The SFB program expired on September 30, 2008. For the link to the successor project click DK Computational Mathematics
Home
Appointments
Papers
Misc
Contact

Technical Reports

Publication Lists

Annual Reports


Publications of the Project F1305


TechRepMisc - 2004


September 27, 2008

Bibliography

1
G. E. Andrews, P. Paule, and A. Riese.
MacMahon's Partition Analysis X: Plane Partitions with Diagonals.
SFB-Report 2004-2, J. Kepler University Linz, January 2004.
2
G. E. Andrews, P. Paule, and A. Riese.
MacMahon's Partition Analysis XI: Hexagonal Plane Partitions.
SFB-Report 2004-4, J. Kepler University Linz, March 2004.
3
G. E. Andrews, P. Paule, and C. Schneider.
Plane partitions VI: Stembridge's TSPP theorem.
SFB-Report 2004-09, J. Kepler University, Linz, 2004.
4
S. Gerhold.
On the signs of recurrence sequences.
Technical report, SFB F013 Numerical und Symbolic Scientific Computing, 2004.
5
M. Kauers.
Computer proofs for polynomial identities in arbitrary many variables.
Technical report, SFB Numeric and Symbolical Computation, March 2004.
6
M. Kauers.
Zet user manual.
Technical Report 2004-05, SFB F13, 2004.
7
M. Kauers and C. Schneider.
Indefinite summation with unspecified sequences.
SFB-Report 2004-13, J. Kepler University, Linz, 2004.
8
R. Pemantle and C. Schneider.
When is 0.999... equal to 1?
SFB-Report 2004-30, J. Kepler University, Linz, 2004.
9
C. Schneider.
A new sigma approach to multi-summation.
SFB-Report 2004-10, J. Kepler University, Linz, June 2004.
10
C. Schneider.
Solving parameterized linear difference equations in terms of indefinite nested sums and products.
SFB-Report 2004-29, J. Kepler University, Linz, 2004.
11
C. Schneider.
The summation package sigma: Underlying principles and a rhombus tiling application.
SFB-Report 2004-28, J. Kepler University, Linz, 2004.
12
C. Schneider.
Symbolic summation with single-nested sum extensions (extended version).
SFB-Report 2004-7, J. Kepler University, Linz, 2004.
Published in Proc. ISSAC'04.




Please direct your comments or eventual problem reports to webmaster.

SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund