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Abstract

We provide some extensions to the AMGe method (algebraic multigrid method
based on element interpolation), concerning the agglomeration process, the appli-
cation to non-conforming elements, and the application to the mixed finite element
discretization of the Oseen-linearized Navier-Stokes equations.

This last point, using AMGe for mixed finite elements, gets straight-forward be-
cause of the availability of coarse level topologies. We show this exemplarily for the
Crouzeix-Raviart element (including a stability result).

The numerical results show that it really pays off to take a closer look at the
agglomeration strategy, a ‘wrong’ choice can lead to insufficient convergence or even
divergence of the overall multigrid method.

1 Introduction

The algebraic multigrid method (AMG) was introduced by Ruge and Stüben [RS86] and
Brandt et al. [BMR84] mainly for two reasons. First, one obtains a multilevel method
without the need of further refinement, which is helpful in situations with large problems
and limited amount of computer memory. Second, it is intended to be used as “black-box”
solver, e.g. as coarse-grid solver in some geometric multigrid (GMG) methods. An overview
of the technique itself and its applications can be found e.g. in Stüben [Stü01].

Unfortunately there are situations (especially when the operators are not represented by
symmetric, positive definite M-matrices) where classical AMG might fail. For finite element
(FE) discretized problems one way out was the development of the algebraic multigrid
method based on element interpolation (AMGe).
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Up to now this method has undergone three important stages of development. It
was introduced by Brezina et al. [BCF+00], where still the classical techniques for the
coarse node / fine node (C/F) splitting are used, but a new method of constructing the
interpolation operator, based on the local element stiffness matrices. In Jones, Vassilevski
[JV01] the coarse grid construction is changed in a way that allows to extract topological
information on coarse levels (coarse faces, edges, and elements and their connectivity).
The interpolation still depends on the element stiffness matrices, which are assembled
to Neumann-type stiffness matrices on local patches (e.g. the coarse-level elements) and
which have to be stored during the whole set-up process. This problem is overcome by
the approach in Henson, Vassilevski [HV01]. Here, an extension- (extrapolation-) operator
(only depending on the assembled stiffness matrix) is used to construct an approximation
to the local Neumann-type matrices.

The full availability of the topological information on all levels opens up the possibility
of constructing AMGe methods for various types of FE discretizations, especially for mixed
FE-discretizations of saddle point problems.

We will exploit this property when we construct a coupled AMGe (cAMGe) method
for the Oseen-linearized Navier-Stokes equations. ‘Coupled’ here is meant in contrast
to methods, where pressure and velocity equations are iteratively decoupled (e.g. using
SIMPLE or Uzawa methods) and AMG is used for the resulting scalar problems. We
want to have an “all-at-once” approach, although we then have to deal with an indefinite
system and with possible (inf-sup) stability problems. Some possibilities of coupled AMG
(not AMGe) methods for the Oseen problem can be found in [Wabar], in [Wab03] there
are also first steps towards cAMGe.

In this article we will exemplarily construct a cAMGe method for the P nc
1 -P0 discretiza-

tion of the coupled problem, and show its coarse-level stability.
Besides the development of this coupled AMGe method, the second emphasis of this

work is put on the construction of the coarse levels, i.e. how to agglomerate fine-level
elements to coarse-level elements. As we will see, this has a crucial influence on the
performance of the method.

The article is organized as follows. After describing the main ingredients of an (element
agglomerating) AMGe method, we present three new techniques for the agglomeration
process, and we show how to build the interpolations for three different FE-types. In
the third section we apply the ideas to the Crouzeix-Raviart-discretized Oseen-equations
and derive a stability result. The article is concluded with numerical experiments for the
presented methods.

1.1 Notation

We want to construct an AMG method for a set of linear equations

K1x = b1, (1)

where K1 is a regular n1 × n1 matrix and b1 a given right hand side. The index indicates
the level, 1 is the finest level, L will be the coarsest. We create full rank prolongation
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matrices P l
l+1 : R

nl+1 → R
nl, l = 1, . . . , L− 1 and n1 > n2 > . . . > nL, and a set of coarse

level matrices Kl with
Kl+1 = (P l

l+1)
T KlP

l
l+1. (2)

The system in (1) is originating in a FE discretization of some partial differential
equation (PDE) on a polygonal resp. polyhedral domain Ω ⊂ R

d, d ∈ {2, 3}. We consider
finite elements based on triangles resp. tetrahedra, thus we assume that some partitioning
of Ω into triangles resp. tetrahedra Ω =

⋃

i τi is given, and we denote the set of elements
Th := {τ1, τ2, . . .}.

2 AMGe Building Blocks

In this section we will present the ingredients of the coarse-level construction of an element
agglomerating AMGe method:

1. The C/F splitting, which in most cases consists of

(a) the element agglomeration process and

(b) the identification of coarse-level faces, edges, and nodes,

2. and the construction of the interpolation matrix from the coarse degrees of freedom
(dofs) to the fine dofs.

2.1 Identification of the Coarse-Level Topology

Assume that on one level (e.g. on the discretization level) we know the element-to-node
connectivity, i.e. which nodes are part of a given element. Assume further that a method
for the agglomeration of elements is known, satisfying the requirements that each element
is part of one unique agglomerate and that each agglomerate is a connected set, meaning
that for any two elements part of the the same agglomerate there exists a connected path of
elements of this agglomerate connecting the two elements. Then we can apply the following
algorithm for the creation of the coarse level topology (as presented in Jones, Vassilevski
[JV01]).

Algorithm 1. AMGe coarse level topology

1. Agglomerate the fine elements to coarse elements Ej (with the above properties).

2. Consider all intersections Ej ∩ Ek for all pairs of different agglomerated elements
Ej and Ek. If such an intersection is maximal, i.e. is not contained in any other
intersection, then it is called a face.

3. Consider the faces as sets of nodes. For each node n compute the intersection
⋂

{all faces which contain n}. Now the set of minimal, nonempty intersections de-
fines the vertices.
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We have formulated the algorithm for the 3D case, but it can be directly applied to 2D
problems (then the ‘faces’ correspond to edges). If (in the 3D case) one additionally wants
to identify edges, then this can be done in step 3 using the set of minimal, nonempty
intersections which are not already vertices.

2.2 Element Agglomeration Process

For the agglomeration of fine elements to coarse elements we present four different tech-
niques, a classical one and three new possibilities.

2.2.1 Jones-Vassilevski Element Agglomeration

We will start with the ‘classical’ Jones-Vassilevski algorithm [JV01].

Algorithm 2. Jones-Vassilevski element agglomeration
Assume we have a set of finer level elements {ej} and faces {fj}, and introduce an integer
weight w(fj) for each face fj.

• initiate. Set w(f)← 0 for all faces f ;

• global search. Find a face f with maximal w(f), if w(f) = −1 we are done; set
E ← ∅;

1. Set E ← E ∪ e1 ∪ e2, where e1 ∩ e2 = f and set wmax ← w(f), w(f)← −1

2. Increment w(f1) ← w(f1) + 1 for all faces f1 such that w(f1) 6= −1 and f1 is a
neighbor of f ;

3. Increment w(f2) ← w(f2) + 1 for all faces f2 such that w(f2) 6= −1, f2 is a
neighbor of f , and f2 and f are faces of a common element;

4. From the neighbors of f , choose a face g with maximal w(g); if w(g) ≥ wmax

set f ← g and go to step 1.;

5. If all neighbors of f have smaller weight than wmax, the agglomerated element
E is complete; set w(g)← −1 for all faces of the elements e contained in E;
go to global search;

Remark 3. In [JV01] also modifications to this algorithm are presented which allow some
kind of semi-coarsening, i.e. coarsening with the focus in one specific direction (for example
determined by convection).

For the 2D case this algorithm mostly produces nice agglomerated elements, in the 3D
case some strange shapes may occur, therefore some adjustments of the algorithm seem to
be necessary.
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2.2.2 Red-Grey-Black Element Agglomeration

A second method which is fast and produces good looking agglomerates, but often leads
to a too strong coarsening (what has a disadvantageous influence on the h-independence)
is the following.

Algorithm 4. Red-grey-black element agglomeration

repeat until all elements are colored
begin

choose an uncolored element, this is colored black;
color all uncolored or grey neighboring elements red

(where ‘neighboring’ could be induced by faces, edges or nodes);
color all uncolored elements neighbored to red elements grey;

end
the black elements plus surrounding red elements build the agglomerated elements;
each grey element is appended to the agglomerate where it “fits best”

(e.g. to the agglomerate it shares the largest face with);

2.2.3 Optimization Approach

Another class of methods (which originally was aimed at the coarse-level construction of
MG methods for finite volume discretizations) was developed by Moulitas and Karypis
[MK01b] and implemented in the software package MGridGen [MK01a]. They formulate
an optimization problem, where a coarse grid is generated that minimizes some objective
function F (i.e. maximizes the quality of the grid in some sense), and the size of the coarse
grid elements is subject to some upper and lower bounds. Examples for such objective
functions are the sum or the maximum of the aspect ratios of the coarse elements.

The method for solving these optimization problems is based on a multilevel technique
described in [MK01b] and the references therein, we sketch it roughly.

Algorithm 5. MgridGen

1. Coarsening phase: A sequence of approximate representations of the optimization
problem is generated by constructing coarser and coarser graphs (this sequence of
graphs has nothing to do with the levels in our multigrid method!).

2. Initial solution phase: The optimization problem is solved on the coarsest level.

3. Uncoarsening phase: The optimization problem is solved (approximately) on the finer
levels, using the solution on the coarser levels.

As the MGridGen library is freely available, the application of the method is particularly
easy.
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2.2.4 Bottom-Up Graph Partitioning

The three methods above have in common a top-down strategy, i.e. we start on the finest
level and agglomerate elements to obtain the next coarser level. The following method will
work the other way round, i.e. bottom-up.

Algorithm 6. Bottom-up graph partitioning

1. Build the element-element connectivity graph for the fine level mesh.

2. Utilize any mesh (resp. graph) partitioning algorithm to obtain a (small) number of
sub-graphs. This set of sub-graphs represents the coarsest level (each sub-graph is
an element).

3. Now apply this strategy recursively on the sub-graphs, until only one-node-graphs
remain: the finest level.

Remark 7. It may happen that the last-but-one level is very close to the finest level. In this
case this level should be ignored to avoid a waste of memory-resources.

For the graph partitioning algorithm mentioned in step 2 of Algorithm 6 we use the
METIS-library by Karypis and Kumar [KK98b] (the underlying techniques are explained
in [KK98a]).

Lemma 8. If one of Algorithms 2, 4, or 5 is applied in the construction of an AMGe
method, the number of arithmetical operations during the setup phase QS

i (n1), i = 2, 4, 5,
is O(n1).

For Algorithm 6 we obtain QS
6
(n1) = O (n1 log(n1)).

Proof. Assume for all algorithms a constant coarsening resp. refinement rate r and a min-
imal number of coarsest grid nodes nc. Then the number of levels is given by

L = logr

(

nc

n1

)

+ 1,

the total complexity for Algorithms 2, 4, and 5 (assuming that the complexity on each
level is proportional to the number of nodes) calculates as

QS
i (n1) = O

(

n1 + rn1 + . . . + rL−2n1

)

= O

(

n1 ·
1− rL−1

1− r

)

= O

(

n1 − nc

1− r

)

= O (n1) , for i = 2, 4, 5.

For Algorithm 6 the complexity on each level stays constant, thus the overall complexity
is calculated as

QS
6 (n1) = O ((L− 1) · n1) = O (n1 log n1) .
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Figure 1 Some mixed finite elements for triangles and tetrahedra. Dots indicate dofs.

(a) P0 (b) P1 (c) P nc

1

2.3 Interpolation

For the construction of the interpolation we can utilize the topological information we have
obtained in section 2.1. We will show this exemplarily for three types of finite elements.

2.3.1 P0-Element

For the finite element with piecewise constant shape functions (as in Figure 1(a)) the
construction of the interpolation is particularly easy. Each fine level element is part of
exactly one coarse level agglomerate, thus we can use identity-prolongation.

2.3.2 P1-Element

For piecewise linear, continuous elements (Figure 1(b)) we apply a strategy described in
Henson, Vassilevski [HV01], which generalizes the method used in Jones, Vassilevski [JV01].

We first define the neighborhood of a (fine-level) node n by

Ω(n) :=
⋃

{all agglomerated elements that contain n}

and the minimal set

Λ(n) :=
⋂

{all agglomerated elements that contain n}

(Λ(n) can be a node, edge, face, or element). The set of coarse dofs in Ω(n) is denoted by
Ωc(n). Then we define the extended neighborhood

Ω(n) := {j /∈ Ω(n) : kij 6= 0 for some i ∈ Ω(n) \ Ωc(n)} ∪ Ω(n)

(where kij is the (i, j)-th entry of the fine-level matrix Kl).
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As the coarse nodes form a subset of the fine nodes the values there can be identically
prolongated. For the edges, faces, and cells we proceed recursively as follows. Assume for
a set Λ(n) that the interpolation on the unknowns in ∂Λ(n) has been fixed,1 and we want
to calculate the interpolation on the nodes in Λ(n) \ ∂Λ(n). For that we build the local
matrix of Ω(n) (extracted from the global matrix Kl) with the underlying partitioning
(Ω(n) \ ∂Λ(n)) ∪ ∂Λ(n) ∪

(

Ω(n) \ Ω(n)
)

KΩ(n) =





Kii Kib Kie

Kbi Kbb Kbe

Kei Keb Kee





} Ω(n) \ ∂Λ(n)
} ∂Λ(n)
} Ω(n) \ Ω(n)

(i stands for interior, b for boundary, e for extended neighborhood). In [JV01] the small
matrix

KΩ(n) =

(

K̃ii K̃ib

K̃bi K̃bb

)

(3)

is built using the local stiffness matrices, therefore it is a Neumann-type operator. Ex-
tracting it directly from the global stiffness matrix would lead to a Dirichlet-type operator.
Thus, in [HV01] an extension mapping E(n) : Ω(n)→ Ω(n) is built, which with the above
partitioning can be written as

E(n) =





I 0
0 I

Eei Eeb



 ,

and is used to get something similar to (3)

K̂Ω(n) =

(

K̂ii K̂ib

K̂bi K̂bb

)

:=

(

Kii + KieEei Kib + KieEeb

Kbi + KbeEei Kbb + KbeEeb

)

.

Then the prolongation on Λ(n) \ ∂Λ(n) is built by extracting the corresponding entries of

−K̂−1
ii K̂ib.

Remark 9. For the situation in (3) and for symmetric positive definite Kl the setting

ui = −K̃−1
ii K̃ibub

solves the minimal-energy problem: For given ub find ui such that

(uT
i uT

b )KΩ(n)

(

ui

ub

)

is minimized.

1The ‘boundary’ ∂Λ(n) is defined straightforward: if Λ(n) is a face/edge then ∂Λ(n) are those nodes
of Λ(n) which belong to more than one face/edge, if Λ(n) is an agglomerated element then ∂Λ(n) is the
union of faces of this element.
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What still has to be specified is the extension E(n). In [HV01] various possibilities
can be found, we use the there called ‘A-extension’ (which in our case is in fact a ‘K-
extension’). If we want to extend a vector v to a dof i ∈ Ω(n)\Ω(n) this extension is given
by

v(i) =
1

∑

j∈S |kij|

∑

j∈S

(|kij| · v(j)) ,

where S = {j ∈ Ω(i) : kij 6= 0}.

2.3.3 Nonconforming P1-Element (P nc

1 )

For the nonconforming P nc
1 element with piecewise linear shape functions, continuous at

the midpoints of the edges resp. faces (illustrated in Figure 1(c)) we propose the following
strategy.

All dofs on fine edges/faces which are part of the same coarse edge/face are set equal
to the dof-value of this coarse edge/face.

For the dofs which lie in the interior of a coarse agglomerate we follow the same strategy
as in section 2.3.2 (but without the necessity of either storing the element stiffness matrices
or constructing some extension operators). The prolongation matrices for the interior of
coarse elements are given by

−K−1
ii Kib,

where Kii and Kib can be directly extracted from the global stiffness matrix.

3 Application to the Oseen Equations

The methods above can now be directly applied to the mixed finite element discretization of
the Oseen equations (i.e. the fixed-point linearized stationary, incompressible Navier-Stokes
equations) in Ω ⊂ R

d, d ∈ {2, 3},

−ν∆u + (w · ∇)u +∇p = f , (4a)

div u = 0, (4b)

where u(x) denotes the velocity of the fluid at point x, p(x) the pressure, f(x) is some
given right hand side, ν the given viscosity (which we assume constant in x), and w(x)
the old approximation of the velocity.

For simplicity we assume Dirichlet boundary conditions on the whole boundary Γ := ∂Ω

u|Γ = ū.

We discretize the system using a mixed finite element method (for details we refer e.g.
to [BF91] or [Bra01]) and obtain the problem: Find a couple (uh, ph) in some mixed finite
element space Uh ×Qh such that

ā(wh;uh,vh) + b(vh, ph) = 〈F,vh〉 ∀vh ∈ Uh, (5a)

b(uh, qh) = 0 ∀qh ∈ Qh, (5b)
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where
ā(wh;uh,vh) = aD(uh,vh) + aC(wh;uh,vh) + aS(wh;uh,vh),

and

aD(uh,vh) = ν(∇uh,∇vh), b(uh, qh) = −(div uh, qh),

aC(wh;uh,vh) = ((wh · ∇)uh,vh) , 〈F, .〉 = (f , .)0,

and aS(.; ., .) originates in some convection-stabilization (‘D’ stands for diffusion, ‘C’ for
convection, and ‘S’ for stabilization). We use the Streamline Upwinding Petrov Galerkin
Method (SUPG) and therefore

aS(wh;uh,vh) = βh ((wh · ∇)uh, (wh · ∇)vh) ,

with some stabilization parameter βh (details can be found e.g. in [Pir89]).
We denote the FE-isomorphisms between the discrete spaces and the spaces of coeffi-

cient vectors by φU : (Rn)d → Uh and φQ : R
m → Qh. The underline notation is used to

indicate their inverses, i.e.

φUvh = vh, φUvh = vh, (6a)

φQq
h

= qh, φQq
h

= q
h
. (6b)

If it is clear from the context we omit the underlines and φ’s and identify vh ∈ Uh and the
associated vh ∈ (Rn)d and analogously qh and q

h
.

If the mixed finite element is now built of elements for which the construction of an
AMGe-interpolation is known, we can easily generate a coupled AMGe method. The
coarsening is independent of the concrete element, the interpolations have to be built
separately for the pressure and velocity hierarchies.

After having constructed the coarse level hierarchies we need a (coupled) smoother.
Possibilities are well known smoothers for geometric multigrid methods, such as transform-
ing smoothers (Wittum [Wit89, Wit90]), the Braess-Sarazin smoother ([BS97], Zulehner
[Zul00]), or Vanka smoothers ([Van86], Schöberl, Zulehner [SZ03]).

In principal we now have everything we need for an algebraic multigrid method. But
it is not a-priori obvious that the method works, as the (inf-sup) stability of the coarse
level systems is not automatically given (and a lack thereof would destroy the convergence
properties of the method; c.f. [Wabar, Wab03]).

For the Crouzeix-Raviart element P nc
1 -P0 we exemplarily show how a stability result

can be obtained. The technique of the proof heavily depends on the fact that on each level
a topology is available.

We first introduce the following notations. The intergrid transfer-operators for pressure
will be denoted by J l

l+1, for velocity by Ĩ l
l+1, for velocity-components by I l

l+1, i.e.

P l
l+1 =

(

Ĩ l
l+1

J l
l+1

)

, Ĩ l
l+1 =





I l
l+1

I l
l+1

I l
l+1



 (in 3D).
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We denote the spaces for velocity and pressure unknown vectors at level l by Ul :=
(Rnl)d and Q

l
:= R

ml and the coarse function spaces by

Ul :=
{

v : ∃w ∈ Ul such that v = Ĩ1
2 Ĩ

2
3 . . . Ĩ l−1

l w
}

,

Ql :=
{

p : ∃q ∈ Q
l
such that p = J1

2J2
3 . . . J l−1

l q
}

.

Analogous to (6) we introduce the FE-AMG-isomorphisms

φl
U : Ul → Ul and φl

Q : Q
l
→ Ql, (7)

and we will often identify elements of Ul and Ul, and Q
l
and Ql

The following lemma is just a translation of the well known result of Fortin [For77].

Lemma 10. Assume that for given l there exists a linear Operator Πl
l−1 : Ul−1 → Ul with

b(Πl
l−1vl−1, ql) = b(vl−1, J

l−1
l ql) for all ql ∈ Ql and vl−1 ∈ Ul−1 (8)

and that
‖Πl

l−1vl−1‖1 ≤ δ‖vl−1‖1 for all vl−1 ∈ Ul−1, (9)

with δ independent of h and l.
And assume that on level l − 1 an inf-sup condition holds, i.e.

inf
06=ql−1∈Ql−1

sup
06=vl−1∈Ul−1

b(vl−1, ql−1)

‖vl−1‖1‖ql−1‖0
≥ βl−1.

Then an inf-sup condition holds on level l.

Proof.

inf
06=ql∈Ql

sup
06=vl∈Ul

b(vl, ql)

‖vl‖1‖ql‖0
≥ inf

06=ql∈Ql

sup
06=vl−1∈Ul−1

b(Πl
l−1vl−1, ql)

‖Πl
l−1vl‖1‖ql‖0

= inf
06=ql∈Ql

sup
06=vl−1∈Ul−1

b(vl−1, J
l−1
l ql)

‖vl−1‖1‖ql‖0
·
‖vl−1‖1
‖Πl

l−1vl−1‖1
≥

βl−1

δ

The proof of the following theorem is rather technical as we often have to switch between
two consecutive levels and the finest level.

Theorem 11. Assume that
hmax

hmin

≤ γ, (10)

where hmax is the maximal element diameter and hmin the minimal diameter (at the finest
level), and γ is a positive constant, assume that the (finest level) mesh is shape regular,
and assume that the coarse levels are built as described in section 2, the prolongations as
in 2.3.1 and 2.3.3 but based on the Stokes-operator (i.e. ā(uh,vh) = ā(0,uh,vh)).

Then the inf-sup condition holds on all levels.
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Figure 2 The solid thick black lines describe two level l elements, the dashed lines level
l−1 elements and the solid thin lines the finest level elements. For edge j this figure shows
the sets E l

j and Ẽ l
j, for edge k the tube Θk.
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As we want to apply Lemma 10 to show this result, we construct an operator Πl
l−1 in

the following way. Consider the 2D case first (illustrated in Figure 2). Define on level l
the index sets E l

j of all (l − 1)-level edges which are part of l-level edge j. We define the
length of a l-level edge recursively by

el
j :=

∑

k∈E l
j

el−1
k (for l > 1),

for l = 1 it is determined by the mesh.
We now construct Πl

l−1 as follows. For some (l−1)-level function vl−1 the l-level function
Πl

l−1vl−1 is determined by its values on the (l-level) edges. We set the value on a certain
l-level edge to the weighted mean of the values of vl−1 on the (l− 1)-level edges which are
part of the edge, i.e.

(

Πl
l−1vl−1

)

j
=

1

el
j

∑

k∈E l
j

el−1
k

(

vl−1

)

k
.

For a vector valued function vl−1 the term Πl
l−1vl−1 will denote the application of Πl

l−1 to
the components.

Lemma 12. The operator Πl
l−1 : Ul−1 → Ul, constructed as above, fulfills (8)

b(Πl
l−1vl−1, ql) = b(vl−1, J

l−1
l ql) for all ql ∈ Ql and vl−1 ∈ Ul−1.

Proof. We want to show that

∑

j

∫

τj

div(Πl
l−1vl−1) · ql dx =

∑

j

∫

τj

div vl−1 · (J
l−1
l ql) dx.
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Because ql = J l−1
l ql (in functional notation), because ql is piecewise constant on the l-

level agglomerates Ej, and because both vl−1 and Πl
l−1vl−1 are piecewise linear on the

(finest level) elements τj and continuous at the midpoints of their edges, we can use partial
integration to derive

∑

j

∫

τj

div(Πl
l−1vl−1) · ql dx =

∑

j

ql(Ej)

∫

∂Ej

(Πl
l−1vl−1) · n

and
∑

j

∫

τj

div vl−1 · (J
l−1
l ql) dx =

∑

j

ql(Ej)

∫

∂Ej

vl−1 · n.

By the definition of Πl
l−1 we see that

∫

∂Ej

(Πl
l−1vl−1) · n =

∫

∂Ej

vl−1 · n for all agglomerates Ej,

therefore (8) is shown to be true.

Lemma 13. The operator Πl
l−1, constructed as above, fulfills also (9)

‖Πl
l−1vl−1‖1 ≤ δ‖vl−1‖1 for all vl−1 ∈ Ul−1.

Proof. The idea of this proof is the introduction of an auxiliary operator Π̃l
l−1 on the finer

level Ul−1, which fulfills (9) and which is identical to Πl
l−1 on the coarse edges. Because we

use energy minimization for the interpolation in the interior of agglomerates we will then
be able to estimate Πl

l−1 by Π̃l
l−1 which will complete the proof.

We define Π̃l
l−1 : Ul−1 → Ul−1 by

Π̃
l

l−1(vl−1)j :=

{

(vl−1)j if j /∈ E l
k for all k,

(

Πl
l−1vl−1

)

k
if j ∈ E l

k for a certain k.

Note that Π̃l
l−1vl−1 still ‘lives’ on level l−1, only the values at the l-level faces are averaged.

We try to find an upper bound for
∣

∣

∣
vl−1 − Π̃l

l−1vl−1

∣

∣

∣

1
. Define Ẽ l

j the index set of all

finest-level edges which lie on coarse edge j. Set ṽ1 (component of finest-level function
ṽ1 ∈ U1) equal to vl−1 − Π̃l

l−1vl−1 on all (finest level) degrees of freedom in
⋃

j Ẽ
l
j and zero

on all other (finest level) degrees of freedom. Then because of the energy minimization in
the prolongation

∫

Ω

∇
(

vl−1 − Π̃l
l−1vl−1

)

∇
(

vl−1 − Π̃l
l−1vl−1

)

dx ≤

∫

Ω

∇ṽ1∇ṽ1 dx

≤
∑

l-level
edges j

∫

Θj

∇ṽ1∇ṽ1 dx,
(11)
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where Θj is the tube of (finest level) elements which share a point or edge with l-level edge
number j (c.f. Figure 2).

For a (finest level) triangle PQR and the basis function ϕPQ, which is equal to 1 at the
midpoint of PQ and zero at the midpoints of QR and RP one can easily calculate

∫

PQR

∇ϕPQ∇ϕPQ dx =
|PQ|2

A(PQR)
,

where A(PQR) denotes the area of the triangle PQR. Now with

c1 := max
τj

(length of longest edge of τj)
2

A(τj)

we get
∫

Θj

∇ṽ1∇ṽ1 dx ≤ c1

∑

s∈Ẽ l
j

((ṽ1)s)
2

= c1

∑

s∈Ẽ l
j







1
∑

k∈Ẽ l
j
ek

∑

k∈Ẽ l
j

ek

((

φ1
U

−1
vl−1

)

s
−

(

φ1
U

−1
vl−1

)

k

)







2

≤ c1

∑

k∈Ẽ l
j
e2

k

(

∑

k∈Ẽ l
j
ek

)2

∑

s∈Ẽ l
j ,

k∈Ẽ l
j

((

φ1
U

−1
vl−1

)

s
−

(

φ1
U

−1
vl−1

)

k

)2

≤ c1

∑

s∈Ẽ l
j ,

k∈Ẽ l
j

((

φ1
U

−1
vl−1

)

s
−

(

φ1
U

−1
vl−1

)

k

)2

≤ c̄1

∑

s∈E l
j ,

k∈E l
j

((

vl−1

)

s
−

(

vl−1

)

k

)2
,

(12)

where φ1
U

−1
v is the representation of a coarse function v on U1 as in (7).

We note that ∇vl−1 is constant on each finest level element. Therefore we can derive
the following estimate (illustrated in Figure 3). Assume that the (l − 1)-level edges j and
k share the node m. We denote the set of all finest level elements which share the node
m with S l−1

m , its index set with S l−1
m (where we assume w.l.o.g. S l−1

m = {1, 2, . . . , i + 1}).
For each element τe in S l−1

m we denote the edge-vector of the edge not connected to m (“in
direction” j → k) with re. Then

(vl−1)k − (vl−1)j = ((vl−1)k − vl−1(a1)) + (vl−1(a1)− vl−1(a2)) + . . . + (vl−1(ai)− (vl−1)j)

=
1

2

(

∇vl−1|τ1 · r1 + . . . +∇vl−1|τi+1
· ri+1

)

≤
1

2

(

√

∇vl−1|τ1 · ∇vl−1|τ1 |r1|+ . . . +
√

∇vl−1|τi+1
· ∇vl−1|τi+1

|ri+1|
)

,

14



Figure 3 Detail of Figure 2, the set S l−1
m .

PSfrag replacements

(φ1
U
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vl−1)j

(φ1
U

−1
vl−1)k

vl−1(a1)

vl−1(a2)
r1

r2

r3

where a1,. . . ,ai are finest level edge midpoints as in Figure 3, thus (using the algebraic-
geometric mean inequality)

(

(vl−1)k − (vl−1)j

)2
≤

i + 1

4

[

|r1|
2 (∇vl−1|τ1)

2 + . . . + |ri+1|
2
(

∇vl−1|τi+1

)2
]

≤ c2

∫

Sl−1
m

∇vl−1∇vl−1 dx.
(13)

We apply this estimate to the last term in (12), which is done directly for those (l−1)-level
edges s and k which share a node. For all others we have to build a chain of connecting
edges.

This leads to
∫

Θl

∇ṽ1∇ṽ1 dx ≤ c3

∫

Θl

∇vl−1∇vl−1 dx.

Now because of (11) we get

∥

∥

∥
vl−1 − Π̃l

l−1vl−1

∥

∥

∥

1
≤ c4‖vl−1‖1,

thus
∥

∥

∥
Π̃l

l−1vl−1

∥

∥

∥

1
≤ (1 + c4)‖vl−1‖1.

Because we use energy minimization for the interpolation in the interior of coarse agglom-
erates, Ĩ l−1

l Πl
l−1vl−1 has minimal energy amongst all l−1-level functions which are identical

to it on the l-level edges, therefore

∥

∥Πl
l−1vl−1

∥

∥

1
≤ c5

∥

∥

∥
Π̃l

l−1vl−1

∥

∥

∥

1
≤ c5(1 + c4)‖vl−1‖1. (14)

The 3D case. For 3D tetrahedral elements we replace c1 in (12) by c1hj,max, where hj,max

is the maximal element height in tube Θj, and c2 in (13) by c2/hj,min, where hj,min is the

15



Figure 4 Coarsest unit-square mesh and given convection speed w for first problem.

minimal element height in this tube. Then because of (10) the argumentation remains
unchanged, only the scaling argument is based on the (finest level) tetrahedron PQRS

∫

PQRS

∇ϕPQR∇ϕPQR dx =
A(PQR)2

V (PQRS)
,

where V (PQRS) is the volume of the tetrahedron.

Proof of Theorem 11. The proof is completed by combining Lemmata 12 and 13 with
Lemma 10.

Remark 14. The constants c1,. . . ,c5 that appear in the proofs depend on the finest level
triangulation and on the agglomeration strategy (e.g. on how many fine level edges are part
of one coarse level edge). In general they may result in δ > 1 (in Lemma 10), thus the
inf-sup constant will get worse for each additional level.

4 Numerical Results

The numerical experiments were carried out using three different geometries resp. meshes,

• the inevitable unit square (with meshes built by the refinement of the coarse mesh
in Figure 4),

• the domain around a two-dimensional symmetric valve (provided by AVL List GmbH,
Graz, Austria), and

• the domain around two three-dimensional valves (provided by AVL List GmbH).

In Figures 5 and 6 we find the coarsest-level agglomerates of the valve geometries for
the different techniques. One can notice that the agglomerates produced with the classical
Jones-Vassilevski algorithm have frayed edges, in 3D even holes. A comparison to the
bottom-up approach would not be fair (as the coarsest agglomerates are the first ones, so
the algorithm has full freedom to produce nice ones), but also the topologies originating
in the other two approaches look much better than the classical ones.
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Figure 5 Coarsest level agglomerates for the 2D valve. (‘classical’. . . Jones-Vassilevski ag-
glomeration, ‘rgb’. . . red-grey-black, ‘metis’. . . bottom-up partitioning using metis, ‘mgrid-
gen’. . . optimization approach)

PSfrag replacements
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mgridgen

For the following tests we introduce a measure for (time-) efficiency

T0.1 :=

(

average CPU time in minutes for the reduction
of the norm of the residual by a factor of 0.1

)

number of unknowns
.

This number would be constant for different levels of refinement if we had an optimal
method, i.e. if the work for a given reduction of the residual is O(n), where n is the
number of unknowns.

4.1 Convection-Diffusion Equations

For all examples in this section we use a P1-discretization of the convection diffusion equa-
tion in some domain Ω ⊂ R

d

−ν∆u + (w · ∇)u = f, (15)

with given (divergence free) convective speed w, right hand side f , viscosity ν, and Dirichlet
boundary conditions

u|Γ = ū.
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Figure 6 Coarsest level agglomerates for the 3D valves. (‘classical’. . . Jones-Vassilevski ag-
glomeration, ‘rgb’. . . red-grey-black, ‘metis’. . . bottom-up partitioning using metis, ‘mgrid-
gen’. . . optimization approach)

PSfrag replacements

classical rgb metis mgridgen
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Figure 7 A solution of the 2D valve problem (upper part of the figure) with w given
as in the lower part of the figure. We imposed homogeneous Dirichlet conditions at the
symmetry plane.

The first problem we are considering lives on the unit square, with

w(x) =

(

m2 − x2

x1 −m1

)

·

{

−16‖m− x‖+ 8 if ‖m− x‖ < 0.5

0 otherwise
, m =

(

0.5
0.5

)

,

f(x) =

{

1 if ‖0− x‖ < 1

0 otherwise

(c.f. Figure 4), and ū = 0.
The second problem was the 2D valve, with w originating in the solution of the full

Navier-Stokes equations, with a source (f 6= 0) near the inlet (see Figure 7 for a visualiza-
tion of w and a solution of the problem).

For both problems we performed h-dependence tests (c.f. Table 1 and Figure 8; for
both we used a W-8-8 cycle with Gauß-Seidel smoothers). The values there only concern
the iteration-phase, not the set-up. A comparison of the CPU-time needed for set-up
(construction of the topology and of the prolongation) and the actual solution phase can
be found in Figure 9(a).

The next test deals with the ν dependence (on a fixed grid). The results can be found
in Table 2 and Figure 10 (cycles used are the same as before, i.e. W-8-8, Gauß-Seidel
smoother).

Some h- and ν-dependence-test for the 3D valves (again with w coming from the so-
lution of a Navier-Stokes problem) can be found in Table 3 (W-8-8 cycles, Gauß-Seidel
smoothers). The timings for the preprocessing phases and the multigrid iterations are
illustrated in Figure 9(b).

The tests show, that the choice of the agglomeration strategy has a strong influence
on the efficiency of the method, sometimes even on the question, if the method is con-
verging. The general tendency which can be observed, is that the optimization approach
of MGridGen leads to the best results, although the costs for the topology-construction
are pretty high (but for 3D problems low in comparison to the prolongation-construction).
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Table 1 Dependence of the reduction per multigrid step (red/step) and T0.1 on grid re-
finements for the unit-square problem (ν = 0.01) and the 2D valve (ν = 0.001).

unit square
ref. level 5 6 7 8
dofs 4689 18593 74049 295553

classical
red/step 0.10 0.18 0.22 0.27
T0.1 1.8e-6 2.4e-6 3.5e-6 4.8e-6

red-grey-black
red/step 0.13 0.16 0.36 0.69
T0.1 4.8e-7 4.8e-7 9.6e-7 2.8e-6

MGridGen
red/step 0.16 0.05 0.06 0.06
T0.1 7.1e-7 7.1e-7 8.1e-7 9.1e-7

bottom-up, (metis, 4-fold refinement)
red/step 0.13 0.06 0.11 0.16
T0.1 1.3e-6 1.3e-6 1.7e-6 2.1e-6

bottom-up, (metis, 5-fold refinement)
red/step 0.14 0.13 0.15 0.19
T0.1 1.2e-6 1.2e-6 1.5e-6 1.9e-6

2D valve
ref. level 2 3 4
dofs 11621 45865 182225

classical
red/step 0.06 0.08 0.16
T0.1 1.2e-6 1.9e-6 3e-6

red-grey-black
red/step 0.07 0.13 0.27
T0.1 4.7e-7 4.7e-7 7.8e-7

MGidGen
red/step 0.05 0.05 0.07
T0.1 7e-7 7.5e-7 8.8e-7

bottom-up, (metis, 5-fold refinement)
red/step 0.02 0.02 0.4
T0.1 7.9e-7 7.9e-7 2e-6

Figure 8 Dependence of the efficiency on the refinement level.
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Figure 9 CPU-time for the important steps of the AMGe solution process for the
convection-diffusion problem (‘metis4’ resp. ‘metis5’ denote the bottom-up strategy us-
ing metis with 4- resp. 5-fold refinement).
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Table 2 Dependence of the reduction per multigrid step (red/step) and T0.1 on ν for the
unit-square problem (74049 dofs) and the 2D valve (45865 dofs). For ν < 7 · 10−4 resp.
ν < 5 · 10−5 we had no convergence (for the red-grey-black method this occured already
for ν < 4 · 10−3 resp. ν < 2 · 10−4).

unit square
ν 1e-1 1e-2 1e-3 7e-4

classical
red/step 0.26 0.22 0.22 0.28
T0.1 3.9e-6 3.5e-6 3.5e-6 4e-6

red-grey-black
red/step 0.74 0.36 0.22 (ν=4e-3)
T0.1 3.3e-6 9.6e-7 7e-7 (ν=4e-3)

MGridGen
red/step 0.06 0.06 0.19 0.27
T0.1 7.9e-7 8.1e-7 1.4e-6 1.8e-6

bottom-up, (metis, 5-fold ref.)
red/step 0.19 0.15 0.22 0.28
T0.1 1.6e-6 1.5e-6 1.8e-6 2.2e-6

2D valve
ν 1e-2 1e-3 1e-4 5e-5

classical
red/step 0.08 0.09 0.16 0.27
T0.1 1.9e-6 1.9e-6 2.5e-6 3.5e-6

red-grey-black
red/step 0.08 0.13 0.21 (ν=2e-4)
T0.1 4e-7 4.7e-7 6.6e-7 (ν=2e-4)

MGridGen
red/step 0.06 0.05 0.26 0.39
T0.1 7.8e-7 7.5e-7 1.5e-6 2.2e-6

bottom-up
red/step 0.02 0.02 0.05 0.09
T0.1 8.3e-7 7.9e-7 1.1e-6 1.4e-6
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Figure 10 Dependence of the efficiency on decreasing ν.
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Table 3 h- and ν-dependences for the 3D valves. ‘tl’ stands for “too long”, i.e. the results
were not computable within reasonable time. A too long computing time was also the
reason for not performing ν-tests for the classical and the red-grey-black topologies.

h-dependence ν-dependence
dofs 32 463 229215 1e-2 1e-3 5e-4 ν

classical
red/step 4.7e-7 tl — — —
T0.1 3.5e-5 tl — — —

red-grey-black
red/step 6.9e-4 tl — — —
T0.1 1.1e-6 tl — — —

MGridGen
red/step 0.006 0.037 3e-4 0.006 0.01 red/step
T0.1 6.2e-7 1.6e-6 4.4e-7 6.2e-7 7.6e-7 T0.1

bottom up
red/step 4e-5 0.031 3e-6 4e-5 1e-4 red/step
T0.1 8.7e-7 1.7e-6 6.5e-7 8.7e-7 1e-6 T0.1
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Table 4 Results for the solution of the Oseen equations for the driven cavity problem
(ν = 0.1).

ref. level 5 6 7 8
dofs 37,024 147,776 590,464 2,360,576

classical
red/step 0.48 0.52 0.54 0.57
T0.1 2.7e-6 3.6e-6 4.3e-6 5e-6

red-grey-black
red/step 0.64 0.67 0.69 0.70
T0.1 2.3e-6 1.9e-6 2.3e-6 2.4e-6

MGridGen
red/step 0.23 0.26 0.32 0.30
T0.1 7e-7 7.5e-7 1.1e-6 1.1e-6

bottom-up (metis)
red/step 0.52 0.53 0.58 0.60
T0.1 1.6e-6 2.3e-6 2.7e-6 2.9e-6

The red-grey-black method seems rather unpredictable, sometimes quite good, sometimes
(especially for stronger convection) insufficient. The bottom-up and the classical method
lie in between, the agglomerates which are produced by the classical methods sometimes
look disadvantageous (bad aspect ratio) and result in a slow convergence.

4.2 Oseen Equations

To check the h-dependence of the cAMGe method for the P nc
1 -P0 element we solve the

Oseen equations for the driven cavity problem (unit square, ū = (1 0)T at the top edge,
ū = 0 at the other edges), with w near the solution of the full Navier-Stokes problem and
mild convection (ν = 0.1). The results of the tests (with Vanka smoother and W-2-2 cycle)
can be found in Table 4 and Figure 11.

What we finally want to compare is the usability of the methods for a full nonlinear
Navier-Stokes problem. Here the construction of the topology has to be performed only
once (except some kind of semi-coarsening depending on intermediate solutions is wanted),
the interpolations can also be kept for more than one nonlinear-iteration. The solver itself
should be fast (but it has to be kept in mind, that there is no need to solve the linear
problems with very high precision). We have applied the methods for the Navier-Stokes
problem on the 3D valves with ν = 0.001 and illustrated the timings in Figure 12. The
method with the classical topology-construction did not reach a solution with a reasonable
number of smoothing steps and within reasonable time.
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Figure 11 Results for the solution of the Oseen equations for the driven cavity problem
(ν = 0.1).
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Figure 12 The timings for the full nonlinear problem on the 3D valves (light grey). The
dark grey boxes in the foreground illustrate the time needed for the solution of one (the
last) linear problem.
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5 Conclusions

We have shown that the strategy for the construction of the agglomerates has a crucial
influence on the efficiency of the method. The optimization approach, which is the most
sophisticated upon the methods tested (and also needs the most CPU-time), in general
leads to the best results.

As already mentioned in Vassilevski et al. [JV01, HV01] the AMGe method should only
be used if classical AMG methods fail. The AMGe setup-phase is costly, and the memory
consumption can get very high, as many connectivity matrices containing the topological
information are stored.

One situation where it is sensible to use AMGe is the coupled approach for a mixed
FE discretization of the Oseen equations. First, it appears to be a flexible possibility
for generalizations (we have demonstrated this for the P nc

1 -P0 element), and secondly —
because of the underlying topological information — it gives rise to analytic techniques
which are not available for other methods (which we have exploitet for a stability result).
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