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Abstract

This paper presents the implementation of preconditioned FETI/BETI
solvers for two-dimensional problems in electromagnetics and discusses
the results of our numerical experiments. As model problem, we con-
sider the potential equation resulting from the Maxwell’s equations in the
two-dimensional case. In the air subdomains we take advantage of the
boundary element discretization, whereas ferromagnetic subdomains and
subdomains with prescribed currents are discretized by the finite element
method. The resulting coupled system of finite and boundary element
equations is solved via some FETI/BETI domain decomposition technique.
In particular, we study the numerical behaviour of some preconditioners
with respect to homogeneous and highly heterogeneous behaviour of the
permeability. The scaled hypersingular preconditioner originating from
the boundary element discretization works fine for boundary element as
well as finite element equations and is robust with respect to large jumps
in the permeability.
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1 Introduction

The classical Finite Element Tearing and Interconnecting (FETI) was pro-
posed by Farhat and Roux in 1991 (see [3]). The principle of FETI is to assume
conform triangulation of the whole computational domain and the Finite El-
ement spaces are given on each subdomain including its boundary separately.
The global continuity is then enforced by Lagrange multipliers, resulting in a
saddle point problem that can be solved iteratively via its dual Schur comple-
ment problem. Once we have recovered the Lagrange multipliers, the compu-
tation of the primal variables can be easily done.

Since then this method has been applied to many problems. New FETI
versions as FETI 2 and FETI-DP had appeared (Farhat et al. 2000 [2] [3],
Mandel and Tezaur 2001 [13] [12], Widlund and Klawon, [7] [8]) as well as
FETI for mortars (Stefanica [15]). Today, the FETI method represents one of
the most powerful and frequently used Domain Decomposition (DD) methods.
The possibility of parallel programming offered by this method (see [5] [9]), the
moderate dependence of the iteration number on the complexity of the problem,
as well as scalability and robustness were among the factors which contributed
to the success and the wide spreading of FETI in present.

In 2002 Boundary Element Tearing and Interconnecting (BETI) was in-
troduced by Langer and Steinbach [10]. The main idea of BETI is to use the
discrete version obtained by the boundary element discretization, instead of the
discrete version of the Steklov-Poincaré operator offered by the finite element
discretization. The Dirichlet preconditioners are replaced by preconditioners
derived from the hypersingular operator.

As a logical continuation of the BETI technique, Langer and Steinbach [11]
introduced the Coupled Finite and Boundary Element Tearing and Intercon-
necting Methods (FETI/BETI). In dependence on each subdomain problem
data both discrete Steklov-Poincaré operator versions can be used,i.e. the one
originating from the finite element side as well as the one descending from
boundary element.

Various preconditioners were proposed in [11] and a rigorous analysis was
done. The scope of this paper is to present the application of the coupled
FETI/BETI to a two dimensional electromagnetic field problem resulting from
Maxwell’s equations. We apply various preconditioners proposed in [10] and
[11] and we obtain some convincing numerical results in concordance with the
analysis.

The rest of the paper is organised as follows: In the next section we present
the coupled FETI/BETI formulation. Section 3 is dedicated to the presentation
of some preconditioners. Section 4 deals with a two dimensional model problem
originating from Maxwell’s equations and displays the corresponding numerical
results. Finally, in Section 5 some conclusions are drawn about the use of the
presented preconditioners and about the robustness of the scaled hypersingular
preconditioner. It turns out that the boundary element preconditioners fit well
even to the FETI domains, as can be seen in theory ( Lemma 3.1 in Section 3)
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2 Coupled FETI/BETI Formulation

Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary Γ = ∂Ω. We

consider the following Dirichlet boundary value problem (BVP):

−div[α(x)∇u(x)] = f(x) for x ∈ Ω, u(x) = 0 for x ∈ Γ. (1)

Let us also assume that Ω splits into subdomains Ωi

Ω =

p
⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j, Γi = ∂Ωi, Γij = Γi ∩ Γj, ΓS =

p
⋃

i=1

Γi.

In the following we will make an extra assumption, namely that the coefficient
function α is piecewise constant, i.e.

α(x) = αi > 0 for x ∈ Ωi, i = 1, . . . , p.

Thus instead of the global BVP (1) we have to solve now the local problems

−αi∆ui(x) = f(x) for x ∈ Ωi, ui(x) = 0 for x ∈ Γi ∩ Γ (2)

along with the transmission conditions on the internal boundaries

ui(x) = uj(x), αi
∂

∂ni
ui(x) + αj

∂

∂nj
uj(x) = 0 for x ∈ Γij, (3)

where ni is the unit outward normal vector with respect to Γi.
The solution of the Dirichlet BVP

−αi∆ui(x) = f(x) for x ∈ Ωi, ui(x) = gi(x) for x ∈ Γi (4)

leads us to the Dirichlet-Neumann map

ti(x) := αi
∂

∂ni
ui(x) = (Siui)(x) − (Nif)(x) for x ∈ Γi, (5)

where

Si : H1/2(Γi) −→ H−1/2(Γi) denotes the Steklov-Poincaré operator,

Ni : H̃−1(Ω) −→ H−1/2(Γi) denotes the Newton potential.

For the definition of the spaces H̃−1(Ω), H−1/2(Γi) and H1/2(Γi) we refer the
readers to [17].

The coupled BVP (2)–(3) is then equivalent to the following problem:

ti(x) = (Siui)(x) − (Nif)(x) for x ∈ Γi,
ui(x) = 0 for x ∈ Γi ∩ Γ,
ti(x) + tj(x) = 0 for x ∈ Γij,
ui(x) = uj(x) for x ∈ Γij.

(6)

Let us now consider the trace space H1/2(ΓS) := {u |Γs
: u ∈ H1(Ω)} on the

skeleton ΓS and its subspace

H
1/2

0
(ΓS ,Γ) := {v ∈ H1/2(ΓS) : v(x) = 0 for x ∈ Γ}.

3



So we have to solve now the skeleton problem : Find a function u ∈ H
1/2

0
(ΓS ,Γ)

such that the equations

(Siui)(x) + (Sjuj)(x) = (Nif)(x) + (Njf)(x) for x ∈ Γij (7)

are satisfied on all local coupling boundaries Γij and ui := u on Γi. This leads

us to the variational problem: Find u ∈ H
1/2

0
(Γs,Γ) such that

p
∑

i=1

∫

Γi

(Siu)(x)v(x)dsx =

p
∑

i=1

∫

Γi

(Nif)(x)v(x)dsx ∀ v ∈ H
1/2

0
(ΓS ,Γ). (8)

Due to the implicit definition of the local Dirichlet-Neumann map (5) it is in
general not possible to discretize problem (8) in an exact manner. Thus we have
to approximate the local Dirichlet problems which occur in the definition of the
local Neumann-Dirichlet map. We can do that by using either finite elements
or boundary elements, see [11].

The Galerkin discretization of the problem (8) with boundary or finite ele-
ments approximations of the local Dirichlet problems yields the linear system

p
∑

i=1

A>
i S

FEM/BEM
i,h Aiu =

p
∑

i=1

A>
i f

FEM/BEM
i,h , (9)

which is uniquely solvable due the positive definiteness of the assembled stiffness

matrix. The matrices S
FEM/BEM
i,h are nothing else than the discretized version

of the Steklov-Poincaré operator by FEM or BEM. Ai denote the connectivity
matrices that map the vectors v originating from the global discretization of
Ω in their local components vi corresponding to the local discretization of Ωi,
vi = Aiv. For more details see [11]. Then we introduce the local vectors
ui = Aiu. The continuity of the primal variables across the interfaces can be
enforced by the constraint

p
∑

i=1

Biui = 0 . (10)

Each row of the matrix B = (B1, . . . , Bp) is connected with a pair of matching
nodes across the interface. The entries of such a matrix are 1 and -1 for the
indices corresponding to the matching nodes and 0 elsewhere. By introducing
the Lagrange multiplier λ ∈ R

m (where m is the number of equations in (10))
we have to solve the linear system:













S
BEM/FEM
1,h B>

1

. . .
...

S
BEM/FEM
p,h B>

p

B1 . . . Bp 0























u1

...
up

λ











=











f
1
...

f
p

0











. (11)

For i=1,. . . ,p, we consider now the solvability of the local systems

S
FEM/BEM
i,h ui = fFEM/BEM

i
− B>

i λ. (12)
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Let us define
S̃

FEM/BEM
i,h = S

FEM/BEM
i,h + βieie

>
i , (13)

with βi = 0 if Ωi is nonfloating (i.e. Γi ∩ Γ 6= ∅) and some regularization
constant βi > 0 for the floating subdomains (i.e. Γi ∩ Γ = ∅). We also have to
impose the solvability condition for the floating domains:

e>i

[

fFEM/BEM
i

− B>
i λ

]

= 0. (14)

This leads us to the systems :

S̃
FEM/BEM
i,h ui = fFEM/BEM

i
− B>

i λ, (15)

which are equivalent to (12) and uniquely solvable. However for floating do-
mains we must insert also the constant kernel functions. Thus the general
solution of (15) has the form

ui =
[

S̃
FEM/BEM
i,h

]−1 [

fFEM/BEM
i

− B>
i λ

]

+ γiei , (16)

with γi = 0 for all non floating subdomains.
Substituting these local solutions into the equation (11), we obtain the Schur

complement system

p
∑

i=1

Bi

[

S̃
FEM/BEM
i,h

]−1

B>
i λ−

p
∑

i=1

γiBiei =

p
∑

i=1

Bi

[

S̃
FEM/BEM
i,h

]−1

fFEM/BEM
i

.

(17)
Thus we obtain the linear system

(

F −G
G> 0

)(

λ
γ

)

=

(

d
e

)

, (18)

where

F :=

p
∑

i=1

Bi

[

S̃
FEM/BEM
i,h

]−1

B>
i , G := (Biei){1≤i≤p |Γi∩Γ=∅}

and the right hand side is defined as

d :=

p
∑

i=1

Bi

[

S̃
FEM/BEM
i,h

]−1

fFEM/BEM
i

, e := (e>i fFEM/BEM
i

){1≤i≤p |Γi∩Γ=∅}.

Let us define the orthogonal projection

P := I − G
(

G>G
)−1

G> : Λ := R
M −→ Λ0 := kerG> = (Range G)⊥

with respect to the Euclidean scalar product. Now, we decouple the compu-
tation of λ from γ. Applying P to the first equation in (18) we obtain the
equation

PFλ = Pd, (19)
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Algorithm 1 Projected Preconditioned Conjugate Gradient Iteration (PPCG)

FETI/BETI (PPCG) Iteration

λ0 = G
(

G>G
)−1

e, r0 = Pd − PFλ0, n = 1 { initialization step }
{ begin iterations }

while (Mrn−1, rn−1) ≥ ε2(Mr0, r0) do
wn−1 = Prn−1 { projection step}
zn−1 = Mwn−1 { precondition step}
yn−1 = Pzn−1 { project the correction}
βn = (yn−1, rn−1)/(yn−2, rn−2), (β1 = 0)
pn = yn−1+βnpn−1, (p1 = y0) { update the search direction in Λ0}
αn = (yn−1, rn−1)/(Fpn, pn)
λn = λn−1 + αnpn { update of the iterate}
rn = rn−1 − αnPFpn { update the defect }
n = n + 1

end while
{ end iteration loop }

because PG γ=0. As soon as we get λ from (19) we obtain

γ =
(

G>G
)−1

G> (Fλ − d) . (20)

Finally in the end we get the vectors ui from (16).
The dual problem (19) is solved by a preconditioned conjugate gradient

subspace iteration with some preconditioner M. The matrix by vector multi-
plication with the F involves the application of the inverse modified discrete

Steklov-Poincaré operators
[

S̃
FEM/BEM
i,h

]−1

to some vector B>
i λ. This can be

done by solving directly extended systems for the local Neumann problems as
the usual technique in tearing and interconnecting methods.

3 Preconditioners

In this section we briefly present some possible options for the preconditioner
M used in Algorithm 1 described above.

(a) Dirichlet preconditioner. This is the adapted coupled FETI/BETI
version of the first known preconditioner used in FETI methods, ad-
equate for moderately changing coefficients and no crosspoints. (For
technical details and implementation see [6]).

M = BShB> =

p
∑

i=1

BiS
FEM/BEM
i,h B>

i (21)

(b) Hypersingular preconditioner I.It is known as a BETI modifi-
cation of the Dirichlet FETI preconditioner based on the spectral
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equivalence between the matrices generated by the discrete hyper-
singular operator and the discrete Steklov-Poincaré operator.

M = BDhB> =

p
∑

i=1

BiDi,hB>
i (22)

with Dh = diag(Di,h)i=1:p and Di,h are the boundary element matri-
ces corresponding to the discrete hypersingular boundary operators
Di (see [10]).

(c) Hypersingular preconditioner II. The slightly modified version
of the first hypersingular preconditioner, adapted for moderate chang-
ing coefficients with crosspoints looks as follows:

M = (BB>)−1BDhB>(BB>)−1 . (23)

(d) Scaled hypersingular BETI preconditioner. After a closer look
this preconditioner turns out to be a brilliant combination between
the well known Jacobi preconditioner and Hypersingular precondi-
tioner II. Very stable with respect to large coefficient jumps. Despite
its long and not very friendly look it is not very expensive to calcu-
late as it could look at a first view. It also has a good behaviour in
the case of crosspoints.

M = (BC−1
α B>)−1BC−1

α DhC−1
α B>(BC−1

α B>)−1 (24)

where Cα = diag(Cα,i)i=1:p and Cα,i = diag(ci
l)l=1:mi

with appropri-
ately chosen weights (see [10] and [11] ).

(e) Scaled Schur complement FETI preconditioner, the FETI
counterpart of (d) introduced by Klawonn and Widlund [7] (see also
[1] and [4]).

M = (BC−1
α B>)−1BC−1

α ShC−1
α B>(BC−1

α B>)−1 (25)

At the first glance the inverting of the first and the last component of the last
two preconditioners, namely (BC−1

α B>) may raise some problems but looking

more carefully we observe that this matrix has the form

(

D 0
0 T

)

that is a

combination between a diagonal matrix D and a tridiagonal bandwidth matrix
T which is relatively easy to invert. The tridiagonal bandwidth part corresponds
to the Lagrange multipliers corresponding to the crosspoints.

The following lemma was proved in [11] and constitutes the theoretical foun-
dation for the preconditioners introduced above.

Lemma 3.1. The local boundary element Schur complement matrix SBEM
i,h and

the local finite element Schur complement matrix SFEM
i,h are spectrally equivalent

to the exact Galerkin matrix Si,h of the Steklov-Poincaré operator Si and to
the boundary element matrix Di,h of the local hypersingular boundary integral
operator Di, i.e.,

SBEM
i,h ' SFEM

i,h ' Si,h ' Di,h
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for all i=1, . . . , p, where A ' B means that the matrices A and B are spec-
trally equivalent (with spectral constants which are independent of discretization
constants).

A detailed analysis of the preconditioners presented above can be found
in [11].

4 A 2D Model Problem and Numerical Results

In this section we will apply various preconditioners to a magnetostatic field
problem. Let us first consider a rectangular domain Ω divided into 15 square
subdomains Ωi, i=1,. . . ,15 (see Fig. 1). On the non-floating subdomains we
have air, in Ω5 and Ω11 we have two electric coils and in middle (Ω8) an iron
core. Deriving from the Maxwell’s equations (see [14]) we have to solve the
following problem to compute the magnetic potential: Find u ∈ H 1

0 (Ω) such
that

∫

Ω

ν(x)∇u(x) · ∇v(x)dx =

∫

Ω

f(x)v(x)dx ∀ v ∈ H1
0 (Ω) (26)

Figure 1: Magnetic field problem.
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where the source (impressed current) is given by :

f(x) =







c Am−2 if x ∈ Ω5,
−c Am−2 if x ∈ Ω11,
0 elsewhere,

where c is a positive real constant (27)

ν = 1

µ is the reluctivity, µ = µ0 · µr is the permeability, µ0 = 1.245 · 10−6 V s
Am is

the permeability in vacuum and µr is the relative permeability with

µr(x) =







1 for air
1.5 for coils
1000 in the core

Figure 2: Solution of the magnetostatic field problem

We used various direct solvers for inverting the discrete local single layer
potentials for the applying of the preconditioner matrix as well as for the pro-
jection steps. As stopping criteria for the global (PCG) algorithm we used a
relative error ε = 10−6(see PPCG algorithm). Table 1 shows the iteration num-
bers in the case when µr = 1 everywhere which means no coefficients jumps.
In Table 2 the iteration numbers are shown in the case of our model problem
with a current density c = 1000. During the tests we changed the values of µr

in order to observe how the various preconditioners behave with and without
jumps.

In the tests, we used the Dirichlet preconditioner (DP), the hypersingular
preconditioner (HP) and the scaled hypersingular preconditioner (SHP). For the
FETI we used finite element discretization for all subdomains, and for the com-
bined FETI/BETI we used finite element discretization for the floating domains
(core and coils) and boundary elements for the nonfloating domains (surround-
ing air). The numbers appearing in the first row of each table represent the
number of discretization nodes on the boundary of each subdomain and between
the brackets appears the number of the Lagrange multipliers of the global sys-
tem. In the Figures 2, 3 and 4 we can observe the solution of the problem and
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No Jumps 40 (222) 60 (332) 80 (442) 104 (574)

HP 21 22 25 30
FETI DP 17 17 19 18

SHP 16 16 16 16

FETI HP 32 33 36 41
BETI DP 36 31 35 38

SHP 16 16 17 17

Table 1: The number of iterations steps for no jumps, µr =1 everywhere.

Large Jumps 40 (222) 60 (332) 80 (442) 104 (574)

HP 82 76 83 118
FETI DP 47 55 58 60

SHP 13 13 13 13

FETI HP 89 98 105 134
BETI DP 68 101 115 142

SHP 13 13 13 14

Table 2: The number of iterations steps for large jumps, µr =1000 in the core,
µr=1.5 in the coils and µr=1 elsewhere.

the behaviour of relative error on a logarithmic scale for each preconditioner re-
spectively. The numerical experiments were done using MATLAB. The BEM
matrices were generated using the software package OSTBEM developed by
Olaf Steinbach (see [16]).
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Figure 3: The norm of the error on logarithmic scale (no jumps)

Figure 4: The norm of the error on logarithmic scale (with large jumps)
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5 Concluding Remarks

Both FETI and BETI methods are using discrete versions of the Steklov-Poincaré
operator. Therefore, the coupling of FETI and BETI techniques and the use of
BETI preconditioners even in the FEM domains are very natural. Lemma 3.1
provides us with the theoretical support for this. The standard Dirichlet and
hypersingular preconditioners have an acceptable convergence behaviour in the
case of constant coefficients or moderate jumps in the coefficients (see Fig. 3).
We observe from Fig. 4 that these preconditioners heavily suffer from the pres-
ence of large coefficients jumps. In addition to the reduction of the convergence
rate some strange oscillations appear in convergence history. To overcome these
drawbacks, an appropriate scaling must be introduced. The scaled hypersingu-
lar preconditioner that uses the scaling introduced by Klawonn and Widlund
[7] ensures a fast and smooth reduction of the iteration error as in the case of
constant coefficients (see again Fig. 3 and Fig. 4).
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