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Abstract

This paper presents new algebraic multigrid (AMG) preconditioners
for sparse boundary element matrices arising from the adaptive cross ap-
proximation (ACA) to dense boundary element matrices. In the following
we consider the single layer potential integral equation resulting from the
direct boundary integral formulation of the interior Dirichlet boundary
value problem for the Laplace equation in two, or three spatial dimen-
sions. The standard realization of collocation, or Galerkin boundary ele-
ment discretizations lead to fully populated system matrices which require
O(N3) of storage units and cause the same complexity for a single matrix-
by-vector multiplication, where N, denotes the number of boundary un-
knowns. Sparse matrix approximations schemes such as ACA reduce this
complexity to an almost linear behavior in N,,. Since the single layer poten-
tial operator is a pseudo-differential operator of the order —1, the resulting
boundary element matrices are ill-conditioned. Iterative solvers dramati-
cally suffer from this property for growing N,. Our AMG-preconditioners
avoid the increase of the iteration numbers and result in almost optimal
solvers with respect to the total complexity. This behavior is confirmed by
our numerical experiments. Let us mention that our AMG-preconditioners
use only single grid information provided by the usual mesh data and by
the ACA system matrix on the finest level.

Keywords integral equations of first kind, boundary element method, adap-
tive cross approximation, algebraic multigrid, preconditioners, iterative solvers

1 Introduction

In this paper we are concerned with the fast solution of sparse boundary ele-
ment equations by algebraic multigrid methods. The most common technique
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for discretizing elliptic boundary value problems for second order partial differ-
ential equations is certainly the finite element method (FEM). Nevertheless, in
many applications it will be advantageous to use alternative approaches. The
boundary element method (BEM) is certainly a preferable discretization tech-
nique for some specific problem classes. For instance, one typical application
area for BEM is the treatment of unbounded domains. Since only the boundary
I' = 09 of the computational domain Q C R?, d = 2, 3 has to be discretized, the
dimension of the arising matrices will be reduced essentially. Once the complete
Cauchy data (Dirichlet data w and Neumann data v = du/0n) are available on
I", the solution in the total computational domain €2 can easily be computed by
the representation formulae.

If we are going to use the standard BEM, we are faced with at least one
essential drawback. The system matrices are fully populated. More precisely,
for a growing number of (boundary) unknowns N, every iterative solving al-
gorithm will result in a complexity of O(N?) with respect to the arithmetical
cost and memory demand. Furthermore let us notice that using the Galerkin
method for constructing the BE-matrices leads to symmetric and positive (semi)
definite system matrices, which can be solved by the conjugate gradient (CG)
method. However, since we have to evaluate two integrals for each matrix
entry, most of the commercial software packages gladly prefer collocation meth-
ods for constructing BE matrices. Unfortunately, this approach generally yields
non-symmetric matrices. For this reason it is not possible to apply the CG al-
gorithm, and thus, we need some appropriate Krylov-subspace methods. The
most familiar algorithms are the GMRES (generalized minimal residual) and
the BiCGStab (bi-conjugate gradients stabilized) methods, see e.g. [22]. We
refer the reader to [11] or [29] for a detailed treatment of boundary element
methods.

Therefore, in the case of boundary element methods iterative solvers are
only efficient, if the cost for a single matrix-by-vector multiplication can be re-
duced essentially (especially in 3D). During the last two decades different sparse
approximation techniques for boundary element matrices have been developed.
The multipole method [24, 10], the panel clustering method [14], the H-matrix
approach [13] and wavelet techniques [18] are certainly now the most popular
ones. In our paper we will consider the adaptive cross approximation (ACA)
method recently suggested by M. Bebendorf and S. Rjasanow [3, 2, 4]. The
basic idea is to decompose the boundary I'" into clusters and approximate the
corresponding admissible submatrices by low-rank matrices. If some n x m ma-
trix A is approximated by a r-rank matrix X, then the effort for multiplication
and storage will decrease from O(n * m) to O(r x (n + m)). In conclusion, the
application of a sparse representation algorithm allows us to realize the matrix-
by-vector multiplication in almost O(N}y) operations. A detailed explanation
and a rigorous analysis of the ACA-method can be found in [3, 2, 4].

It is well-known that standard iterative solvers like the Krylov-subspace
solvers heavily suffer from the bad conditioning of the system matrices. The
condition number x(K}) of system matrices K}, arising from the standard FE-
discretization of boundary value problems for self-adjoint second order partial
differential equations (PDEs) behaves like O(h~2), where h is the typical mesh



size. Boundary element matrices originating from the discretization of the sin-
gle layer potential or the hypersingular operator also lead to badly conditioned
system matrices Kj; with a condition number x(K}) of O(h™!). Thus, it is
obvious that we need appropriate preconditioning techniques in order to avoid
the steady rise of the number of iterations for finer and finer discretization. In
[19, 20] we introduced algebraic multigrid preconditioners for dense boundary
element matrices arising from standard collocation or Galerkin discretizations
of the single layer potential and the hypersingular operator. In this paper we
generalize these results to the ACA-approximation of the single layer poten-
tial operator. Let us mention that the single layer potential operator is the
more interesting case since it represents a pseudo-differential operator of or-
der minus one. Therefore, the corresponding boundary element matrices reveal
quite different spectral properties compared to standard FE stiffness matrices
or BE-matrices arising from the hypersingular operator. Due to the reverse
action of eigenvalues and eigenvectors of the (discrete) single layer potential
operator standard multigrid smoothers like Gauss-Seidel or damped Jacobi will
fail inevitably. For the geometric multigrid method, an appropriate smoother
was suggested by J. Bramble, Z. Leyk and J. Pasciak in [6], abbreviated as
BLP-smoother in the remaining of this paper. Moreover, we have to take into
account that the system matrix is available in ACA-format only. Thus, the con-
struction of the coarser levels, especially setting up proper transfer operators,
require some modifications. It is our aim to construct an AMG-preconditioned
iterative solver for ACA boundary element equations that shows linear, or at
least almost linear behavior with respect to the complexity in time and memory
demand.

The paper is organized as follows: Section 2 gives a brief overview on the in-
tegral operators considered and their properties. In addition, the ACA-method
is briefly described. In Section 3, we develop and analyze the AMG technique
for ACA-matrices. Some results of our numerical studies are presented in Sec-
tion 4. Finally, we draw some conclusion and discuss some further applications
in Section 5.

2 Problem Formulation and the ACA-Method

2.1 Boundary Integral Operators and their Properties

Let Q C R?, d = 2,3 be a bounded, simply connected domain with one closed
boundary piece I' = 0€) that is supposed to be sufficiently smooth, and let us
consider a continuous, linear, self-adjoint pseudo-differential operator

A: HYT) — H=(D), (1)

where H*(T') denotes the usual Sobolev space for some real s € R, see e.g. [1].
In the remaining of this paper we consider the single layer potential operator

(Vo)(y) = /F Bz, y)o(z)ds, 2)



and the hypersingular operator

(Du)(y) = 0, / O, Bz, y)u(z)ds, 3)

arising from the Dirichlet and Neumann boundary value problems for the Laplace
equation, respectively. The pseudo-differential operators V and D are special
mappings A € L(H*(T"), H~*(I")) with @« = —1/2 and a = +1/2, respectively.
In addition, n¢ is the unit outward normal vector to I' at some point { € T,
and E(z,y) denotes the fundamental solution of the differential operator under
consideration, i.e. the Laplace operator in our paper.

Let us assume that the boundary I' € C%! is Lipschitz. Then several prop-
erties for boundary integral operators can be observed (see, e.g., [29]):

1. The operators V and D are self-adjoint in the Lo(T") inner product, i.e.

(w,Vu)y = (Vo,u)g Vu,v € H Y*(T),
(v,Du)y = (Dv,u)y Vu,ve HY*T).

2. The hypersingular operator D is positive semidefinite, i.e.

(Du,u)y >0 Yu e H'/2(I),
Jup >0: (Du,u)y > uD||u||f,{1/2(r) Vu € HY2(D)|ker b,
ker D = span{1}.

3. In the case of Q C R? the single layer potential is positive definite, i.e.
Fuy >0 (v,Vv)o > /vév||’U||fq—1/z(p) Vo € H2(T).

If we consider Q@ C R? then V will not be positive definite in general.
Nevertheless, ellipticity can be obtained if the condition diam ©Q < 1 is
satisfied. But this condition can easily be fulfilled by an appropriate
scaling of the domain 2.

If we apply the collocation method we first have to define a set of collocation
points {y;|i = 1,..., N, }. In the case of  C R? an appropriate choice could be
Y = T; + %(.Ti.}_l — ;) where z; are the discretization nodes on the boundary
I'. Thus, the approximated solution v, can be represented in the form

Np
vn(z) =Y vidi(z),
=1
where the trial functions ¢; define the finite dimensional subspace

X, :=span [¢1,...,¢n,] C H~Y2(D).

This leads to the collocation equations

Vor(y;) = fly;))  7=1,...,Nh. (4)



If we are using piecewise constant trial functions ¢; for the Neumann data, the
left-hand side of the collocation equations (4) can be rewritten in the form

(Vavn)(y;) = g E(z,y;)on(x)dsy

Np,
= /FE(w,yj)Z’Ui ¢i(x)ds,
h i=1

Np,
= sz/ E(z,y;)dsa, j=1,...,Np,
=1 T

where I'; denotes the straight boundary element with the vertices z;_; and
z; (see also Figure 2). Finally we arrive at the system of boundary element
equations

Kpvp =f, in RM (5)

with (Kp)ji = [p, B(z,y;)dse, v, = (0)i=1,..n, and f, = (£(¥5))j=1,..N,-
Therefore, the collocation matrix V}, is fully populated and in general non-
symmetric. Hence, it is a quite difficult task to solve (5) efficiently. Most
software packages are using some direct solver or Krylov-subspace methods like
GMRES and BiCGStab.

The Galerkin method

(Vvh7¢j>0:<fa¢j)0 j:]-a"-aNh

again gives a system of the form (5), but now with a symmetric and positive
definite (SPD) dense system matrix V},. Although these SPD systems are rather
easy to handle numerically (CG-algorithm), most commercial software packages
are using collocation methods in order to avoid the evaluation of two integrals
for a single matrix entry.

2.2 Adaptive Cross Approximation (ACA)

The adaptive cross approximation is a very elegant method to approximate ma-
trices originating from Galerkin or collocation boundary element discretization.
On the contrary to other matrix approximation techniques, an explicit descrip-
tion of the integral kernel is not necessary. More precisely, only a procedure
for evaluating selected matrix entries has to be available, the rest are simple
algebraic operations.

The basic idea is to decompose the computational domain into smaller clus-
ters and classify them into a near-field domain and a far-field domain, respec-
tively. Furthermore, the matrix blocks from the interaction of the far-field clus-
ters can be approximated by low-rank matrices, i.e. for a matrix block A € R,
the cost of a matrix-by-vector multiplication will decrease from O(m *n) down
to O(r % (m + n)), with 7 denotes the rank of the low-rank matrix.

Thus, we first take a closer look to the domain decomposition and the
partitioning of the resulting system matrix. The notations connected with the
ACA are directly adopted from [3].



Let us consider a set D, C RY, d = 2,3, with

Np,
Dy =X (6)
=1

where X; denotes the support of the trial functions ¢;. Then we have for the

1. Collocation Method

(Kn)s = [ Ba.u)d,(@)dss, (7

XJ
where y; are the collocation points of subset X;, and for the

2. Galerkin Method

Ky = [ [ B@)s@)0s s, ©

Based on geometrical information we split the index set I = {1,..., N;} into
index clusters t; C I with I = |J,t;. This decomposition is done recursively
and yields a hierarchical structured set of index clusters. The corresponding
set of clusters D; is called cluster tree and enables a subdivision of the system
matrix into block matrices 4; € R™*"_ In order to select the blocks that
can be approximated by low-rank matrices, we give an admissibility condition
that classifies clusters into a near-field part and a far-field part. The essential
assumption is, that a cluster pair (D1, D2) has a certain distance and therefore,
we need not take into account the singularity of the boundary integral kernel.

Definition 2.1. Let (D1, D3) be a cluster pair with D1, Dy C RY, then (Dy, Do)
1s called n - admissible if

diam D2 S n diSt(Dl, DQ) (9)
In addition, we define n-admissibility for index cluster pairs (t1,t2)
diam D;! < ndist(D)!, D)?). (10)

As customary dist(X,Y) = inf{|z —y|,z € X,y € Y}.

Now we want to give a brief overview of the algebraic matrix approximation.
Hence, it is our aim to find a low-rank description of the system matrix K. In
particular, for every block matrix arising from the interaction of two clusters
(D1,D3) we have to decide whether it is n-admissible or not. Assuming that
a block matrix satisfies the condition (9) then only few matrix entries have
to be calculated and thus the cost of storage and CPU-time for matrix-by-
vector multiplication will decrease essentially. If a cluster pair does not fulfill
n-admissibility the according matrix will be calculated directly.

Thus, in [4] we find the following Algorithm 1 with ||.||r denoting the Frobe-



Algorithm 1 Fully Pivoted ACA
Fully Pivoted ACA

let A € R**™ be a given matrix
set Rgp = A
forallk=1,... do
(Brk)irs1grer = maij|(Re)i;l
Uk+1 = Rkejk+1
Uk+1 = Rk Cify1
Te+1 = (Rk)i_kilajlﬂ»l
Ryy1 = R — 7k+1uk+1v;;r+1
if ||Ri||r < €||A||F — stop
end for

nius norm. The matrix S, approximating A can be described by a sum of dyadic
products of the vectors u;, v;

Sp=Y uw . (11)
=1

This variant of the ACA algorithm is called fully pivoted ACA. It is obvious
that each entry of the given matrix A is necessary for the construction of S,.
Hence we need O(n+m) arithmetical operations and that is clearly not efficient.
To avoid this drawback it is possible to modify the fully pivoted ACA-algorithm
in such a manner, that only the pivot element of a single row or column has
to be found and in addition only the corresponding column or row has to be
evaluated. This algorithm is denoted partially pivoted ACA.

The following paragraph gives results of the complexity analysis for the
considered adaptive cross approximation technique. For more detailed proofs
we again refer to [3, 2, 4]. The total complexity of the ACA-algorithm is
mainly determined by the cost of the approximation procedure. In order to
gain a desired accuracy ||S, — Al|r < € for every admissible matrix block A the
numerical effort is of order O(e *N, ,1""") with an arbitrarily small positive a.
In conclusion the memory demand is also of the same order as the arithmetical
cost of constructing an approximation of the system matrix K.

Based on the splitting of the system matrix K} into a near-field matrix
K7*“" and a far-field matrix K ,J:M we are able to construct an approximated
system matrix K r- Since the proposed adaptive cross approximation technique
provides a low-rank approximation of K f:‘" consisting of submatrices which are
n-admissible we finally obtain the result

Ky, = Kp* + KJ*". (12)

Starting from this representation we are able to present an appropriate con-
struction of an algebraic multigrid method in the next section.



3 An Algebraic Multigrid Method

In the following we consider the interior Dirichlet problem for the Laplace equa-
tion. Therefore, the system matrix K} originates from the single layer poten-
tial operator V, which is the most interesting case concerning our multigrid
approach. Hence, we have to solve

Kyvy, = f, inRM (13)

with v, are the unknown Neumann data and f, the corresponding right-hand-
side. In the following we are discussing the AMG components by means of a
twogrid algorithm. The indices h and H denote the fine grid and coarse grid
quantities, respectively.

3.1 General Approach

One of the most efficient methods to solve (13) are multigrid methods. For this
purpose geometric multigrid methods need a grid hierarchy, on the contrary the
algebraic multigrid approach only needs the matrix information corresponding
to the finest grid. In order to obtain a ’virtual’ grid hierarchy there exist several
different coarsening strategies [17, 26, 30]. Once the prolongation operators are
appropriately defined, the properties of the fine grid system hand over to the
coarser levels by projection.

In fact, the efficiency of AMG-methods depends on a clever interaction of
smoothing sweeps on the fine level and coarse grid correction on the coarsest
level. We have to recognize that multigrid methods are not able to solve (13)
for an arbitrary symmetric positive definite matrix K. The components have
to be adapted properly according to the underlying physical problem and vari-
ational formulation, respectively. In many cases, we will obtain better results
(i.e. smaller number of iterations, smaller setup time, etc.) if we are using
additional geometrical information. Thus, the setup procedure is performed by
using an auxiliary matrix B, which contains the geometrical information in a
certain sense. Preferably, we are using M-matrices, which allow the construc-
tion of a prolongation operator with some important properties [7, 9, 26, 25].
The numerical realization of the AMG-approach allows a proper treatment of
anisotropies, polynomial trial functions of higher order and other applications.

3.2 Coarsening Strategies

A crucial point of AMG is the coarsening strategy in order to get a matrix
hierarchy. Most coarsening techniques are based on the matrix graph, see
[5, 8, 26, 30]. Standard coarsening strategies, which have been developed for
sparse FE-matrices, will obviously fail for dense BE-matrices as well as for ACA
BE-matrices. Hence, we are using the general approach proposed in [12, 23] and
specify an auxiliary matrix Bj, € RV»*Ne which represents the discretized ge-
ometry. In order to obtain a coarse auxiliary matrix By we have to define
a corresponding prolongation operator P,f : RV# s RN» where Nj, and Ny
denote the number of unknowns on the fine and coarse level, respectively. In



addition, a prolongation operator P,f( is constructed according to the system
matrix K. Finally, appropriate restriction operators have to be formulated for
both matrices. Furthermore, we assume B}, to be a sparse M-matrix which rep-
resents the underlying nodal mesh. An appropriate definition of the auxiliary
matrix By, is the so-called nodal distance matrix (14), which reflects the un-
derlying mesh of the boundary element discretization. And since we are using
piecewise constant trial functions in our 2D examples, the number of unknowns
in By, is related to the number of grid nodes.

if (4, 7) isconnected,

B 1 . -
(Baig=q OF e 1 (19

[en

otherwise.

The vector e;; denotes the distance vector between two grid-nodes z; and z;, i.e.
e;; = ¢j — x; and J; is some positive number or comes from the lumped mass
matrix. In addition, the length of the vector e;; is measured in the Euclidean
norm || - |[o. Once an auxiliary matrix By, is available, we are able to introduce
the following index sets on a pure algebraic level. Let wy, be the set of unknowns
on level h, then

Ni = {j€w,:|(Bn)yl #0,i# 3},
S, = {j € Ny, : [(Br)ij| > coarse(Bn,i,j),i # j},
st = {jeNi:ieSi},

where N,ib is the set of neighbors around a node i € wy, further S;; denotes
the set of strong connections, and finally SZ’T is the set of nodes with a strong
connection to node 7. The decision whether a node 7 represents a coarse node or
not will be done by the cut-off function coarse(Bp,1i,7), for details see [23] and
references therein. Now we are able to apply a standard coarsening procedure
on the auxiliary matrix Bj. This matrix will be interpreted as a description
of a 'virtual’ mesh (Figure 1) which can be split into two disjoint sets of grid
nodes, i.e.
wp = wo Uwr, we Nwp =0,

where we denotes the set of coarse grid nodes and wg the set of fine grid nodes.
Usually the set of coarse grid nodes fulfills two properties,

1. no coarse grid nodes are connected directly,
2. the number of coarse grid nodes is as large as possible.

Once the set we was built up, the grid on the coarse level H is defined by
Wi = we.

In order to construct the coarse auxiliary matrix we use the Galerkin pro-
jection method. Therefore, we need a transfer operator P,? : Rﬁ — ]RhN which
is constructed by giving several rules on the sets wy and wy. Let us apply this
prolongation operator to the system matrix K, as well (i.e. PX = PP = p,).
Furthermore, let us mention that the Galerkin method assumes the restriction



e fine grid
m coarse grid
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Figure 1: Coarsening

operator to be transposed to the prolongation operator R, = PhT . Then we
have
Ky =P/ K,P, and By =P/ B,P,. (15)

Taking into account the index sets mentioned above, we are able to give an
explicit description of the prolongation operator:

1 1=7 € we,
1 . .
(Pr)ij = wonseT]° € wr, ) € we, (16)
0 otherwise.

Now we have all ingredients to perform a setup phase in order to build
up the matrix hierarchy and the corresponding transfer operators. A recursive
application results in the well-known V-cycle, which is presented in Algorithm 2.
The coarsest level is denoted by the variable COARSELEVEL.

Algorithm 2 MG(uy, f, ¢)

MG (uy, £, ¢)
if £ = COARSELEVEL then
define u, = (K,)~! [, by some coarse grid solver
else
smooth v times on Kou, = f

Ly
calculate the defect dy = f, — Kou,

restrict the defect to the next coarser level £ +1:d,,; = Pch_ie
set up, 1 =0
call MG(uy, 1,dp, 1,4+ 1)
prolongate the correction s, = Ppu, ¢
update the solution u, = u, + s,
smooth vp times on K,u, = fJ
end if

10



If we apply Galerkin’s prolongation technique on ACA-matrices, their spe-
cific representation have to be taken into account. According to (12) in Sec-
tion 2.2 an ACA-compressed boundary element matrix K} consists of a sparse
near-field matrix K;°*" and the approximated far-field matrix

N r;

R =33 )7, )

=1 j=1

Therefore, the Galerkin method immediately leads us to matrices corre-
sponding to the coarse level

Kyr = PlKP“ P, (18)
_ NB T3

K" = Y 3 Bl (Bl (19)
=1 j=1

Thus, the approximated coarse system matrix Ky has also a near-field contri-
bution K7°*" and a low-rank far-field matrix K I{,ar. Due to the exact preserving
of representation (12) on the coarser grid, we are able to use the same ACA-
datastructures in our numerical realization.

Let us mention, that applying direct solvers on the coarsest level requires an
explicit evaluation of our ACA-matrix.

3.3 Smoothing Operators

The smoothing process strongly depends on the type of the boundary integral
operator. Since the hypersingular operator D : HY/2(T") — H~1/2(T") defined by
(3) is a pseudo-differential operator of the order plus one, the eigenvectors and
eigenvalues behave as elliptic differential operators. Small eigenvalues corre-
spond to low-frequency eigenfunctions, whereas large eigenvalues correspond to
high-frequency eigenfunctions. Therefore, standard smoothers like the damped
Jacobi method or Gauss-Seidel sweeps are appropriate.

In order to construct a smoothing procedure for the single layer potential
operator V : H™1/2(T) s H'/?(T) defined by(2) we have to take into account
that eigenfunctions of high frequencies correspond to small eigenvalues. In par-
ticular, we have to introduce a smoother for pseudo-differential operators of
order minus one. The following idea was suggested by J. Bramble, Z. Leyk and
J. Pasciak, for details see [6]. In order to reduce the highly oscillating compo-
nents of the error we introduce a matrix A, € RV» XM being some discretization
of the Laplace-Beltrami operator on the boundary I'. Performing a smoothing
iteration of the form

Up & Up + Th - Ah(ih - I?hﬂh) (20)

leads us to an appropriate smoothing procedure, provided that the damping
parameter 7y, satisfies the inequality 0 < 75, < 1/X where A denotes the largest
eigenvalue of the generalized eigenvalue problem

Kng = AA; ' 9. (21)

11



We presented a proper method for an easy construction of an estimate for the
upper eigenvalue X in [19] based on [21].

Let us remark, that the difference operator A, in (20) can be set identically
equal to the auxiliary matrix B}, defined by (14). This procedure can be realized
at each multigrid level.

3.4 Complexity analysis

Our aim in this section is to analyze the complexity for realizing the proposed
AMG-preconditioner, provided that the BE-matrices originated from the ACA
approximation. It turns out, that the cost of the preconditioning procedure
is exactly bounded by the cost of an ACA matrix-by-vector multiplication up
to some constant factor. In order to show this it is necessary to study the
performance of a single projected ACA matrix-by-vector multiplication on each
level 4.

As shown in [4] the cost of an ACA matrix-by-vector multiplication on the
finest grid behaves like O(e"*N, ). Since the near-field part of the matrix is
sparse, we can assume that Galerkin projection yields a sparse matrix again on
the coarser level. N

In the case of the approximated far-field matrix K ,’: o — Vs Do ('u;-)T
it is easy to see that Zf‘g ri(m; + n;) operations are necessary for a single
multiplication. Here, m; and n; denote the number of non-zero entries (NNE) of
the vectors u; and (v;)—'—, which approximate a submatrix of dimension R™ %™,
Thus, after the restriction process considered in [19] the non-zero entries of a
single vector u} will be halved: NNE(Pu%) = NNE(u})/2. This is true in the
2D case (in 3D the vector entries will be reduced by some parameter 7 < 1,
e.g. 7 = 1/4). In conclusion, the effort for a multiplication with K }J:M reduces
on each coarser level by the factor 2.

Now we are able to analyze the number of arithmetical operations on each
AMG-level £ € {1,...,L} and in conclusion for the total complexity of our
AMG-preconditioner. Considering the AMG components on each level leads to
the following results:

1. Smoother: The essential operations are one multiplication with the corre-
sponding matrices Ky and By. This leads to 57 O(e™ N, ,1"'“) arithmetical
operations, with v the number of smoothing steps.

2. Prolongation (Restriction): The transfer operators are defined locally and
therefore the application of them is of order 2[L,IO(N},).

3. Galerkin projection: Since the effort of a matrix-by-vector multiplication
reduces each level and since the prolongation (restriction) operators are
sparse, the computation of the coarser matrix can be done at least in
ZZ%IO(G*O‘N#"“). Let us remark, that the Galerkin projection method
performed for ACA matrices contains some potential for speeding-up the
construction of the coarse system matrices. For instance, one could think
about the reduction of the number of blocks on the coarser levels. But in
this paper, we only implemented a straightforward coarsening strategy,

12



which preserves the number of admissible blocks on each multigrid level
that probably would not be necessary.

4. Coarse grid correction: Since the dimension of the coarsest level is kept
small, the solution of the coarse grid system takes cc = O(1) operations.

Finally, we determine the number of arithmetical operations Q(M[) for one
single algebraic multigrid step (V-cycle) on the finest grid L:

1
QM) < (l/cle_o‘Nﬁ'a + coNp) + §(V01€_QN,1+O[ + coNp) +
1
+2—2(Vcle_o‘N;+a +coNp) + ...

1
TR E(VC1G_QN;+Q +c2Np) + cc
L—2

= (uclef‘)‘Nﬁ'a + coNy) (

) + cc

o
Il
(=]
N[ =

1
= (vere *Ni T +eaNy) - (2— (2)"7%) +cc

2
= O(c*N}t*).

Therefore, we have shown that performing one algebraic multigrid cycle is of
the same order as the effort needed for a single ACA matrix-by-vector multi-
plication.

4 Numerical Studies

In order to show the efficiency of the suggested AMG approach we present
some results in 2D. The collocation boundary element matrices are generated
by the software package OSTBEM developed by O. Steinbach [28] and the
AMG-preconditioner is realized within the software package PEBBLES [15].
The proposed technique is used as a preconditioner C} in the CG-algorithm
and in the BiCGStab-algorithm, respectively (see [16, 22]). In particular, we
use the symmetric V' (1, 1)-cycle, i.e. one pre-smoothing and one post-smoothing
step with the BLP-smoother per iterative cycle. The iteration error is measured
in the K,C} 'K, energy norm for the CG-solver, and the defect-test is used in
the BiCGStab-solver. All calculations are done on a PC with 1800 MHz AMD
Athlon(tm) processor.

4.1 Disk and L-Shape Domain (Comparisons)

First we consider @ C R? to be a disk with radius 0.1 and thus, the bound-
ary I' = 0Q is the circle with the same radius (Figure 2). Such a diameter
induces a positive definite single layer potential operator (actually diam Q < 1
would be sufficient). Assuming an uniform discretization we additionally obtain
symmetric BE collocation matrices. Thus, the CG-solver can be used. The col-
location points are taken as the middle of the direct connection of two neighbor
grid-nodes.
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Figure 2: Circle

First of all, we compare the ACA results with the results obtained from the
case where the corresponding dense BE matrices were used. The superiority
of the ACA approach is impressively reflected in Table 1. One can clearly

Table 1: Comparison: sparse approximated BE-matrix

Number of || Setup (sec) | setup (sec) | CG-Cycle (sec) | CG-Cycle (sec)
Unknowns || full BEM | ACA BEM full BEM ACA BEM
1024 0.60 0.41 0.09 0.03
2048 2.46 0.62 0.36 0.07
4096 10.04 1.06 1.42 0.16
8192 45.98 2.01 5.78 0.37

observe the expected behavior of the CPU-times for one single CG-cycle and
for constructing the matrix hierarchy, respectively. In the case of dense BE-
matrices a growth of order O(N?) can be noticed, whereas the algorithm shows
linear increase O(N},) in the case of ACA BE-matrices.

Of course, the disk is a very simple geometry. Therefore, in the next ex-
ample, we are faced with an L-shaped domain Q C R?, see Figure 3. Once
again we assume diam {2 < 1 in order to obtain a positive definite single layer
potential operator. In this example we are using the Galerkin discretization
method which provides symmetric and positive definite matrices that allows us
to use the CG-algorithm again. Moreover, we now give some comparison re-
sults concerning different preconditioning techniques. The reference values are
generated by the BEM-software package OSTBEM again. The preconditioner
used therein is a slightly modified hypersingular operator. In the following cal-
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culations the relative accuracy is set to €., = 1078 and the evaluation is done
at the coordinate z* = (0.125,0.125).

Firstly, we discuss the case of a linear Dirichlet boundary condition g(z) =
4(z1 — z2). Since the resulting Neumann data are included in the trial space,
we may expect results independent of the characteristic mesh size h. Indeed,
as we can see in Table 2 and Table 3, the results at z* = (0.125,0.125) remain
almost constant.

Taking a look at the number of iterations, we clearly observe a smaller num-
ber of iterations in the case of the AMG-preconditioner. Compared with the
hypersingular operator preconditioner, the number of iterations was obviously
reduced. Moreover, the setup of the matrix hierarchy is faster than computing
the hypersingular preconditioner. Considering the Neumann data we notice
constant Lo-errors as expected (up to the accuracy of the CG-algorithm).

The second numerical example deals with the Dirichlet condition g(z) =
log |z — y|, ¥ ¢ Q. In our example we choose y = (—0.1,—0.1). In Table 4 and
Table 5 one can notice, that the number of iterations for the AMG-based solver
is clearly smaller once again. The setup times confirm the previous results as
well. Considering the Lo-error of the Neumann data, we can observe a decrease
of order O(h) for the Galerkin approach. The convergence rate for uj in z* is
of order O(h?). More convergence estimates and their theoretical background
can be found in [11, 27].
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Table 2: Solver data, C : AMG

Number of Setup | Solution | Ls-error of
Unknowns | Iterations | (sec) (sec) g—g onT' | |u(z*) —up(z*)|
128 4 0.00 0.01 2.16e-7 2.03e-11
256 5 0.02 0.05 1.87e-9 3.78e-13
512 5 0.06 0.18 3.57e-9 1.47e-13
1024 5 0.26 0.73 4.27e-8 4.54e-13

Table 3: Solver data, C}, : Hypersingular Operator

Number of Matrix | Solution | Lg-error of
Unknowns | Iterations | (sec) (sec) g—z onT' | |u(z*) — up(z*)|
128 23 0.02 0.03 2.92e-7 1.78e-16
256 22 0.11 0.15 5.82e-7 2.59e-17
512 22 0.43 0.60 6.51e-7 2.65e-16
1024 21 1.74 2.36 1.26e-6 9.16e-16
Table 4: Solver data, C, : AMG
Number of Setup | Solution | L2-error of
Unknowns || Iterations | (sec) (sec) g—z onT' | |u(z*) — up(z®)|
128 4 0.00 0.01 1.21e-1 1.83e-4
256 5 0.02 0.05 6.02e-2 4.66e-5
512 5 0.06 0.18 3.00e-2 1.18e-5
1024 5 0.26 0.73 1.50e-2 2.96e-6

Table 5: Solver data, C} : Hypersingular Operator

Number of Matrix | Solution | L2-error of
Unknowns | Iterations | (sec) (sec) g—z onT' | |u(z*) — up(z*)]
128 23 0.02 0.03 1.71e-1 1.87e-4
256 23 0.11 0.15 8.52¢-2 4.73e-5
512 22 0.43 0.60 4.25e-2 1.19e-5
1024 22 1.74 2.36 2.12¢-2 2.98e-6
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4.2 Disk and L-Shape Domain (large-scale)

In the previous paragraph the number of unknowns were bounded by using the
classical boundary element method which provides dense matrices. Now, we
are going to perform experiments only with pure ACA-matrices. Therefore, we
are able to refine the mesh essentially. In the remaining, the iterative solution
process starts with a random initial guess uh and the right-hand-side f =0,
the system matrix is generated by the collocation discretization method Ta-
ble 6 gives an impression about the quality of the AMG-preconditioner. We

Table 6: ACA: Quality of AMG Preconditioner

Number of || Disk: CG L-Shape: BiCGStab
Unknowns || (C; ' K}) Iterations
10000 1.04 3
20000 1.04 3
40000 1.04 3
80000 1.04 3

can observe almost constant condition numbers close to one for the disk and
constant iteration numbers for the L-shaped domain, respectively. This obser-
vation leads us to the conclusion that our AMG-preconditioner in connection
with the ACA-technique yields a very efficient solver. This is finally confirmed
by the CPU-time needed. Several key data for large numbers of unknowns are
presented in Table 7.

Table 7: ACA: CPU Times for Disk and L-Shape

Disk Setup CG Cycle | Iterations
N, || Coll / Gal Coll / Gal | Coll / Gal
20000 4.9/4.9 1.16/1.15 5/4
40000 | 10.5/10.4  2.59/2.55 5/4
80000 || 22.7/22.7  5.64/5.64 5/4
160000 | 50.0/50.6  13.9/14.7 5/4
L-Shape Setup BiCGStab/CG Cycle | Iterations
Ny, || Coll / Gal Coll / Gal Coll / Gal
20000 || 5.5/5.5 1.94/1.26 4/5
40000 || 11.5/11.5 4.25/2.77 4/5
80000 || 25.0/25.0 8.27/6.02 3/5
160000 | 56.1/56.1 91.1/15.2 3/5

As expected for a sparse BE-matrix, the calculation time for one single
iteration grows in almost O(Np). One can observe that the computing time for
the matrix hierarchy (setup-time) is of same order than total iteration time.
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5 Conclusions and Further Remarks

In this paper we presented an algebraic multigrid approach for the solution of
large-scale boundary element equations. For that purpose an approximation of
the boundary element matrices is absolutely essential. Our numerical experi-
ments has been realized by the adaptive cross approximation technique which
guarantees, that the effort for storing the matrices and for a single matrix-
by-vector multiplication can be reduced to almost O(Nj). If we are using
collocation methods for discretizing the single layer potential, we will obtain
non-symmetric BE-matrices in general. Solving the corresponding linear equa-
tion system requires some Krylov-subspace methods.

Due to the sparse representation of our matrices, we had to adapt each
component of our AMG-algorithm properly. In order to set up the matrix hier-
archy and the according transfer operators an auxiliary matrix was constructed.
Moreover, it turns out that the same matrix can be used in the BLP-smoother
for the single layer potential.

The overall algorithm provides interesting numerical results. One can notice
that the small iteration numbers for the CG and BiCGStab-solver confirm the
quality of our AMG-preconditioner. In addition, the CPU time for a single
iterative step almost grows like O(N},) because we are concerned with sparse
approximated BE-matrices.

Finally, we mention that the presented algebraic multigrid technique can be
enhanced in order to solve boundary element equations arising from 3D bound-
ary value problems. In the case of the single layer potential operator, only
an appropriate realization of the Laplace-Beltrami operator on the correspond-
ing surface of a 3D domain will ensure an optimal smoothing process which is
necessary for a fast convergence of the AMG.
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