The SFB program expired on September 30, 2008. For the link to the successor project click DK Computational Mathematics
Home
Appointments
Papers
Misc
Contact

Technical Reports

Publication Lists

Annual Reports


Publications of the Project F1302


UnpublishedColloquium


September 27, 2008

Bibliography

1
B. Buchberger.
Intensive Course on Gröbner Bases (30 hours).
Universitad de Oriente, Santiago, Cuba, 1998.
2
B. Buchberger.
Symbolic Computation: Ein überblick.
Universität Hamburg, Institut für Informatik, 1998.
3
B. Buchberger.
Theorema: Automatisches Beweisen für Lehre und Forschung.
Universität Leipzig, Mathematisches Institut, 1998.
4
B. Buchberger.
Theorema: Computer-Supported Mathematical Proving.
Annual Meeting of the Mathematics Department of the University of Wales, UK, 1998.
5
B. Buchberger.
Theorema: Computer-Unterstuetztes mathematisches Beweisen, 1998-4-24.
Universität Karlsruhe, Institut für Informatik, 1998.
6
B. Buchberger.
The Theorema Project.
Universidad de Oriente, Santiogo, Cuba, 1998.
7
B. Buchberger.
The Theorema Project: An Introduction.
Research Institute IRST, Trento, 1998-2-19, 1998.
8
B. Buchberger.
Can Computer Replace Mathematicians?
Symposium ``Symbolic Computation'', TU Wien, April 1999.
9
B. Buchberger.
Gröbner Basen: Die ersten Jahren.
Colloquium ``100. Geburtstag von Wolfgang Gröbner'', Universität Innsbruck, May 1999.
10
B. Buchberger.
Gröbner bases: Theory and applications.
University of Timisoara, Romania, April 1999.
11
B. Buchberger.
Theorema: A System for Supporting Mathematical Proving.
North Carolina State University, Department of Mathematics, USA, October 1999.
12
B. Buchberger.
Theorema: A System for Supporting Mathematical Proving.
University of Illinois at Urbana-Champaign, Department of Mathematics, USA, October 1999.
13
B. Buchberger.
Theorema: A new kind of mathematical system.
University of Timisoara, Romania, April 1999.
14
B. Buchberger.
Theorema: A new kind of mathematical system.
University of Cluj-Napoca, April 1999.
15
B. Buchberger.
Theorema: A new kind of mathematical system.
University of Debrecen, Hungary, May 1999.
16
B. Buchberger.
Theorema: A progress report.
GMD Bonn, Institut für Algorithmen, Bonn, Germany, June 1999.
17
B. Buchberger.
Theorema a system for supporting mathematical proving.
Canergie Mellon University, Department of Mathematics, Pittsburgh, USA, October 1999.
18
B. Buchberger.
Computer Algebra: The End of Mathematics?
Freie Universität Berlin, Germany, May 2000.
19
B. Buchberger.
Gröbner Bases and Automated Theorem Proving.
Intensive Course at the University of Texas at Beaumont, March 2000.
20
B. Buchberger.
Theorema: Beyond Computer Algebra.
University of Texas at Beaumont, February 2000.
21
B. Buchberger.
Theorema: Automatisches beweisen für die praxis.
Universität Salzburg, Institut für Mathematik, June 15, 2000.
22
B. Buchberger.
Gröbner Bases and automated theorem proving.
Invited colloquium talk at Toho University, Mathematical Institute, Tokyo - Tsudanuma, October 9 2004.
23
B. Buchberger.
Automated mathematical theory exploration: How far can we go?
Invited colloquium talk at DERI, Innsbruck, December 2006.
24
B. Buchberger.
Die zukunft der algorithmischen mathematik: Kann mathematische forschung automatisiert werden?
Invited colloquium talk at OCG, OVE, Graz, November 2006.
25
M. Giese.
A logic with subtypes to talk about java objects.
Invited colloquium talk at UCD Systems Research Group, Dublin, Ireland, August 2006.
26
M. Giese.
Practical reflection for formal mathematics in Theorema,.
Invited colloquium talk at SCORE Workshop on Proving and Solving, Aizu-Wakamatsu, Japan, 15.03.06 - 17.03.06, March 2006.
27
M. Giese.
Saturation up to redundancy for tableau and sequent calculi.
Logic & Computation Workshop, Alta, Norway, January 2007.
28
M. Giese.
Some facts about the implementation of the KeY system.
Logic & Computation Workshop, Alta, Norway, January 2007.




Please direct your comments or eventual problem reports to webmaster.

SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund