

Computational plasticity

Mathematical model of elastoplasticity

Basic equations

The stress field of a deformed body in \mathbb{R}^n has to satisfy

 $-\mathsf{div} \ \sigma = b$ $\sigma = \sigma^T$

Reuß normality law describes the time development

 $\varphi(\sigma, \alpha) < \infty$ $\dot{p} : (\tau - \sigma) - \dot{\alpha} : (\beta - \alpha) \le \varphi(\tau, \beta) - \varphi(\sigma, \alpha)$

The hardening parameter α depends on the material law. \dot{p} denotes the time derivative of the plastic strain p.

Numeric-analytic steps

The time dependent variational inequality is solved by an implicit time discretization, e.g. an implicit Euler scheme. For given values at some time step t_0 the updated values for $t_1 = t_0 + \Delta t$ have to be determined.

with given body forces b. The linearized strain tensor is defined by

 $\varepsilon(u) = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right)$

The phenomenon of plasticity is described by an additional ${\rm PS}^{-1}$ non-linear term in the stress-strain relation

 $\varepsilon(u) = \mathbb{C}^{-1}\sigma + p$

The admissible stresses are restricted by a yield function φ depending on the hardening of the material, the Prandtl-

Normality law

If we consider the Prandtl-Reuß normality law without α , that is the case of perfect plasticity, then φ describes the domain where the stress is admissible:

The problem is reformulated by using functional-analytic arguments, i.e., the arguments in the variational inequality are switched using a dual functional. Then, an equivalent minimization problem can be derived: Find the minimizer (u, p, α) of

 $f(u, p, \alpha) := \frac{1}{2} \int_{\Omega} \mathbb{C}[\varepsilon(u) - p] : (\varepsilon(u) - p) dx + \frac{1}{2} \int_{\Omega} |\alpha|^2 dx$ $+\Delta t \int_{\Omega} \varphi^* \left(\frac{p-p_0}{\Delta t}, \frac{\alpha_0-\alpha}{\Delta t}\right) dx - \int_{\Omega} b \, u \, dx$

 φ^* is the dual functional of $\varphi.$

Algorithm

Minimization problem for isotropic hardening

The dual functional can be computed and the minimization problem simplifies and writes as: Find the minimizer (u,p) of

 $f(u,p) := \frac{1}{2} \int \mathbb{C}[\varepsilon(u) - p] : (\varepsilon(u) - p)dx - \int b \, u \, dx$

The Finite-Element-Method discretization of the unconstrained objective in matrix form is equivalent to

$$\frac{1}{2} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix}^{T} \begin{pmatrix} B^{T} \mathbb{C} B - B^{T} \mathbb{C} \\ -\mathbb{C} B \ \mathbb{C} + \mathbb{H} \end{pmatrix} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} \\
+ \begin{pmatrix} -b - B^{T} \mathbb{C} p_{0} \\ \mathbb{C} p_{0} \end{pmatrix}^{T} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} \longrightarrow \min!$$

Minimizing p with the Schur-Complement system would be an inexact and slow procedure. The minimization can be done locally in each integration point using Newton's method.

$$\int_{\Omega} \int_{\Omega} \int_{\Omega} \int_{\Omega} \int_{\Omega} (\alpha_0 + \sigma_y H |p - p_0|)^2 dx + \int_{\Omega} \sigma_y |p - p_0| dx$$

under the constraint tr $(p - p_0) = 0$. Define $\tilde{p} = p - p_0$. fis a convex, non-differentiable function with quadratic terms. It is regularized by smoothing the sharp bend of the absolute value:

 $|p|_{\epsilon} := \begin{cases} |p| & \text{if } |p| \geq \epsilon \\ \frac{1}{2\epsilon} |p|^2 + \frac{\epsilon}{2} & \text{if } |p| < \epsilon \end{cases}$

The minimization strategy in each time step is

 $u^{k+1} = \operatorname{argmin}_v \min_q \bar{f}(v,q) = \operatorname{argmin}_v \tilde{f}(v,q_{\mathsf{opt}}(v))$

 $\mathbb{H} \text{ is the Hessian with respect to } p. \text{ Necessary condition:} \\ \begin{pmatrix} B^T \mathbb{C}B & -B^T \mathbb{C} \\ -\mathbb{C}B & \mathbb{C} + \mathbb{H} \end{pmatrix} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} + \begin{pmatrix} -b - B^T \mathbb{C}p_0 \\ \mathbb{C}p_0 \end{pmatrix} = 0$

The Schur-Complement system in u with the matrix

 $S = B^T (\mathbb{C} - \mathbb{C}(\mathbb{C} + \mathbb{H})^{-1} \mathbb{C}) B$

is solved by multigrid preconditioned conjugate gradient method.

Constraint

Since the constraint tr \tilde{p} is linear

2D:
$$\tilde{p}_{22} = -\tilde{p}_{11}$$

3D: $\tilde{p}_{33} = -\tilde{p}_{11} - \tilde{p}_{22}$

the minimization problems can be projected onto a hyperplane, where the constraint is satisfied exactly: e.g.

 $S = B^T (\mathbb{C} - \mathbb{C}P(P^T(\mathbb{C} + \mathbb{H})P)^{-1}P^T\mathbb{C})B$

with the projection matrix P.

Results and future work

• NGSolve - finite element package

• FEM basis functions: piecewise quadratic

• Full multigrid method

Testing geometry

2D sketches of the 3D testing geometry: F

The CPU-time depends linearly on the number of unknowns dofs.

Complexity

Elastoplastic domains

blue elastic, green first plastic, red second plastic

Plasticity domain

The material in the red domain is permanently deformed.

Multi-yield (Two-yield) plasticity

Kinematic hardening

Two-yield hardening

Outlook

• Convergence proof of the algorithm

• Extension to other hardening laws

 \bullet Exact analytic formulas for minimizing p

• Nonlinear hardening, big deformations

Contact: { johanna.kienesberger, jan.valdman } @sfb013.uni-linz.ac.at