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Computational plasticity

Mathematical model of elastoplasticity
Basic equations

The stress field of a deformed body in R
n has to satisfy

−div σ = b

σ = σT

with given body forces b. The linearized strain tensor is de-

fined by

ε(u) =
1

2

(

∇u + (∇u)T
)

The phenomenon of plasticity is described by an additional

non-linear term in the stress-strain relation

ε(u) = C
−1σ + p

The admissible stresses are restricted by a yield function ϕ

depending on the hardening of the material, the Prandtl-

Reuß normality law describes the time development

ϕ(σ, α) < ∞

ṗ : (τ − σ) − α̇ : (β − α) ≤ ϕ(τ, β) − ϕ(σ, α)

The hardening parameter α depends on the material law. ṗ

denotes the time derivative of the plastic strain p.

Normality law
If we consider the Prandtl-Reuß normality law without α,

that is the case of perfect plasticity, then ϕ describes the

domain where the stress is admissible:

PSfrag replacements
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σ
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Numeric-analytic steps

The time dependent variational inequality is solved by an

implicit time discretization, e.g. an implicit Euler scheme.

For given values at some time step t0 the updated values for

t1 = t0 + ∆t have to be determined.

The problem is reformulated by using functional-analytic

arguments, i.e., the arguments in the variational inequality

are switched using a dual functional. Then, an equivalent

minimization problem can be derived: Find the minimizer

(u, p, α) of

f(u, p, α) :=
1

2

∫

Ω
C[ε(u) − p] : (ε(u) − p)dx +

1

2

∫

Ω
|α|2dx

+∆t

∫

Ω
ϕ∗(

p − p0

∆t
,
α0 − α

∆t
)dx −

∫

Ω
b u dx

ϕ∗ is the dual functional of ϕ.

Algorithm
Minimization problem for

isotropic hardening

The dual functional can be computed and the minimization

problem simplifies and writes as: Find the minimizer (u, p)
of

f(u, p) := 1
2

∫

Ω
C[ε(u) − p] : (ε(u) − p)dx −

∫

Ω
b u dx

+ 1
2

∫

Ω
(α0 + σyH|p − p0|)

2dx +
∫

Ω
σy|p − p0|dx

under the constraint tr (p− p0) = 0. Define p̃ = p− p0. f

is a convex, non-differentiable function with quadratic terms.

It is regularized by smoothing the sharp bend of the absolute

value:

|p|ε :=

{

|p| if |p| ≥ ε
1
2ε|p|

2 + ε
2 if |p| < ε

The minimization strategy in each time step is

uk+1 = argminv min
q

f̄(v, q) = argminvf̃(v, qopt(v))

Minimization in u

The Finite-Element-Method discretization of the uncon-

strained objective in matrix form is equivalent to

1

2

(

u

p̃

)T (

BT
CB −BT

C

−CB C + H

)(

u

p̃

)

+

(

−b − BT
Cp0

Cp0

)T (

u

p̃

)

−→ min!

H is the Hessian with respect to p. Necessary condition:
(

BT
CB −BT

C

−CB C + H

)(

u

p̃

)

+

(

−b − BT
Cp0

Cp0

)

= 0

The Schur-Complement system in u with the matrix

S = BT (C − C(C + H)−1
C)B

is solved by multigrid preconditioned conjugate gradient

method.

Minimization problem in p

Minimizing p with the Schur-Complement system would

be an inexact and slow procedure. The minimization can

be done locally in each integration point using Newton’s

method.

Constraint

Since the constraint tr p̃ is linear

2D: p̃22 = −p̃11

3D: p̃33 = −p̃11 − p̃22

the minimization problems can be projected onto a hyper-

plane, where the constraint is satisfied exactly: e.g.

S = BT (C − CP (P T (C + H)P )−1P T
C)B

with the projection matrix P .

Results and future work
•NGSolve - finite element package

• FEM basis functions: piecewise quadratic

• Full multigrid method

Testing geometry
2D sketches of the 3D testing geometry:
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Plasticity domain
The material in the red domain is permanently deformed.

Complexity
The CPU-time depends linearly on the number of unknowns

dofs.
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Multi-yield (Two-yield) plasticity
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Elastoplastic domains

blue elastic, green first plastic, red second plastic

Kinematic hardening Two-yield hardening

Outlook

•Convergence proof of the algorithm

•Extension to other hardening laws

•Exact analytic formulas for minimizing p

•Nonlinear hardening, big deformations
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