\title{

Spezialforschungsbereich F013

\title{

Subproject F1306

Subproject F1306
 Adaptive Multilevel. Methods for Nonlinear 3D Mechanical Problems

Computational plasticity

Mathematical model of elastoplasticity

Basic equations

The stress field of a deformed body in \mathbb{R}^{n} has to satisfy

$$
\begin{aligned}
-\operatorname{div} \sigma & =b \\
\sigma & =\sigma^{T}
\end{aligned}
$$

with given body forces b. The linearized strain tensor is defined by

$$
\varepsilon(u)=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right)
$$

The phenomenon of plasticity is described by an additional non-linear term in the stress-strain relation

$$
\varepsilon(u)=\mathbb{C}^{-1} \sigma+p
$$

The admissible stresses are restricted by a yield function φ depending on the hardening of the material, the Prandtl-

Minimization problem for

 isotropic hardeningThe dual functional can be computed and the minimization problem simplifies and writes as: Find the minimizer (u, p) of

$$
\begin{aligned}
f(u, p): & : \frac{1}{2} \int_{\Omega} \mathbb{C}[\varepsilon(u)-p]:(\varepsilon(u)-p) d x-\int_{\Omega} b u d x \\
& +\frac{1}{2} \int_{\Omega}\left(\alpha_{0}+\sigma_{y} H\left|p-p_{0}\right|\right)^{2} d x+\int_{\Omega} \sigma_{y}\left|p-p_{0}\right| d x
\end{aligned}
$$

under the constraint $\operatorname{tr}\left(p-p_{0}\right)=0$. Define $\tilde{p}=p-p_{0} . f$ is a convex, non-differentiable function with quadratic terms. It is regularized by smoothing the sharp bend of the absolute value:

$$
|p|_{\epsilon}:=\left\{\begin{array}{lr}
|p| & \text { if }|p| \geq \epsilon \\
\frac{1}{2 \epsilon}|p|^{2}+\frac{\epsilon}{2} & \text { if }|p|<\epsilon
\end{array}\right.
$$

The minimization strategy in each time step is

$$
u^{k+1}=\operatorname{argmin}_{v} \min _{q} \bar{f}(v, q)=\operatorname{argmin}_{v} \tilde{f}\left(v, q_{\text {opt }}(v)\right)
$$

- NGSolve - finite element package
- FEM basis functions: piecewise quadratic
- Full multigrid method

Testing geometry

2D sketches of the 3D testing geometry:

Plasticity domain

The material in the red domain is permanently deformed.

Reuß normality law describes the time development

$$
\begin{gathered}
\varphi(\sigma, \alpha)<\infty \\
\dot{p}:(\tau-\sigma)-\dot{\alpha}:(\beta-\alpha) \leq \varphi(\tau, \beta)-\varphi(\sigma, \alpha)
\end{gathered}
$$

The hardening parameter α depends on the material law. \dot{p} denotes the time derivative of the plastic strain p.

Normality law

If we consider the Prandtl-Reuß normality law without α, that is the case of perfect plasticity, then φ describes the domain where the stress is admissible:
$\stackrel{\dot{p}}{\sigma}$

$$
\varphi=0 \begin{array}{ll}
\boldsymbol{\bullet} \\
\dot{p}=0
\end{array} \quad \varphi=\infty
$$

Algorithm

Minimization in u

The Finite-Element-Method discretization of the unconstrained objective in matrix form is equivalent to

$$
\begin{aligned}
& \frac{1}{2}\binom{u}{\tilde{p}}^{T}\left(\begin{array}{cc}
B^{T} \mathbb{C} B & -B^{T} \mathbb{C} \\
-\mathbb{C} B & \mathbb{C}+\mathbb{H}
\end{array}\right)\binom{u}{\tilde{p}} \\
& +\binom{-b-B^{T} \mathbb{C} p_{0}}{\mathbb{C} p_{0}}^{T}\binom{u}{\tilde{p}} \longrightarrow \min !
\end{aligned}
$$

\mathbb{H} is the Hessian with respect to p. Necessary condition:

$$
\left(\begin{array}{cc}
B^{T} \mathbb{C} B & -B^{T} \mathbb{C} \\
-\mathbb{C} B & \mathbb{C}+\mathbb{H}
\end{array}\right)\binom{u}{\tilde{p}}+\binom{-b-B^{T} \mathbb{C} p_{0}}{\mathbb{C} p_{0}}=0
$$

The Schur-Complement system in u with the matrix

$$
S=B^{T}\left(\mathbb{C}-\mathbb{C}(\mathbb{C}+\mathbb{H})^{-1} \mathbb{C}\right) B
$$

is solved by multigrid preconditioned conjugate gradient method.

Numeric-analytic steps

The time dependent variational inequality is solved by an implicit time discretization, e.g. an implicit Euler scheme. For given values at some time step t_{0} the updated values for $t_{1}=t_{0}+\Delta t$ have to be determined.
The problem is reformulated by using functional-analytic arguments, i.e., the arguments in the variational inequality are switched using a dual functional. Then, an equivalent minimization problem can be derived: Find the minimizer (u, p, α) of

$$
\begin{array}{r}
f(u, p, \alpha):=\frac{1}{2} \int_{\Omega} \mathbb{C}[\varepsilon(u)-p]:(\varepsilon(u)-p) d x+\frac{1}{2} \int_{\Omega}|\alpha|^{2} d x \\
+\Delta t \int_{\Omega} \varphi^{*}\left(\frac{p-p_{0}}{\Delta t}, \frac{\alpha_{0}-\alpha}{\Delta t}\right) d x-\int_{\Omega} b u d x
\end{array}
$$

φ^{*} is the dual functional of φ.

Minimization problem in p

Minimizing p with the Schur-Complement system would be an inexact and slow procedure. The minimization can be done locally in each integration point using Newton's method.

Constraint

Since the constraint $\operatorname{tr} \tilde{p}$ is linear

$$
\begin{aligned}
& \text { 2D: } \tilde{p}_{22}=-\tilde{p}_{11} \\
& \text { 3D: } \tilde{p}_{33}=-\tilde{p}_{11}-\tilde{p}_{22}
\end{aligned}
$$

the minimization problems can be projected onto a hyperplane, where the constraint is satisfied exactly: e.g.

$$
S=B^{T}\left(\mathbb{C}-\mathbb{C} P\left(P^{T}(\mathbb{C}+\mathbb{H}) P\right)^{-1} P^{T} \mathbb{C}\right) B
$$

with the projection matrix P.

Results and future work

Complexity
The CPU-time depends linearly on the number of unknowns
dofs.
Multi-yield (Two-yield) plasticity

Elastoplastic domains

blue elastic, green first plastic, red second plastic

Outlook

- Convergence proof of the algorithm
- Extension to other hardening laws
- Exact analytic formulas for minimizing p
- Nonlinear hardening, big deformations

