Multi-yield elastoplasticity: Analysis and Numerics

Jan Valdman Jan.Valdman@sfb013.uni-linz.ac.at

- Why multi-yield plasticity?
- Mathemat. and numeric. modeling
- Symbolic computing problems
- Computational examples
- Future work

Why multi-yield plasticity?

- Carstensen&Alberty '00, Han&Reddy '95, Johnson '76
- Brokate '98, Krejčí '96, Visintin '94

Rheological model

$$\begin{split} \varepsilon &= e + \sum_{r=1}^{M} p_r, & \text{add. decomp. of strain} \\ \sigma &= \sigma_r^e + \sigma_r^p & \text{for all } r = 1, \dots, M, \\ \sigma_r^p &\in Z_r, \\ \langle \dot{p}_r, q_r - \sigma_r^p \rangle &\leq 0 & \text{for all } q_r \in Z_r, \quad r = 1, \dots, M, \\ \sigma &= \mathbb{C}e, & \text{Hook's law} \\ \sigma_r^e &= \mathbb{H}_r p_r, \quad r = 1, \dots, M, & \text{Hardening's laws} \end{split}$$

Prandtl-Ishlinskii model of play type.

 $Z = \{ \sigma \in \mathbb{R}^{d \times d}_{sym} : || \det \sigma || \le \sigma^y \} \text{ von Mises}$

Mathematical model

Problem (PI): For
$$l \in H^1(0,T;\mathcal{H}^*), l(0) = 0$$
,
find $w = (u, p_1, \dots, p_M) : [0,T] \to \mathcal{H}, w(0) = 0$
s. t.
 $\langle l(t), z - \dot{w}(t) \rangle \leq a(w(t), z - \dot{w}(t)) + j(z) - j(\dot{w}(t))$
 $\forall z = (v, \tau_1, \dots, \tau_M) \in \mathcal{H}.$

Notation:

$$\begin{aligned} \mathcal{H} = H_D^1(\Omega) \times \underbrace{L^2(\Omega)_{sym}^{d \times d} \times \cdots \times L^2(\Omega)_{sym}^{d \times d}}_{M \text{ times}}, \\ M \text{ times} \end{aligned} \\ a(w,z) = \int_{\Omega} \left(\mathbb{C}(\varepsilon(u) - \sum_{i=1}^M p_i) \right) : \left(\varepsilon(v) - \sum_{i=1}^M \tau_i \right) \mathrm{d}x \\ &+ \sum_{i=1}^M \int_{\Omega} \mathbb{H}_i p_i : \tau_i \, \mathrm{d}x, \\ \langle l(t), z \rangle = \int_{\Omega} f(t) \cdot v \, \mathrm{d}x + \int_{\Gamma_N} g(t) \cdot v \, \mathrm{d}x, \\ j(z) = \int_{\Omega} \sum_{i=1}^M D_i(\tau_i) \, \mathrm{d}x, \\ D_i(x) = \begin{cases} \sigma_i^y ||x|| & \text{if tr } x = 0, \\ +\infty & \text{otherwise.} \end{cases} \text{ (von Mises)} \end{aligned}$$

Existence and uniqueness

pos. definit elastic and hardening operators:

 $\mathbb{C}\xi : \xi \ge c ||\xi||^2 \quad \forall \xi \in \mathbb{R}^{d,d}$ $\mathbb{H}_i\xi : \xi \ge h_i ||\xi||^2 \quad \forall \xi \in \mathbb{R}^{d,d}, i = 1, \dots, M$

1) $a(\cdot, \cdot)$ - bounded, elliptic bilinear form in \mathcal{H} , $|a(w, z)| \leq \left((M+1)||\mathbb{C}|| + \max_{i=1,...,M} ||\mathbb{H}_i|| \right) ||w||_{\mathcal{H}} ||z||_{\mathcal{H}},$ $a(w, w) \geq \left(k \min_{i=1,...,M} \{c, h_i\} \min\{1, K\} \right) ||w||_{\mathcal{H}}^2,$ where K > 0 (Korn's first inequality) and $k = k(M) = 1 + \frac{M}{2} - \frac{1}{2}\sqrt{M(M+4)}$

2) $j(\cdot)$ - nonnegative, positive homogeneous and Lipschitz continuous functional in \mathcal{H}

 $|j(z_1) - j(z_2)| \leq \left(\max_{i=1,...,M} \{\sigma_i^y\} meas(\Omega)^{\frac{1}{2}} M^{\frac{1}{2}} \right) \\ ||z_1 - z_2||_{\mathcal{H}}.$

Theorem: Let $l \in H^1(0,T;\mathcal{H}')$ with l(0) = 0. $\exists ! \ w = (u, p_1, \dots, p_M)(t) \in H^1(0,T;\mathcal{H})$ of Problem (**PI**).

Proof: [Han, Reddy '99.]

Discretization

• in time: net $0 = t_0 < t_1 < \cdots < t_N = T$,

and implicit Euler scheme

$$\dot{X}(t_j) = \frac{X(t_j) - X(t_{j-1})}{t_j - t_{j-1}}$$
 for $j = 1, \dots, N$.

- in space: regular triangulation \mathcal{T} of Ω
 - displacement u: $H_D^1(\Omega)$ approximated by $\mathcal{S}_D^1(\mathcal{T}) := \{ v \in H_D^1(\Omega) : \forall T \in \mathcal{T}, v | T \in \mathbf{P}_1(T)^d \}$
 - plastic strains p_1, p_2 : $L^2(\Omega)$ approximated by $\mathcal{S}^0(\mathcal{T}) := \{a \in L^2(\Omega) : \forall T \in \mathcal{T}, a | T \in \mathbb{R}\}$

Discretization of two-yield material model (M = 2)

Problem (<i>PI</i> _{discrete}): Given $P_1^0, P_2^0 \in \text{dev}$ $S^0(\mathcal{T})^{d \times d}_{sym}$, find $U^1 \in S^1_D(\mathcal{T})$ s. t.
$\int_{\Omega} \mathbb{C}(\epsilon(U^{1}) - P_{1}^{1} - P_{2}^{1}) : \epsilon(V) \mathrm{d}x - \int_{\Omega} f(t) V \mathrm{d}x$
$-\int_{\Gamma_N} gV \mathrm{d} x = 0 \forall V \in S_D^1(\mathcal{T}),$
where $P = (P_1, P_2)^T = (P_1^1, P_2^1)^T - (P_1^0, P_2^0)^T$ minimizes on every element $T \in \mathcal{T}$
$\min_{Q} \frac{1}{2} (\widehat{\mathbb{C}} + \widehat{\mathbb{H}}) Q : Q - A _{T} : Q + Q _{\sigma^{y}},$
$\forall Q = (Q_1, Q_2)^T, Q_1, Q_2 \in \mathbb{R}^{d \times d}_{sym}, \text{tr } Q_1 = \text{tr } Q_2 = 0$
$c_1 \ll 2 = 0.$

Notation:
$$A = \begin{pmatrix} \mathbb{C}\epsilon(U^{1}) \\ \mathbb{C}\epsilon(U^{1}) \end{pmatrix} - (\widehat{\mathbb{C}} + \widehat{\mathbb{H}}) \begin{pmatrix} P_{1}^{0} \\ P_{2}^{0} \end{pmatrix},$$
$$\widehat{\mathbb{C}} + \widehat{\mathbb{H}} = \begin{pmatrix} \mathbb{C} + \mathbb{H}_{1} & \mathbb{C} \\ \mathbb{C} & \mathbb{C} + \mathbb{H}_{2} \end{pmatrix},$$
$$||(Q_{1}, Q_{2})||_{\sigma^{y}} = \sigma_{1}^{y} ||Q_{1}|| + \sigma_{2}^{y} ||Q_{2}||.$$

Lemma (two-yield plastic dependence): Given $\hat{A} = (A_1, A_2)^T, A_1, A_2 \in \mathbb{R}^{d \times d}_{sym}$, then $\exists ! P = (P_1, P_2)^T, P_1, P_2 \in \mathbb{R}^{d \times d}_{sym}$ with tr $P_1 =$ tr $P_2 = O$ s. t. $(\hat{A} - (\hat{\mathbb{C}} + \hat{\mathbb{H}})P) : (Q - P) \leq ||Q||_{\sigma^y} - ||P||_{\sigma^y}$ $\forall Q = (Q_1, Q_2)^T, Q_1, Q_2 \in \mathbb{R}^{d \times d}_{sym}$ with tr $Q_1 = \text{tr } Q_2 = O$. P is minimizer of $f(Q) = \frac{1}{2}(\hat{\mathbb{C}} + \hat{\mathbb{H}})Q : Q - Q : A + ||Q||_{\sigma^y}$ amongst trace-free symmetric $d \times d$ matrices Q_1, Q_2 .

How to calculate P from continuous but nonsmooth convex functional f(P)?

Functionals in argument *P*, where $P = (P_1, P_2)^T$, $P_1 = (x, 0; 0, -x), P_2 = (y, 0; 0, -y).$

Analytical approach: one-yield

$$f(Q) = \frac{1}{2}(\mathbb{C} + \mathbb{H})Q : Q - Q : A + \sigma^{y}||Q|| \to \min$$

Lemma:(ACZ99) Let $f(P) = \min_{Q} f(Q)$.
Then $P = \frac{(||\operatorname{dev} A|| - \sigma^{y})_{+}}{2\mu + h} \frac{\operatorname{dev} A}{||\operatorname{dev} A||}.$

Proof: f has a subdifferential, i.e.,

 $\partial f(P) = (\mathbb{C} + \mathbb{H})P - A + \sigma^y \partial || \cdot ||(P)|$

Mininum condition on ${\cal P}$

 $0 \in \partial f(P) \Leftrightarrow A - (\mathbb{C} + \mathbb{H})P \in \sigma^y \partial || \cdot ||(P)$ In case $P \neq 0$ is

$$\partial || \cdot ||(P) = \{\frac{P}{||P||}\}$$

Nonlinear system in P_1, P_2

dev
$$A = (\sigma^y + (2\mu + h)||P||) \frac{P}{||P||}$$

Subst. $\xi = ||P||,$

$$\xi = \frac{(||\operatorname{dev} A|| - \sigma^y)}{2\mu + h},$$

$$P = \frac{(||\operatorname{dev} A|| - \sigma^y)_+}{2\mu + h} \frac{\operatorname{dev} A}{||\operatorname{dev} A||}.$$

Analytical approach: two-yield

 $f(Q) = \frac{1}{2}(\widehat{\mathbb{C}} + \widehat{\mathbb{H}})Q : Q - Q : A + ||Q||_{\sigma^y} \to \min$

Lemma: Let $f(P) = \min_{Q} f(Q), P = (P_1, P_2),$ If $P_1 \neq 0, P_2 \neq 0 \Rightarrow ||P_2||$ is a root of a 8-th degree polynomial.

Proof: f has a subdifferential, i.e.,

 $\partial f(P) = (\widehat{\mathbb{C}} + \widehat{\mathbb{H}})P - A + \partial || \cdot ||_{\sigma^y}(P)$

Mininum condition on P

 $0 \in \partial f(P) \Leftrightarrow A - (\widehat{\mathbb{C}} + \widehat{\mathbb{H}})P \in \partial || \cdot ||_{\sigma^{\mathcal{Y}}}(P)$

In case $P_1 \neq 0, P_2 \neq 0$ is

$$\partial || \cdot ||_{\sigma^y}(P) = \{ \sigma_1^y \frac{P_1}{||P_1||}, \sigma_2^y \frac{P_2}{||P_2||} \}$$

Nonlinear system in P_1, P_2

 $\begin{pmatrix} \operatorname{dev} A_1 \\ \operatorname{dev} A_2 \end{pmatrix} - \begin{pmatrix} (2\mu + h_1)\mathbb{I} & 2\mu\mathbb{I} \\ 2\mu\mathbb{I} & (2\mu + h_2)\mathbb{I} \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} = \begin{pmatrix} \sigma_1^y \frac{F_1}{||P_1||} \\ \sigma_2^y \frac{P_2}{||P_2||} \end{pmatrix}$ Subst. $\xi_1 = ||P_1||, \xi_2 = ||P_2||$

 $A + B\xi_1 + C\xi_1^2 - (G + H\xi_1 + I\xi_2 + J\xi_1\xi_2)^2 = 0$ $D + E\xi_2 + F\xi_2^2 - (G + H\xi_1 + I\xi_2 + J\xi_1\xi_2)^2 = 0$ MAPLE \Rightarrow 8-th degree polynomial in $\xi_2 \Rightarrow$ no analytical formula!

Analytical approach: polynomial in ξ_2

$$(J^{4}F^{2})\xi_{2}^{8}$$

$$+ (2\%4J^{2}F)\xi_{2}^{7}$$

$$+ (2\%3J^{2}F + \%4^{2})\xi_{2}^{6}$$

$$+ (2\%2J^{2}F + 2\%3\%4)\xi_{2}^{5}$$

$$+ (2\%1J^{2}F + 2\%2\%4 + \%3^{2} - F(BJ + 2IC)^{2})\xi_{2}^{4}$$

$$+ (-E(BJ + 2IC)^{2} - 2F(2CG + BH)(BJ + 2IC) + 2\%1\%4$$

$$+ 2\%2\%3)\xi_{2}^{3}$$

$$+ (-D(BJ + 2IC)^{2} - 2E(2CG + BH)(BJ + 2IC) - F(2CG + BH)^{2}$$

$$+ 2\%1\%3 + \%2^{2})\xi_{2}^{2}$$

$$+ (-2D(2CG + BH)(BJ + 2IC) - E(2CG + BH)^{2} + 2\%1\%2)\xi_{2}$$

$$+ (\%1^{2} - D(2CG + BH)^{2}) = 0,$$

where

 $\%1 := H^2 D - C G^2 - A H^2 - B G H - C D,$ $\%2 := -B G J - 2 H J A - C E - 2 I C G + H^2 E - I B H + 2 H J D,$ $\%3 := -C F - J^2 A + 2 H J E - I B J + C + J^2 D + H^2 F,$ $\%4 := 2 H J F + J^2 E.$

Analytical Approach: example

Given
$$\mu = 1, \sigma_1^y = 1, \sigma_2^y = 2, h_1 = 1, h_2 = 1$$
 and
 $A_1 = A_2 = \begin{pmatrix} 20 & 0 \\ 0 & 0 \end{pmatrix}.$

The direct calculation shows

$$l_{1} = \begin{pmatrix} 10 + 10\xi_{1} & 0\\ 0 & -10 - 10\xi_{1} \end{pmatrix},$$
$$l_{2} = \begin{pmatrix} 20 - 10\xi_{2} & 0\\ 0 & -20 - 10\xi_{2} \end{pmatrix},$$
$$r = 5\xi_{1}\xi_{2} + 6\xi_{1} + 3\xi_{2} + 2.$$

The nonlinear system of equation for $\xi_1, \xi_2 > 0!$ $200 + 400 \xi_1 + 200 \xi_1^2 - (2 + 3\xi_2 + 6\xi_1 + 5\xi_1\xi_2)^2 = 0,$ $800 + 800 \xi_2 + 200 \xi_2^2 - (2 + 3\xi_2 + 6\xi_1 + 5\xi_1\xi_2)^2 = 0.$

 ξ_1 solved from the second equation

$$\xi_1 = -\frac{1}{2} \frac{24 + 56\xi_2 + 30\xi_2^2 \pm 20\sqrt{2}(12 + 16\xi_2 + 5\xi_2^2)}{(6 + 5\xi_2)^2},$$

subst. (- term only!) in the first eq. $\frac{P_4(\xi_2)}{(6+5\xi_2)^2} = 0.$ Condition $(6+5\xi_2) > 0! \Rightarrow P_4(\xi_2) = 0.$

 $\xi_2 = \{-4.428427124, -2, -2, 2.028427124\}.$

Analytical Approach: example - geometrical interpretation

 $(\xi_1,\xi_2) = Two perpend.$ lines and a hyberbole intersection

 $200 + 400\,\xi_1 + 200\,\xi_1^2 - (2 + 3\,\xi_2 + 6\,\xi_1 + 5\,\xi_1\,\xi_2)^2 = 0,$ $800 + 800\,\xi_2 + 200\,\xi_2^2 - (2 + 3\,\xi_2 + 6\,\xi_1 + 5\,\xi_1\,\xi_2)^2 = 0.$

Iterative Approach

Algorithm (*): Given $tolerance \geq 0$. (a) Choose $(P_1^0, P_2^0) \in \operatorname{dev} \mathbb{R}^{d \times d}_{sum} \times \operatorname{dev} \mathbb{R}^{d \times d}_{sum}$, set i := 0. (b) Find $P_2^{i+1} \in \operatorname{dev} \mathbf{R}_{sym}^{d \times d}$ s. t. $f(P_1^i, P_2^{i+1}) = \min_{Q_2 \in \text{dev} \, \mathbb{R}^{d \times d}_{sum}} f(P_1^i, Q_2).$ (c) Find $P_1^{i+1} \in \operatorname{dev} \mathbb{R}^{d \times d}_{sum}$ s. t. $f(P_1^{i+1}, P_2^{i+1}) = \min_{Q_1 \in \text{dev} \, \mathbb{R}^{d \times d}_{sym}} f(Q_1, P_2^{i+1}).$ (d) If $\frac{||P_1^{i+1} - P_1^i|| + ||P_2^{i+1} - P_2^i||}{||P_1^{i+1}|| + ||P_1^i|| + ||P_2^{i+1}|| + ||P_2^i||} > tolerance$ set i := i + 1 and goto (b), otherwise output (P_1^{i+1}, P_2^{i+1}) .

• global convergence with the rate 1/2:

 $||P_1^i - P_1||^2 + ||P_2^i - P_2||^2 \le C_0 \cdot q^i$

Iterative Approach - example

The approximations $P_1^i = (x^i, 0; 0, -x^i), P_2^i = (y^i, 0; 0, -y^i), i = 0, 1, ...$ of Algorithm (*) displayed as the points (x^i, y^i) in the x - y coordinate system.

Analytical Approach - regularized one-yield and two-yield problems

the absolute value regularizator: $a \in \mathbb{R}_0^+, \epsilon > 0$,

$$a_{\epsilon} = \begin{cases} a & \text{if } a \ge \epsilon, \\ \frac{1}{2\varepsilon}a^2 + \frac{\epsilon}{2} & \text{if } a < \epsilon. \end{cases}$$

One-yield problem

 $f(Q) = \frac{1}{2}(\mathbb{C} + \mathbb{H})Q : Q - Q : A + \sigma^{y}||Q||_{\varepsilon} \to \min$
minimizer P = ?

Two-yield problem

 $f(Q) = \frac{1}{2}(\widehat{\mathbb{C}} + \widehat{\mathbb{H}})Q : Q - Q : A + (||Q||_{\sigma^y})_{\varepsilon} \to \min$ minimizer $P = (P_1, P_2)$?

Numerical Algorithms

Matlab (J. Valdman) NGSOLVE (J. Kienesberger)

• Alternating direction's method for *P* solving Newton method Exact analytical formula?

• Newton-Raphson method for U solving

$$\begin{pmatrix} D\mathbf{F}(\mathbf{U}_{\mathbf{k}-1}^{1}) & B^{T} \\ B & \mathbf{0} \end{pmatrix} \begin{pmatrix} \triangle \mathbf{U}_{\mathbf{k}}^{1} \\ \lambda \end{pmatrix} = \begin{pmatrix} -\mathbf{F}(\mathbf{U}_{\mathbf{k}-1}^{1}) \\ \mathbf{0} \end{pmatrix}$$

Multigrid preconditioned CG method

• Adaptive mesh-refining (ZZ-estimator)

Geometry and coarse mesh T_0 problems of beam with 1D effects (up) and 2D effects (down).

Loading-deformation relation: uniform surface loading $g_x(t)$ versus the *x*-displacement of the point (0,1) for problems of the single-yield (up) and multi-yield (down) beam with 1D effects.

Loading-deformation relation: uniform surface loading $g_x(t)$ versus the *x*-displacement of the point (0, 1) for problems of the single-yield (up) and multi-yield (down) beam with 2D effects.

Evolution of elastoplastic zones at discrete times t = 4.5, 5, 5.5, 6, 6.5, 7, 8, 9 for the singleyield beam with 2D effects. 16334 elements, CPU time = 15.59 hours.

Evolution of elastoplastic zones at discrete times t = 4.5, 5, 5.5, 6, 6.5, 7, 8, 9 of the two-yield beam with 2D effects. 16334 elements, CPU time = 25.17 hours.

material	CPU time	total number	CPU time -
model	(in hours)	of Newton steps	Algorithm (*)
			(in %)
single-yield	15.59	126	3.5
two-yield	29.57	126	49.6

Problem of beam with 2D effects. Discrete times $t = \{0, 0.5, 1, ..., 10\}$, and uniform mesh T_5 with 16384 elements.

Uniformly refined meshes and elastoplastic zones, one time-step $t_0 = 0, t_1 = 8.5$, two-yield beam with 2D effects.

Adaptively refined meshes and elastoplastic zones, one time-step $t_0 = 0, t_1 = 8.5$, two-yield beam with 2D effects.

(Estimated) error and ZZ-error estimator

One time-step with $t_0 = 0, t_1 = 9$. (Estimated) error and ZZ-error estimator are displayed versus the degrees of freedom N.

NGSOLVE calculations:

Elastoplastic domains (blue -elastic, green - first plastic, red - second plastic)

Kinematic hardening model calculation.

Conclusions

Single-yield model versus two-yield model:

- The same variational inequality (⇒ existence and uniqueness!)
- Plastic dependency for two-yield model not analytical anymore

Numerical experiments:

- The priority of adaptive mesh-refinements over uniform mesh-refinements
- One Newton iteration in the nested iteration technique is usually sufficient.

Future work

- Completion of NGSOLVE Two-yield plasticity package.
- Generalization to isotropic hardening or combined kinematic-isotropic hardening.
- Exact analytical formulas.
- Nonlinear hardening models, big deformations, temperature.