
[BCV04]), we assume

0 < σ
y
1 ≤ σ

y
2 . (6)

The importance of the matrix inequality (3) lies in the postprocessing of
the plastic strain fields from a displacement field. Once an approximation
of the displacement field u(x, ti) in the discrete time ti is provided (e.g.
from various nonlinear methods [KV03]), one can compute the deformation
field ε(x, ti) and the generalizes loading Â(x, ti) from (1) and (5) under the
knowledge of p1(x, ti−1), p2(x, ti−1) in the previous discrete time ti−1. Then
the values of the plastic strain fields p1(x, ti), p2(x, ti) follow easily from the
upgrades p1(x, ti) = P1(x, ti) + p1(x, ti−1), p2(x, ti) = P2(x, ti) + p2(x, ti−1),
where P1(x, ti), P2(x, ti) solves the matrix inequality (3).

For a given discrete time ti, i ∈ 1 . . . n and a space point x ∈ Ω, the depen-
dence on (x, ti) may be dropped and the inequality (3) is simplified as

{Â − (Ĉ + Ĥ)P} : (Q − P ) ≤ |Q|σy − |P |σy , (7)

which must hold for all Q = (Q1, Q2)
T , Q1, Q2 ∈ dev R

d×d
sym .

Depending on the values P1(x, ti) ∈ dev R
d×d
sym and P2(x, ti) ∈ dev R

d×d
sym ,

there are four interesting cases:

(i). P1 = P2 = 0 (the elastic upgrade)

(ii). P1 6= 0, P2 = 0 (the first plastic upgrade).

(iii). P1 = 0, P2 6= 0 (the second plastic upgrade).

(iv). P1 6= 0, P2 6= 0 (the first and the second plastic upgrades).

The classification into the four cases allows for the identification of an elasto-
plastic interface, whose shape plays a crucial role in the development of
highly efficient methods in computational elastoplasticity, e.g., [NDR05].
Therefore, apart from the the exact (or approximated) values of P1 and P2,
we are also interested in the above classification.

There is an equivalent way of expressing (7) using the concept of a sub-
differential from convex analysis (e. g., [ET99]). It is well known that P ∗ =
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(P ∗
1 , P ∗

2 )T , P ∗
1 , P ∗

2 ∈ R
d×d
sym belongs to a subdifferential ∂|·|σy (P ) of the convex

function | · |σy at the the matrix P = (P1, P2)
T , P1, P2 ∈ R

d×d
sym iff

P ∗ : (Q − P ) ≤ (|Q|σy − |P |σy )

for all Q = (Q1, Q2)
T , Q1, Q2 ∈ R

d×d
sym . By comparison with (7) it is easy

to check an inclusion {Â− (Ĉ + Ĥ)P} ∈ ∂| · |σy(P ). Note that for trace-free
arguments Qi, Pi from (7), the equalities

Ai : (Qi − Pi) = dev Ai : (Qi − Pi) and (C + Hi)Pi = (2µ + hi)Pi

hold for i = 1, 2. Thus we reformulate the inequality (7) as an inclusion
(

dev A1

dev A2

)

−
(

(2µ + h1)I 2µI

2µI (2µ + h2)I

)(

P1

P2

)

∈ (∂| · |σy (P1, P2))
T . (8)

In addition to the characterization of P using the inequality (7) or the
inclusion (8), there is also an equivalent minimization problem.
Lemma 1 ([BCV05]). For a given Â = (A1, A2)

T , A1, A2 ∈ R
d×d
sym , there

exists a unique P = (P1, P2)
T , P1, P2 ∈ dev R

d×d
sym that satisfies the inequality

(7) for all Q = (Q1, Q2)
T , Q1, Q2 ∈ dev R

d×d
sym . This P is characterized as

the minimizer of

f(Q) =
1

2
(Ĉ + Ĥ)Q : Q − Â : Q + |Q|σy (9)

(amongst trace-free symmetric d × d matrices Q1, Q2).

2 Two-yield elastoplastic problem

After these preparations we now define the two-yield minimization problem.
Problem 1 (Two-yield minimization problem). For given positive material
parameters µ, h1, h2, σ

y
1 , σ

y
2 and trace-free matrices dev A1, dev A2 ∈ R

d×d
sym

find P = (P1, P2)
T , P1, P2 ∈ dev R

d×d
sym that minimizes (9) (amongst trace-

free symmetric d × d matrices Q1, Q2).

In the next section we present a globally convergent method for solving
Problem 1; the aim of this paper is to speed up the presented algorithm.

2.1 Iterative method

As noticed in [BCV05], no analytical solution of Problem 1 seems to exist.
With the help of the operator

F(M,σ, h) :=
(|M | − σ)+

2µ + h

M

|M | , (10)
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where (·)+ := max{0, ·}, an iterative algorithm can be formulated that pro-
vides the exact solution of Problem 1 within arbitrary small given tolerance.
Algorithm 1 (Iterative calculation of P1, P2). Input µ, h1, h2, σ

y
1 , σ

y
2 ,

dev A1, dev A2 and tol ≥ 0.

(i). Set i := 0 and set the initial approximation

P i
1 = P i

2 = 0.

(ii). Update P i
2 via

P i+1
2 = F(dev A2 − 2µP i

1, σ
y
2 , h2).

(iii). Update P i
1 via

P i+1
1 = F(dev A1 − 2µP i+1

2 , σ
y
1 , h1)

(iv). If the desired accuracy is reached, i. e., if

|P i+1
1 − P i

1| + |P i+1
2 − P i

2| ≤ tol ·(|P i+1
1 | + |P i

1| + |P i+1
2 | + |P i

2|)

then output solution (P1, P2) = (P i+1
1 , P i+1

2 ). Otherwise, set i := i + 1
and go to step (ii).

The value of F(·) in steps (ii) and (iii) in the case M = 0 is defined to be
the zero matrix (this follows from assumption (6) by continuous extension).

In [BCV05, Proposition 1] it was shown that Algorithm 1 converges as a geo-
metrical sequence, i. e., for arbitrary choice of initial approximation matrices
P 0

1 and P 0
2 , the distance to the fixed point P1, P2 behaves as

∥

∥P i
1 − P1

∥

∥

2 +
∥

∥P i
2 − P2

∥

∥

2 ≤ Cqi . (11)

The constant C depends on the quality of the initial guess; the factor q is
always strictly smaller than 1 and depends on material parameters and the
domain Ω only.

2.2 Acceleration of the iterative method

Since Algorithm 1 is linearly convergent the Aitken extrapolation method
can be applied to improve the convergence behavior [Atk89, Sto64]. This
idea is similar to the extrapolation method used in Romberg-integration.

To perform the extrapolation, Algorithm 1 is applied 2 times. In a third
step, only the matrix P 3

2 is computed. From the available approximations
P 1

2 , P 2
2 and P 3

2 , an extrapolated matrix P extr
2 can be obtained as described

below. This matrix is then used in step (iii) of Algorithm 1 to obtain a
corresponding approximation of P1.
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Algorithm 2 (Iterative calculation of P1, P2 combined with Aitken accel-
eration). Input µ, h1, h2, σ

y
1 , σ

y
2 ,dev A1, dev A2 and tol ≥ 0.

(i) - (iv) as in Algorithm 1.

(v). If i = 3 then set for all s, t = 1, . . . , d

p1 :=
[

P 1
2

]

st
, p2 :=

[

P 2
2

]

st
, p3 :=

[

P 3
2

]

st

and calculate the extrapolated matrix component-wise by

[

P extr
2

]

st
=

{

p1 − (p2−p1)2

p3−2p2+p1
if p3 − 2p2 + p1 6= 0,

0 if p3 − 2p2 + p1 = 0.

(vi). Update P 2
1 via

P 3
1 = F(dev A1 − 2µP extr

2 , σ
y
1 , h1)

(vii). Set i := 0 and go to (ii).

In all tested examples the above algorithm speeds up the iteration signifi-
cantly, and gives a sufficiently accurate solution after one extrapolation (i. e.,
after 3 iterations of the original algorithm).

To obtain quantitative results on the speedup obtained with Aitken extrap-
olation, a series expansion of the error behavior is necessary (and not only
an upper bound as in (11)). Since the problem under consideration is non-
differentiable, it seems not possible to derive such expansions for the error.
A precise analysis of the convergence acceleration is therefore an open ques-
tion.

2.3 Structure and classification of solutions

In the following we take a closer look at the structure of the solutions. In
particular in the 3-dimensional case, the results can be used as a simple
way to speed up the algorithm, since using the structure of the solutions
P1 and P2, much less parameters need to be stored and manipulated during
the computations. Lemma 2 shows the structure of the solutions, Lemma 3
gives information about the localization of the appearing parameters.
Lemma 2 (solution structure). The solutions P1, P2 of Problem 1 can be
expressed as linear combinations of the matrices dev A1,dev A2, i. e.,

P1 = c11 dev A1 + c12 dev A2,

P2 = c21 dev A1 + c22 dev A2.
(12)

Furthermore, it holds c12 = c21.
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Proof. Let the solution P1, P2 be calculated exactly by using Algorithm 1
with tolerance tol = 0. Taking the iterative steps (ii) and (iii) in Algorithm 1,
induction over the number of iteration steps i proves the linear dependence
of the solution approximations

P i
1 = ci

11 dev A1 + ci
12 dev A2,

P i
2 = ci

21 dev A1 + ci
22 dev A2.

(13)

It remains to show that ci
12 and ci

21 converge to the same value for increas-
ing i. The condition of the fixed point of a mapping defined by (ii) and (iii)
reads

P1 = f1 · (dev A1 − 2µP2),

P2 = f2 · (dev A2 − 2µP1),
(14)

where f1 and f2 are scalar non-negative factors (cf. (10)). Via (13), this
condition can be reformulated in terms of limit coefficients ci

11 → c11, ci
12 →

c12, ci
21 → c21, ci

22 → c22 as

c11 dev A1 + c12 dev A2 = f1 · ((1 − 2µc21) dev A1 − 2µc22 dev A2),

c21 dev A1 + c22 dev A2 = f2 · ((1 − 2µc12) dev A2 − 2µc11 dev A1).
(15)

If dev A1 and dev A2 are linearly dependent, then the choice c12 = c21 = 0
gives the decomposition (12). So suppose now that dev A1 and dev A2 are
linearly independent. Then, (15) implies

(

c11

c12

)

= f1 ·
(

1 − 2µc21

−2µc22

)

and

(

c22

c21

)

= f2 ·
(

1 − 2µc12

−2µc11

)

. (16)

Both, 1−2µc12 and 1−2µc21 must be nonzero. (If for instance 1−2µc12 = 0,
then c22 = 0, and consequently c12 = 0; a contradiction.) Therefore, we
obtain from (16)

c12

1 − 2µc12
= −2µf1f2 =

c21

1 − 2µc21
(17)

which yields c12 = c21.

The technique of the proof also shows that the decomposition (12) is unique
for linearly independent matrices dev A1, dev A2. The material parameters
µ, h1 and h2 provide immediate information about the localization of the
parameters cij in Lemma 2.
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Lemma 3 (Coefficient Localization). There exist non-negative real numbers
f1, f2 with 0 ≤ f1 < 1

2µ+h1
, 0 ≤ f2 < 1

2µ+h2
such that

c11 =
f1

1 − 4µ2f1f2
, (18a)

c22 =
f2

1 − 4µ2f1f2
, (18b)

c12 = c21 =
−2µf1f2

1 − 4µ2f1f2
. (18c)

In particular, the coefficients satisfy

0 ≤ c11 <
2µ + h2

2µ(h1 + h2) + h1h2
,

0 ≤ c22 <
2µ + h1

2µ(h1 + h2) + h1h2
,

0 ≥ c12 = c21 >
−2µ

2µ(h1 + h2) + h1h2
.

Proof. The factors f1 and f2 are just those we introduced in (14) in the
proof of Lemma 2 above. The lower and upper bounds on f1 and f2 follow
immediately from (10) since

0 ≤ 1

2µ + h

(|M | − σ)+
|M | <

1

2µ + h
,

for |M | ∈ R
+
0 . In order to derive the representation (18) we turn back

to (17), which gives (18c). From (18c), the expressions for c11 and c22 can
be directly deduced via (16). The lower and upper bounds on c11, c12 and
c22 follow from the corresponding bounds on f1 and f2.

In some cases one (or even both) of the matrices P1 and P2 are zero-matrices.
The following lemma provides an analytic criterion to detect these situations.
Lemma 4 (solution classification). The following equivalences hold:

P1 = 0 ⇔ |dev A1 − 2µ F(dev A2, σ
y
2 , h2)| ≤ σ

y
1 , (19)

P2 = 0 ⇔ |dev A2 − 2µ F(dev A1, σ
y
1 , h1)| ≤ σ

y
2 . (20)

Proof. Due to the symmetry of (19) and (20) it is sufficient to prove (19)
only. Let P1=0. In the following we use the knowledge that the alternat-
ing algorithm converges to the correct solution ([BCV05, Proposition 1]).
According to step (ii) of Algorithm 1 in the limit case

P2 = F(dev A2, σ
y
2 , h2). (21)
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It follows from step (iii) of Algorithm 1 that |dev A1 − 2µP2| − σ
y
1)+ = 0 or

equivalently

|dev A1 − 2µP2| ≤ σ
y
1 .

Substitution of (21) into the last inequality proves the first part of the equiv-
alence.

Vice versa, suppose that the right hand side of (19) is valid, and let us
consider the iteration sequence of Algorithm 1 with zero initial matrices
P 0

1 = P 0
2 = 0. It is easy to see that the iterate P 1

2 is given exactly by (21).
The assumption

|dev A1 − 2µ F(dev A2, σ
y
2 , h2)| ≤ σ

y
1

implies P 1
1 = 0. Thus, Algorithm 1 terminates with the solution P1 = 0 and

P2 = P 1
2 .

Lemma 4 perfectly divides the analysis of Problem 1 into four cases in de-
pendence of the values P1 and P2 as discussed on page 3.

(i). P1 = P2 = 0. Note that conditions (19), (20) are further simplified as

|dev A1| ≤ σ
y
1 and |dev A2| ≤ σ

y
2 . (22)

(ii). P1 6= 0, P2 = 0. Then following the proof of Lemma 4

P1 = F(dev A1, σ
y
1 , h1).

(iii). P1 = 0, P2 6= 0. 1). Then analogously

P2 = F(dev A2, σ
y
2 , h2).

(iv). P1 6= 0, P2 6= 0. For this case it was shown in [BCV05] that the
following nonlinear system holds

(

dev A1

dev A2

)

−
(

(2µ + h1)I 2µI

2µI (2µ + h2)I

)(

P1

P2

)

=

(

σ
y
1

P1

|P1|

σ
y
2

P2

|P2|

)

. (23)

Notice that only the case (iv) of both plastic increments leading to the non-
linear system (23) represents the difficulty in solving Problem 1 analytically.

1This situation can not happen in the first plastic time-step, cf. Subsection 3.1.
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3 Analysis of the case P1 6= 0, P2 6= 0

Applying substitutions Pi = ξiXi, where |Xi| = 1, i = 1, 2, (23) becomes
a system of nonlinear equations for positive scalar parameters ξ1 = |P1|,
ξ2 = |P2|, namely

(

dev A1

dev A2

)

=

(

(σy
1 + (2µ + h1)ξ1)I 2µξ2I

2µξ1I (σy
2 + (2µ + h2)ξ2)I

)(

X1

X2

)

. (24)

In the following, we present analytical solutions of this system for a special
case, as well as a numerical technique for a general setup.

3.1 Exact solution at the first plastic time-step

Now we turn to an important case for which the analytical solution of the
nonlinear system (24) can be obtained analytically. Let us consider the
first plastic time-step problem, i.e., the problem where the plastic strains
p1(x, tp−1) = P2(x, tp−1) = 0 are zero in the time step tp−1 for a given space
point x ∈ Ω. Via (5) this yields

dev A1 = dev A2.

In this situation, the choice

X1 = X2 =
dev A1

|dev A1|

transforms (24) into the system

(|dev A1| − σ
y
2)σy

1 + ((|dev A1| − σ
y
2)h1 − 2µσ

y
2)ξ1

− σ
y
1(2µ + h2)ξ2 − (h1h2 + 2µ(h1 + h2))ξ1ξ2 = 0

(|dev A1| − σ
y
1)σy

2 + ((|dev A2| − σ
y
1)h2 − 2µσ

y
1)ξ2

− σ
y
2(2µ + h1)ξ1 − (h1h2 + 2µ(h1 + h2))ξ1ξ2 = 0.

(25)

This system has two solutions. The first one is always negative, (ξ1, ξ2) =
(−σ1

h1
,−σ2

h2
). The second one is given by

(ξ1, ξ2) =
1

2µ(h1 + h2) + h1h2

(

(|dev A1| − σ
y
1)h2 + 2µ(σy

2 − σ
y
1)

(|dev A1| − σ
y
2)h1 − 2µ(σy

2 − σ
y
1)

)t

. (26)

Moreover, when dev A1 = dev A2, the solution classification from Lemma 4
can be further simplified, and it is possible to prove e. g., that the situation
P1 = 0, P2 6= 0 can never appear. Summarizing, we obtain the following
algorithm.
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Algorithm 3 (Exact calculation of P1, P2 in the first plastic time-step).
Input µ, h1, h2, σ

y
1 ≤ σ

y
2 , dev A1.

(i). If |dev A1| ≤ σ
y
1 then output solution

(P1, P2) = (0, 0).

(ii). If |dev A1| ≤ σ
y
2 + 2µ

h1
(σy

2 − σ
y
1) then output solution

(P1, P2) = (F(A1, σ
y
1 , h1), 0).

(iii). Output solution

(P1, P2) = (ξ1, ξ2)
dev A1

|dev A1|
,

where (ξ1, ξ2) is given by (26).

The advantage of Algorithm 3 over Algorithm 1 becomes obvious in the
comparison of the algorithms speed later.

In the next section we consider the general case, i. e., dev A1 6= dev A2.

3.2 Reduction to the polynomial system

Let us now turn to the general case of later time-steps. By elimination of
X1,X2 in (24), one obtains the system of nonlinear equations [BCV05],

|li(ξi)| − r(ξ1, ξ2) = 0 for i = 1, 2, (27)

where

l1(ξ1) = (σy
1 + (2µ + h1)ξ1) dev A2 − 2µξ1 dev A1,

l2(ξ2) = (σy
2 + (2µ + h2)ξ2) dev A1 − 2µξ2 dev A2,

r(ξ1, ξ2) = (σy
1 + (2µ + h2)ξ1)(σ

y
2 + (2µ + h2)ξ2) − 4µ2ξ1ξ2.

(28)

Instead of handling (27) we prefer to solve a squared system

Φi(ξ1, ξ2) := |li(ξi)|2 − (r(ξ1, ξ2))
2 = 0 for i = 1, 2. (29)

In terms of ξ1, ξ2, this gives two polynomials of second degree [BCV05]

Φ1(ξ1, ξ2) =A + Bξ1 + Cξ2
1 − (G + Hξ1 + Iξ2 + Jξ1ξ2)

2 = 0,

Φ2(ξ1, ξ2) =D + Eξ2 + Fξ2
2 − (G + Hξ1 + Iξ2 + Jξ1ξ2)

2 = 0,
(30)
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where the scalar parameters A, B, . . . , J read

A := |σy
1 dev A2|2,

D := |σy
2 dev A1|2,

B := 2σy
1 dev A2 : ((2µ + h1) dev A2 − 2µ dev A1),

E := 2σy
2 dev A1 : ((2µ + h2) dev A1 − 2µ dev A2),

C := |(2µ + h1) dev A2 − 2µ dev A1|2,
F := |(2µ + h2) dev A1 − 2µ dev A2|2,
G := σ

y
1σ

y
2 > 0,

H := σ
y
2(2µ + h1) > 0,

I := σ
y
1(2µ + h2) > 0,

J := 2µ(h1 + h2) + h1h2 > 0.

(31)

Note that the Cauchy-Schwarz inequality provides the estimates

B2 − 4CA ≤ 0, E2 − 4FD ≤ 0. (32)

Expressing ξ1 from the second equation in (30) and a substitution into the
first equation using MAPLE 5 leads to an eighth-degree polynomial in ξ2

only, see Lemma 5 in [BCV05].

3.3 Numerical approach to solve the polynomial system (30)

Observe that eight of ten parameters in (30) are positive, and that the
solution (ξ1, ξ2) we are looking for has to be positive as well. This enables us
to construct a fast numerical method to solve (30). Therefore we introduce
an auxiliary parameter t and consider the system

|l1(ξ1)|2 = t2, (33a)

|l2(ξ2)|2 = t2, (33b)

r(ξ1, ξ2) = t. (33c)

Note that it is sufficient to consider a linear equation for t in (33c), since r

in (28) is always positive. Inserting the notations as introduced in (31) we
obtain the following system of equations

A + Bξ1 + Cξ2
1 = t2, (34a)

D + Eξ2 + Fξ2
2 = t2, (34b)

G + Hξ1 + Iξ2 + Jξ1ξ2 = t. (34c)

For given t we can immediately solve (34a) and (34b) for ξ1 and ξ2 respec-
tively. Although there are in principle two solutions in each case, only one of

12



them can be positive. Given these values of ξ1 and ξ2 we can interpret (34c)
as an equation for t and solve this equation via a (one-dimensional) Newton’s
method.

Let ϕ(t) be defined as

ϕ(t) := G + Hξ1(t) + Iξ2(t) + Jξ1(t)ξ2(t) − t .

The Newton-Iteration for solving ϕ(t) = 0 is then given as

ti+1 = ti −
ϕ(ti)

∂ϕ
∂t

+ ∂ϕ
∂ξ1

∂ξ1
∂t

+ ∂ϕ
∂ξ2

∂ξ2
∂t

To compute the partial derivatives of ξ1 and ξ2 with respect to t we use the
implicit function theorem, and obtain for instance via (34a)

∂ξ1

∂t
=

2t

2Cξ1 + B
.

The Newton algorithm for solving (27) can now be given as follows.
Algorithm 4 (Newton Iteration for ξ1, ξ2). Input A, B,. . . , J and an initial
approximation t0.

(i). Set i := 0.

(ii). Calculate

ξ1 = − B

2C
+

1

2C

√

B2 − 4C(A − t2i ),

ξ2 = − E

2F
+

1

2F

√

E2 − 4F (D − t2i ),

ti+1 = ti −
G + Hξ1 + Iξ2 + Jξ1ξ2 − ti

2ti

(

I+Jξ2
2Cξ1+B

+ H+Jξ1
2Fξ2+E

)

− 1
.

(iii). If convergence then output (ξ1, ξ2); otherwise i := i + 1 and go to (ii).
Remark 1 (Starting value). Observe that setting t0 = 0 would yield imag-
inary values for ξ1 and ξ2 in the iteration (cf. (32)). To avoid this situation
we must start with t0 sufficiently large. The case ξ1 = ξ2 = 0 would give
t =

√
A, t =

√
D and t = G from (34a), (34b) and (34c) respectively. A

suitable initial guess t0 is now for instance

t0 = 2max{
√

A,
√

D,G}. (35)

This choice also ensures ξ1 ≥ 0 and ξ2 ≥ 0.

In the following, we test the new algorithms on two examples.
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4 Example I

Here we consider the first plastic time-step problem, i. e., Algorithm 3 is
applicable.

This example is taken from [BCV05]. Let us assume material parameters

µ = 1, σy
1 = 1, σy

2 = 2, h1 = 1, h2 = 1 (36)

and loading matrices

dev A1 = dev A2 =

(

10 0
0 −10

)

.

4.1 Results for Algorithm 1 and Algorithm 2

The original Algorithm 1 generates the iteration sequence

P 1
1 ≈

(

1.1897 0
0 −1.1897

)

, P 1
2 ≈

(

2.8619 0
0 −2.8619

)

,

P 2
1 ≈

(

1.7184 0
0 −1.7184

)

, P 2
2 ≈

(

2.0688 0
0 −2.0688

)

,

P 3
1 ≈

(

1.9534 0
0 −1.9534

)

, P 3
2 ≈

(

1.7163 0
0 −1.7163

)

,

P 4
1 ≈

(

2.0579 0
0 −2.0579

)

, P 4
2 ≈

(

1.5596 0
0 −1.5596

)

,

P 5
1 ≈

(

2.1043 0
0 −2.1043

)

, P 5
2 ≈

(

1.4900 0
0 −1.4900

)

,

P 6
1 ≈

(

2.1249 0
0 −2.1249

)

, P 6
2 ≈

(

1.4591 0
0 −1.4591

)

,

and terminates for given tolerance tol = 10−12 after 18 iterations with the
approximation

P 18
1 ≈

(

2.14142 0
0 −2.14142

)

, P 18
2 ≈

(

1.43431 0
0 −1.43431

)

.

Note that the norms of both matrices are

(|P 18
1 |, |P 18

2 |) ≈ (3.02842573820811, 2.02842920455331).

The Aitken acceleration in Algorithm 2 speeds up this iteration significantly.
The matrix P extr

2 extrapolated from the matrices P 1
2 , P 2

2 , P 3
2 is identical to

P 18
2 up to the first five digits.
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i ti ξ1 approximation ξ2 approximation

0 56.5 3.00 2.00
1 56.973 3.0286 2.0286
2 56.970563 3.02842714 2.02842714
3 56.970562748477136 3.028427124746190 2.028427124746190

Table 1: Quadratic convergence of the iterates generated by Algorithm 4 in
Example I. The initial guess is chosen as in (35), after 3 iterations the result
is exact up to machine accuracy.

For comparison, iterations of Algorithms 1 and 2 are displayed in Figure 1
simultaneously.

4.2 Results for Algorithm 3 and Algorithm 4

Via Lemma 4, it is easy to check that the solution of Problem 1 satisfies
P1 6= 0, P2 6= 0. Thus, the matrix norms ξ1 = |P1| and ξ2 = |P2| fulfill the
polynomial system of equations (29), i.e.,

200 + 400 ξ1 + 200 ξ2
1 − (2 + 6 ξ1 + 3 ξ2 + 5 ξ1 ξ2)

2 = 0,

800 + 800 ξ2 + 200 ξ2
2 − (2 + 6 ξ1 + 3 ξ2 + 5 ξ1 ξ2)

2 = 0.
(37)

Direct computation [BCV05] provides one positive solution

(ξ1, ξ2) = (2
√

2 +
1

5
,−4

5
+ 2

√
2) ≈ (3.028427124, 2.028427124). (38)

Noticing that this is one-time step example, the same solution can be im-
mediately obtained by (26) as a part of Algorithm 3.

Algorithm 4 solves the system (37) iteratively. With the initial guess (35),
the method converges quickly to the correct solution. Tables 1 and 2 show
the behavior of the approximations generated by Algorithm 4 above. As
can be seen in Table 1 the algorithm converges very fast, already after 3
iterations the result is exact up to machine accuracy. Table 2 demonstrates
the stability of the algorithm: when the initial value t0 is chosen 10 times
larger than proposed in (35) it takes 9 iterations until the machine accuracy
is reached, if t0 is taken 1.000 times larger, it takes another 7 steps. Thus,
Algorithm 4 is very stable with respect to overestimation of the parameter t.
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Figure 1: Comparison of Algorithm 1 and Algorithm 2 in Example I. It-
erations of the alternated algorithm (Algorithm 1) are displayed as blue
lines connecting the points (x, y) corresponding to plastic strain increment
matrices P1 = diag (x,−x), P2 = diag (y,−y). The vertical and horizontal
lines indicate the direction of minimization described in steps (ii) and (iii) of
Algorithm 1. Convergence is achieved after 18 iterations with the solution
(x, y) ≈ (2.14142, 1.43431) displayed by a red circle. The diamond-shaped
points show the converge speedup due to Aitken acceleration (Algorithm 2),
where the extrapolated value of y coincides with the previous solution, but
requires three iterations only.
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i ti ξ1 approximation ξ2 approximation

0 565.6 39.0 38.0
1 297.8 20.0 19.0
2 164.6 10.0 9.6
3 99.5 6.0 5.0
4 69.7 3.9 2.9
5 58.9 3.1 2.1
6 57.0 3.03 2.03
7 56.9706 3.02843 2.02843
8 56.9705627485 3.02842712475 2.02842712475
9 56.970562748477128 3.028427124746190 2.028427124746190

Table 2: Evolution of the iterates in Example I when the initial guess is
chosen 10 times larger than proposed in (35). Still after 9 iterations the
result is numerically exact, after ≈ 4 iterations the convergence becomes
quadratic.

5 Example II

Now we turn to a later time-step problem. Let the material parameters be
given by (36) as in the previous example. Let the loading matrices read

dev A1 ≈
(

10.7071 0
0 −10.7071

)

, dev A2 ≈
(

11.4142 0
0 −11.4142

)

.

5.1 Results for Algorithm 1 and Algorithm 2

The original Algorithm 1 with tolerance tol = 10−12 generates the sequence

P 1
1 ≈

(

1.1111 0
0 −1.1111

)

, P 1
2 ≈

(

3.3333 0
0 −3.3333

)

,

P 2
1 ≈

(

1.6049 0
0 −1.6049

)

, P 2
2 ≈

(

2.5926 0
0 −2.5926

)

,

P 3
1 ≈

(

1.8244 0
0 −1.8244

)

, P 3
2 ≈

(

2.2634 0
0 −2.2634

)

,

P 4
1 ≈

(

1.9220 0
0 −1.9220

)

, P 4
2 ≈

(

2.1171 0
0 −2.1171

)

,

P 5
1 ≈

(

1.9653 0
0 −1.9653

)

, P 5
2 ≈

(

2.0520 0
0 −2.0520

)

,

P 6
1 ≈

(

1.9846 0
0 −1.9846

)

, P 6
2 ≈

(

2.0231 0
0 −2.0231

)

,
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i ti ξ1 approximation ξ2 approximation

0 60.5 2.4 2.3
1 68.3 2.87 2.89
2 67.46 2.829 2.829
3 67.455818 2.828424 2.8284293
4 67.4558168097922 2.82842399039352 2.828429214314649
5 67.455816809792168 2.828423990393518 2.828429214314643

Table 3: Quadratic convergence of the iterates generated by Algorithm 4
in Example II. The initial guess is chosen as in (35), after 5 iterations the
result is exact up to machine accuracy.

and terminates after 18 iterations with the approximation

P 18
1 ≈

(

2.000 0
0 −2.000

)

, P 18
2 ≈

(

2.000 0
0 −2.000

)

.

Note that the norms of both matrices are

(|P 18
1 |, |P 18

2 |) ≈ (2.82842721631375, 2.82842698739485).

After Aitken extrapolation as explained in Algorithm 2, the matrix P extr
2

calculated from the matrices P 1
2 , P 2

2 , P 3
2 is identical to P 18

2 up to the first five
digits. Thus, also for the multiple timestep problem, extrapolation yields a
significant speedup.

For comparison, iterations of Algorithms 1 and 2 are displayed in Figure 2
simultaneously.

5.2 Results for Algorithm 4

The example configuration leads to the system of polynomials (29)

A + Bξ1 + Cξ2
1 − (2 + 6 ξ1 + 3 ξ2 + 5 ξ1 ξ2)

2 = 0,

D + Eξ2 + Fξ2
2 − (2 + 6 ξ1 + 3 ξ2 + 5 ξ1 ξ2)

2 = 0,

with coefficients

A = 260.568542, B = 585.705965, C = 329.137464,

D = 917.136452, E = 795.998776, F = 172.715317.

Table 3 shows the behavior of the approximations generated by Algorithm 4.
The algorithm converges again very fast, already after 5 iterations the result
is exact up to machine accuracy.
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Figure 2: Comparison of Algorithm 1 and Algorithm 2 in Example II. It-
erations of the alternated algorithm (Algorithm 1) are displayed as blue
lines connecting the points (x, y) corresponding to plastic strain increment
matrices P1 = diag (x,−x), P2 = diag (y,−y). The vertical and horizontal
lines indicate the direction of minimization described in steps (ii) and (iii) of
Algorithm 1. Convergence is achieved after 18 iterations with the solution
(x, y) ≈ (2.0000, 2.00000) displayed by a red circle. The diamond-shaped
points show the converge speedup due to Aitken acceleration (Algorithm 2),
where the extrapolated value of y coincides with the previous solution, but
requires three iterations only.
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Figure 3: The black colour shows elastic upgrade zones (where P1 = P2 = 0),
brown and lighter gray colours shows the first plastic upgrade (P1 6= 0, P2 =
0) and of the both plastic upgrades (P1 6= 0, P2 6= 0) zones.

6 A real 2D computation of the elastoplatic con-
tinuum at the first plastic time-step

The presented Algorithms have been implemented in an existing Matlab
code for calculation of two-yield elastoplastic deformations [BCV05, COJ05].
Let us consider the first plastic time-step of the Cook’s membrane, whose
mechanical setup is explained in [COJ05]. This problem was discretized
using an uniform triangular mesh with 131072 triangles. Due to linearization
steps in the nonlinear plastic problem, Problem 1 had to be solved on each
triangle several times. Altogether, there were 393216 minimization problems
to solve. Depending on the characteristics of the solutions, there are three
types of triangles denoted by a different colour in Figure 3:

• Black colour triangles satisfying the condition P1 = P2 = 0.

• Brown gray triangles satisfying the condition P1 6= 0, P2 = 0.

• Light gray triangles satisfying the condition P1 6= 0, P2 6= 0.

The following algorithms were taken to account: Algorithm 1, Algorithm
2 and Algorithm 3. Additionally, we also consider simplified versions of
Algorithms 1 and 2 under the assumption of the one time-step problem
(dev A1 = dev A2). Then, all upgrades in steps (ii) - (iv) requiring matrix
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Method Time (seconds) Speedup

Algorithm 1 304.57 1.0
Algorithm 2 203.22 1.50
Algorithm 1 (one time-step optimized) 159.68 1.90
Algorithm 2 (one time-step optimized) 136.68 2.23
Algorithm 3 32.21 9.45

Table 4: Comparison of various methods for the two-yield elastoplastic
Cook’s membrane problem. There were 393216 minimization problems
(Problem 1) to solve.

operations can be reduced to scalar operations only,

|dev A1 − 2µP i
2| = ||dev A1| − 2µ|P i

2||,
|dev A2 − 2µP i

1| = ||dev A1| − 2µ|P i
1||,

|P i+1
1 − P i

1| + |P i+1
2 − P i

2| = ||P i+1
1 | − |P i

1|| + ||P i+1
2 | − |P i

2||.

Thus only norms |P i
1|, |P i

2| and |dev A1| are stored and the value |P exrt
2 |

is extrapolated in step (v) of Algorithm 2. The resulting Algorithms are
denoted as “one time-step optimized”. Table 4 reports on the performance
of all five algorithms. Note, the highest contribution to the calculation time
is spent due to the minimization problems leading to the case P1 6= 0, P2 6= 0,
i.e., to the light gray colour triangles.

According to the theoretical expectation Algorithm 1 achieves the longest
time. Thank to the extrapolation efficiency, Algorithm 2 saves about 30
percent of computational time. Above mentioned simplification reduce the
time to another 20 percent. Obviously, the most efficient is 3 which provides
exact solution without any iterations.

Conclusions

Algorithm 3 provides an explicit solution at the first plastic time-step and
it is computationally the fastest. For later plastic time-steps, we suggest
to use Algorithm 2 providing a significant acceleration of the convergence
in regions of the first and the second plastic upgrades. However, due to
the non-differentiability of the underlying problem (9), the convergence of
Algorithm 2 remains an open question.

21



Acknowledgments

Both authors acknowledge support from the Austrian Science Fund ’Fonds
zur Förderung der wissenschaftlichen Forschung (FWF)’ for support under
grant SFB F013/F1306 and F1308 in Linz, Austria.

References

[Atk89] Kendall E. Atkinson. An introduction to numerical analysis. 2nd
ed. New York: John Wiley & Sons, Inc. xvi, 693 p., 1989.

[BCV04] M. Brokate, C. Carstensen, and J. Valdman. A quasi-static
boundary value problem in multi-surface elastoplasticity: Part 1 –
analysis. Mathematical Models and Methods in Applied Sciences,
27(14):1697–1710, 2004.

[BCV05] M. Brokate, C. Carstensen, and J. Valdman. A quasi-static bound-
ary value problem in multi-surface elastoplasticity: Part 2 – nu-
merical solution. Mathematical Models and Methods in Applied
Sciences, 28(8):881–901, 2005.

[BS96] M. Brokate and J. Sprekels. Hysteresis and Phase Transitions.
Springer-Verlag New York, 1996.

[COJ05] C. Carstensen, V. Orlando, and Valdman. J. A convergent adap-
tive finite element method for the primal problem of elasto-
plasticity. Technical Report 2005-12, Institute of Mathematics,
Humboldt-Universität zu Berlin, 2005.

[ET99] I. Ekeland and R. Témam. Convex Analysis and Variational Prob-
lems. SIAM, 1999.

[KV03] J. Kienesberger and J. Valdman. Multi-yield elastoplastic con-
tinuum - modeling and computations. In M. Feistauer, Doleǰśı,
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