The SFB program expired on September 30, 2008. For the link to the successor project click DK Computational Mathematics
Home
Appointments
Papers
Misc
Contact

Technical Reports

Publication Lists

Annual Reports


Publications of the Project F1305


TechRepMisc


September 27, 2008

Bibliography

1
H. Alzer, S. Gerhold, M. Kauers, and A. Lupas.
On turan's inequality for legendre polynomials.
Technical Report 2006-16, SFB F13, 2006.
2
G. E. Andrews and P. Paule.
MacMahon's Dream.
Technical report, SFB 013, September 2006.
SFB-report 2006-26.
3
G. E. Andrews and P. Paule.
MacMahon's Partition Analysis XI: The Search for Modular Forms.
Technical report, SFB 013, 2006.
SFB-report 2006-27.
4
G. E. Andrews and P. Paule.
MacMahon's Partition Analysis XII: Plane Partitions.
Technical report, SFB 013, September 2006.
SFB-report 2006-28.
5
G. E. Andrews, P. Paule, and A. Riese.
MacMahon's Partition Analysis X: Plane Partitions with Diagonals.
SFB-Report 2004-2, J. Kepler University Linz, January 2004.
6
G. E. Andrews, P. Paule, and A. Riese.
MacMahon's Partition Analysis XI: Hexagonal Plane Partitions.
SFB-Report 2004-4, J. Kepler University Linz, March 2004.
7
G. E. Andrews, P. Paule, and C. Schneider.
Plane partitions VI: Stembridge's TSPP theorem.
SFB-Report 2004-09, J. Kepler University, Linz, 2004.
8
A. Becirovic, P. Paule, V. Pillwein, A. Riese, C. Schneider, and J. Schöberl.
Hypergeometric Summation Methods for High Order Finite Elements.
Technical Report 2006-8, SFB F013, Johannes Kepler Universität, 2006.
9
J. P. Bell and S. Gerhold.
The positivity set of a recurrence sequence.
Technical Report 2005-11, SFB F013, Johannes Kepler Universität, 2005.
10
I. Bierenbaum, J. Blümlein, S. Klein, and C. Schneider.
Difference equations in massive higher order calculations.
Technical Report 2007-19, SFB F013, J. Kepler University Linz, 2007.
11
K. Driver, H. Prodinger, C. Schneider, and A. Weideman.
Padé Approximations to the Logarithms II: Identities, Recurrences, and Symbolic Computation.
Technical Report 03-07, RISC-Linz, J. Kepler University, Linz, 2003.
12
K. Driver, H. Prodinger, C. Schneider, and A. Weideman.
Padé Approximations to the Logarithms III: Alternative Methods and Additional Results.
Technical Report 03-08, RISC-Linz, J. Kepler University, Linz, 2003.
13
P. Flajolet, S. Gerhold, and B. Salvy.
On the non-holonomic character of logarithms, powers, and the $n$th prime function.
Technical report, J. Kepler University Linz, 2005.
SFB report.
14
S. Gerhold.
On the signs of recurrence sequences.
Technical report, SFB F013 Numerical und Symbolic Scientific Computing, 2004.
15
S. Gerhold.
On some non-holonomic sequences.
Technical report, J. Kepler University Linz, 2005.
SFB report.
16
S. Gerhold, L. Glebsky, C. Schneider, H. Weiss, and B. Zimmermann.
Limit states for one-dimensional schelling segregation models.
SFB-Report 2006-39, J. Kepler University, Linz, 2006.
17
S. Gerhold and M. Kauers.
A computer proof of Turán's inequality.
Technical Report 2005-15, SFB F013, Johannes Kepler Universität, 2005.
18
S. Gerhold and M. Kauers.
A computer proof of turan's inequality.
Technical Report 2005-15, SFB F013, Altenbergerstrasse 69, September 2005.
19
S. Gerhold and M. Kauers.
A procedure for proving special function inequalities involving a discrete parameter.
Technical Report 2005-02, SFB F013, Johannes Kepler Universität, 2005.
20
S. Gerhold and M. Kauers.
A procedure for proving special function inequalities involving a discrete parameter.
SFB Report 2005-02, Johannes-Kepler-University, Altenberger Strasse 69, A-4040 Linz, January 2005.
21
S. Gerhold, M. Kauers, and J. Schöberl.
On a conjectured inequality for a sum of Legendre polynomials.
Technical Report 2006-11, SFB F013, Johannes Kepler Universität, 2006.
22
M. Kauers.
Computing limits of sequences.
Poster presentation at ISSAC 2003, Philadelphia, August 2003.
23
M. Kauers.
Computer proofs for polynomial identities in arbitrary many variables.
Technical report, SFB Numeric and Symbolical Computation, March 2004.
24
M. Kauers.
Zet user manual.
Technical Report 2004-05, SFB F13, 2004.
25
M. Kauers.
Algorithms for nonlinear higher order difference equations.
Technical Report 05-10, RISC Report Series, University of Linz, Austria, October 2005.
Ph.D. thesis.
26
M. Kauers.
Solving difference equations whose coefficients are not transcendental.
Technical Report 2005-20, SFB F013, Johannes Kepler Universität, 2005.
27
M. Kauers.
Solving difference equations whose coefficients are not transcendental.
Technical Report 2005-20, SFB F013, December 2005.
28
M. Kauers.
SumCracker -- a package for manipulating symbolic sums and related objects.
Technical Report 2005-21, SFB F013, Johannes Kepler Universität, 2005.
29
M. Kauers.
Sumcracker: A package for manipulating symbolic sums and related objects.
Technical Report 2005-21, SFB F013, December 2005.
30
M. Kauers.
Computer algebra and power series with positive coefficients.
Technical Report 2006-33, SFB F013, Altenbergerstrasse 69, November 2006.
31
M. Kauers.
Problem 11258.
American Mathematical Monthly, December 2006.
32
M. Kauers.
Shift equivalence of p-finite sequences.
Technical Report 2006-21, SFB F13, 2006.
33
M. Kauers.
Computer algebra for special function inequalities.
Technical Report 2007-07, SFB F13, Altenbergerstrasse 69, March 2007.
34
M. Kauers.
Summation algorithms for stirling number identities.
Technical Report 2007-11, SFB F013, Altenbergerstrasse 69, 2007.
35
M. Kauers and C. Koutschan.
A mathematica package for q-holonomic sequences and power series.
Technical Report 2007-16, SFB F013, 2007.
36
M. Kauers and V. Levandovskyy.
An interface between mathematica and singular.
Technical Report 2006-29, SFB F013, 2006.
37
M. Kauers and P. Paule.
A Computer Proof of Moll's Log-Concavity Conjecture.
Technical Report 2006-15, SFB F013, Johannes Kepler Universität, 2006.
38
M. Kauers and C. Schneider.
Indefinite summation with unspecified sequences.
SFB-Report 2004-13, J. Kepler University, Linz, 2004.
39
M. Kauers and C. Schneider.
Application of unspecified sequences in symbolic summation.
Technical Report 2005-19, SFB F013, Johannes Kepler Universität, 2005.
40
M. Kauers and C. Schneider, February 2007.
41
M. Kauers and C. Schneider.
Automated proofs for some stirling number identities.
Technical Report 2007-23, SFB F013, J. Kepler University Linz, 2007.
42
M. Kauers and C. Schneider.
Symbolic summation with radical expressions.
Technical Report 2007-02, SFB F13, Altenbergerstrasse 69, January 2007.
43
C. Koutschan.
Regular languages and their generating functions: The inverse problem.
Technical Report 2006-25, SFB F013, Johannes Kepler University Linz, 2006.
44
C. Koutschan.
Computer algebra systems - a practical guide (michael wester, editor), 2007.
45
C. Koutschan.
Linear recurrences and power series division.
Technical Report 2007-20, SFB F013, Johannes Kepler University, A-4040 Linz, 2007.
46
M. Kuba, H. Prodinger, and C. Schneider.
Generalized reciprocity laws for sums of harmonic numbers.
Technical Report 2005-17, J. Kepler University Linz, 2005.
SFB-Report.
47
S. Moch and C. Schneider.
Feynman integrals and difference equations.
Technical Report 2007-22, SFB F013, J. Kepler University Linz, 2007.
48
R. Osburn and C. Schneider.
Gaussian hypergeometric series and extensions of supercongruences.
SFB-Report 2006-38, J. Kepler University, Linz, 2006.
49
P. Paule and C. Schneider.
Truncating binomial series with symbolic summation.
SFB-Report 2006-42, J. Kepler University, Linz, 2006.
50
R. Pemantle and C. Schneider.
When is 0.999... equal to 1?
SFB-Report 2004-30, J. Kepler University, Linz, 2004.
51
S. Radu.
New upper bounds on rubik's cube.
Technical Report 07-08, Combinatorics, 2007.
52
A. Riese.
Omega -- A Mathematica implementation of partition analysis, 1998.
Available via: http://www.risc.uni-linz.ac.at/research/combinat/risc/software/Omega.
53
A. Riese.
RatDiff -- A Mathematica implementation of Mark van Hoeij's algorithm for finding rational solutions of linear difference equations, 1998.
Available via: http://www.risc.uni-linz.ac.at/research/combinat/risc/software/RatDiff.
54
A. Riese.
Computer algebra algorithms for symbolic summation.
Poster presentation at International Workshop on Numerical and Symbolic Scientific Computing, Strobl, Austria, June 2003.
55
C. Schneider.
A collection of denominator bounds to solve parameterized linear difference equations in ${\Pi}{\Sigma}$-fields.
SFB-Report 02-20, J. Kepler University, Linz, 2002.
56
C. Schneider.
Degree bounds to find polynomial solutions of parameterized linear difference equations in ${\Pi}{\Sigma}$-fields.
SFB-Report 02-21, J. Kepler University, Linz, 2002.
57
C. Schneider.
How one can play with sums, presented at the 8th Rhine workshop on computer algebra.
RISC-Report 02-24, J. Kepler University, Linz, 2002.
58
C. Schneider.
Solving parameterized linear difference equations in ${\Pi}{\Sigma}$-fields.
SFB-Report 02-19, J. Kepler University, Linz, 2002.
59
C. Schneider.
A unique representation of solutions of parameterized linear difference equations in ${\Pi}{\Sigma}$-fields.
SFB-Report 02-22, J. Kepler University, Linz, 2002.
60
C. Schneider.
A note on the number of rhombus tilings of a symmetric hexagon and symbolic summation.
Technical Report 03-09, RISC-Linz, J. Kepler University, Linz, 2003.
61
C. Schneider.
Product representations in ${\Pi}{\Sigma}$-fields.
SFB-Report 2003-10, J. Kepler University, Linz, 2003.
62
C. Schneider.
A new sigma approach to multi-summation.
SFB-Report 2004-10, J. Kepler University, Linz, June 2004.
63
C. Schneider.
Solving parameterized linear difference equations in terms of indefinite nested sums and products.
SFB-Report 2004-29, J. Kepler University, Linz, 2004.
64
C. Schneider.
The summation package sigma: Underlying principles and a rhombus tiling application.
SFB-Report 2004-28, J. Kepler University, Linz, 2004.
65
C. Schneider.
Symbolic summation with single-nested sum extensions (extended version).
SFB-Report 2004-7, J. Kepler University, Linz, 2004.
Published in Proc. ISSAC'04.
66
C. Schneider.
Finding telescopers with minimal depth for indefinite nested sum and product expressions (extended version).
Technical Report 2005-08, J. Kepler University Linz, 2005.
SFB-Report.
67
C. Schneider.
Apery's double sum is plain sailing indeed.
SFB-Report 2006-41, J. Kepler University, Linz, 2006.
68
C. Schneider.
Parameterized telescoping proves algebraic independence of sums.
SFB-Report 2006-40, J. Kepler University, Linz, 2006.
69
C. Schneider.
Simplifying sums in ${\Pi}{\Sigma}^*$-extensions.
Technical Report 2006-13, J. Kepler University, 2006.
SFB-Report.
70
C. Schneider.
Symbolic summation assists combinatorics.
SFB-Report 2006-37, J. Kepler University, Linz, 2006.
71
C. Schneider.
Parameterized telescoping proves algebraic independence of sums.
Poster presentation at FPSAC 2007, 2007.
72
C. Schneider.
A refined difference field theory for symbolic summation.
Technical Report 2007-24, SFB F013, J. Kepler University Linz, 2007.
73
C. Schneider and M. Kauers.
Application of unspecified sequences in symbolic summation.
Technical Report 2005-19, SFB F013, December 2005.
74
B. Zimmermann.
A Sister-Celine-type algorithm for definite summation and integration.
Poster presentation at ISSAC 2003, Philadelphia, August 2003.
75
B. Zimmermann.
Symbolic integration and summation of special functions.
Poster presentation at International Workshop on Numerical and Symbolic Scientific Computing, Strobl, Austria, June 2003.
76
B. Zimmermann.
Computing recurrences for parameter-dependent integrals.
Poster at the Fourth International School on Computer Algebra CoCoA 4, May 2005.




Please direct your comments or eventual problem reports to webmaster.

SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund