The SFB program expired on September 30, 2008. For the link to the successor project click DK Computational Mathematics
Home
Appointments
Papers
Misc
Contact

Technical Reports

Publication Lists

Annual Reports


Publications of the Project F1305


TechRepMisc - 2005


September 27, 2008

Bibliography

1
J. P. Bell and S. Gerhold.
The positivity set of a recurrence sequence.
Technical Report 2005-11, SFB F013, Johannes Kepler Universität, 2005.
2
P. Flajolet, S. Gerhold, and B. Salvy.
On the non-holonomic character of logarithms, powers, and the $n$th prime function.
Technical report, J. Kepler University Linz, 2005.
SFB report.
3
S. Gerhold.
On some non-holonomic sequences.
Technical report, J. Kepler University Linz, 2005.
SFB report.
4
S. Gerhold and M. Kauers.
A computer proof of Turán's inequality.
Technical Report 2005-15, SFB F013, Johannes Kepler Universität, 2005.
5
S. Gerhold and M. Kauers.
A computer proof of turan's inequality.
Technical Report 2005-15, SFB F013, Altenbergerstrasse 69, September 2005.
6
S. Gerhold and M. Kauers.
A procedure for proving special function inequalities involving a discrete parameter.
Technical Report 2005-02, SFB F013, Johannes Kepler Universität, 2005.
7
S. Gerhold and M. Kauers.
A procedure for proving special function inequalities involving a discrete parameter.
SFB Report 2005-02, Johannes-Kepler-University, Altenberger Strasse 69, A-4040 Linz, January 2005.
8
M. Kauers.
Algorithms for nonlinear higher order difference equations.
Technical Report 05-10, RISC Report Series, University of Linz, Austria, October 2005.
Ph.D. thesis.
9
M. Kauers.
Solving difference equations whose coefficients are not transcendental.
Technical Report 2005-20, SFB F013, Johannes Kepler Universität, 2005.
10
M. Kauers.
Solving difference equations whose coefficients are not transcendental.
Technical Report 2005-20, SFB F013, December 2005.
11
M. Kauers.
SumCracker -- a package for manipulating symbolic sums and related objects.
Technical Report 2005-21, SFB F013, Johannes Kepler Universität, 2005.
12
M. Kauers.
Sumcracker: A package for manipulating symbolic sums and related objects.
Technical Report 2005-21, SFB F013, December 2005.
13
M. Kauers and C. Schneider.
Application of unspecified sequences in symbolic summation.
Technical Report 2005-19, SFB F013, Johannes Kepler Universität, 2005.
14
M. Kuba, H. Prodinger, and C. Schneider.
Generalized reciprocity laws for sums of harmonic numbers.
Technical Report 2005-17, J. Kepler University Linz, 2005.
SFB-Report.
15
C. Schneider.
Finding telescopers with minimal depth for indefinite nested sum and product expressions (extended version).
Technical Report 2005-08, J. Kepler University Linz, 2005.
SFB-Report.
16
C. Schneider and M. Kauers.
Application of unspecified sequences in symbolic summation.
Technical Report 2005-19, SFB F013, December 2005.
17
B. Zimmermann.
Computing recurrences for parameter-dependent integrals.
Poster at the Fourth International School on Computer Algebra CoCoA 4, May 2005.




Please direct your comments or eventual problem reports to webmaster.

SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund