The SFB program expired on September 30, 2008. For the link to the successor project click DK Computational Mathematics
Home
Appointments
Papers
Misc
Contact

Technical Reports

Publication Lists

Annual Reports


Publications of the Project F1305


TechRepMisc - 2006


September 27, 2008

Bibliography

1
H. Alzer, S. Gerhold, M. Kauers, and A. Lupas.
On turan's inequality for legendre polynomials.
Technical Report 2006-16, SFB F13, 2006.
2
G. E. Andrews and P. Paule.
MacMahon's Dream.
Technical report, SFB 013, September 2006.
SFB-report 2006-26.
3
G. E. Andrews and P. Paule.
MacMahon's Partition Analysis XI: The Search for Modular Forms.
Technical report, SFB 013, 2006.
SFB-report 2006-27.
4
G. E. Andrews and P. Paule.
MacMahon's Partition Analysis XII: Plane Partitions.
Technical report, SFB 013, September 2006.
SFB-report 2006-28.
5
A. Becirovic, P. Paule, V. Pillwein, A. Riese, C. Schneider, and J. Schöberl.
Hypergeometric Summation Methods for High Order Finite Elements.
Technical Report 2006-8, SFB F013, Johannes Kepler Universität, 2006.
6
S. Gerhold, L. Glebsky, C. Schneider, H. Weiss, and B. Zimmermann.
Limit states for one-dimensional schelling segregation models.
SFB-Report 2006-39, J. Kepler University, Linz, 2006.
7
S. Gerhold, M. Kauers, and J. Schöberl.
On a conjectured inequality for a sum of Legendre polynomials.
Technical Report 2006-11, SFB F013, Johannes Kepler Universität, 2006.
8
M. Kauers.
Computer algebra and power series with positive coefficients.
Technical Report 2006-33, SFB F013, Altenbergerstrasse 69, November 2006.
9
M. Kauers.
Problem 11258.
American Mathematical Monthly, December 2006.
10
M. Kauers.
Shift equivalence of p-finite sequences.
Technical Report 2006-21, SFB F13, 2006.
11
M. Kauers and V. Levandovskyy.
An interface between mathematica and singular.
Technical Report 2006-29, SFB F013, 2006.
12
M. Kauers and P. Paule.
A Computer Proof of Moll's Log-Concavity Conjecture.
Technical Report 2006-15, SFB F013, Johannes Kepler Universität, 2006.
13
C. Koutschan.
Regular languages and their generating functions: The inverse problem.
Technical Report 2006-25, SFB F013, Johannes Kepler University Linz, 2006.
14
R. Osburn and C. Schneider.
Gaussian hypergeometric series and extensions of supercongruences.
SFB-Report 2006-38, J. Kepler University, Linz, 2006.
15
P. Paule and C. Schneider.
Truncating binomial series with symbolic summation.
SFB-Report 2006-42, J. Kepler University, Linz, 2006.
16
C. Schneider.
Apery's double sum is plain sailing indeed.
SFB-Report 2006-41, J. Kepler University, Linz, 2006.
17
C. Schneider.
Parameterized telescoping proves algebraic independence of sums.
SFB-Report 2006-40, J. Kepler University, Linz, 2006.
18
C. Schneider.
Simplifying sums in ${\Pi}{\Sigma}^*$-extensions.
Technical Report 2006-13, J. Kepler University, 2006.
SFB-Report.
19
C. Schneider.
Symbolic summation assists combinatorics.
SFB-Report 2006-37, J. Kepler University, Linz, 2006.




Please direct your comments or eventual problem reports to webmaster.

SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund