The SFB program expired on September 30, 2008. For the link to the successor project click DK Computational Mathematics
Home
Appointments
Papers
Misc
Contact

Technical Reports

Publication Lists

Annual Reports


Publications of the Project F1306


TechRepMisc


September 27, 2008

Bibliography

1
T. Apel, S. Nicaise, and J. Schöberl.
Crouzeix-Raviart type finite elements on anisotropic meshes.
Technical Report 99-10, TU Chemnitz, SFB 393, 1999.
2
T. Apel and J. Schöberl.
Multigrid methods for anisotropic edge refinement.
Technical Report 00-19, SFB Report, 2000.
3
M. Brokate, C. Carstensen, and J. Valdman.
A quasi-static boundary value problem in multi-surface elastoplasticity: Part 1 - Analysis.
SFB Report 03-16, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2003.
4
M. Brokate, C. Carstensen, and J. Valdman.
A quasi-static boundary value problem in multi-surface elastoplasticity: Part 2 - Numerical solution.
Technical Report 2004-11, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2004.
5
C. Carstensen, A. Orlando, and J. Valdman.
A convergent adaptive finite element method for the primal problem of elastoplasticity.
Technical Report 2005-12, Institute of Mathematics, Humboldt-Universität zu Berlin, 2005.
6
Z. Dostál and J. Schöberl.
Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination.
Technical report, Department of Applied Mathematics, Univ. Ostrava CZ, 2003.
7
C. C. Douglas, G. Haase, and M. Iskandarani.
An additive Schwarz preconditioner for the spectral element ocean model formulation of the shallow water equations.
Technical Report 01-22, SFB F013, June 2001.
8
P. G. Gruber and J. Valdman.
Solution of elastoplastic problems based on the Moreau-Yosida Theorem.
SFB Report 2006-05, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2006.
9
P. G. Gruber and J. Valdman.
Newton-like solver for elastoplastic problems with hardening and its local super-linear convergence.
Technical report, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2007.
10
G. Haase.
Algebraic multigrid with local support.
SFB-Report 99-29, University Linz, SFB F013, Dec. 1999.
11
G. Haase.
A parallel AMG for overlapping and non-overlapping domain decomposition.
SFB-Report 99-05, University Linz, SFB F013, June 1999.
12
G. Haase, M. Kuhn, and U. Langer.
Parallel multigrid 3D maxwell solvers.
SFB-Report 99-23, University Linz, SFB F013, Dec. 1999.
13
G. Haase, M. Kuhn, and S. Reitzinger.
Parallel AMG on distributed memory computers.
SFB Report 00-16, Johannes Kepler University Linz, SFB F013, 2000.
14
G. Haase, U. Langer, S. Reitzinger, and J. Schöberl.
A general approach to Algebraic Multigrid methods.
SFB Report 00-33, Johannes Kepler University, 2000.
15
A. Hofinger and J. Valdman.
Numerical solution of the two-yield elastoplastic minimization problem.
SFB Report 2006-18, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2006.
16
B. Kaltenbacher, M. Kaltenbacher, and S. Reitzinger.
Identification of nonlinear B-H curves based on magnetic field computations and multigrid methods for ill-posed problems.
SFB-Report 01-17, SFB F013, University of Linz, May 2001.
17
B. Kaltenbacher and J. Schöberl.
A saddle point variational formulation for projection-regularized parameter identification.
Technical Report 00-13, SFB Report, 2000.
18
M. Kaltenbacher and S. Reitzinger.
Algebraic multigrid for static nonlinear 3D electromagnetic field computations.
Technical Report 00-07, SFB F013, 2000.
19
J. Kienesberger.
Multigrid preconditioned solvers for some elasto-plastic problems.
SFB Report 03-15, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2003.
20
J. Kienesberger and J. Valdman.
Computational plasticity.
Poster, SFB-Conference on ``Numerical and Symbolic Scientific Computing'', June 2003.
21
M. Kuhn, U. Langer, and J. Schöberl.
Scientific computing tools for 3D magnetic field problems.
SFB-Report 99-13, Johannes Kepler University Linz, August 1999.
22
U. Langer, A. Pohoata, and O. Steinbach.
Dual-primal boundary element tearing and interconnecting methods.
Technical Report Bericht 2005/6, Technische Universität Graz, Institut für Mathematik D, 2005.
23
E. Radmoser, O. Scherzer, and J. Schöberl.
A cascadic algorithm for bounded variation regularization.
Technical Report 00-23, SFB ``Numerical and Symbolic Scientific Computing'', 2000.
24
S. Reitzinger.
Algebraic multigrid and element preconditioning I.
SFB Report 98-15, Special Research Program SFB F013, 1998.
25
S. Reitzinger.
Algebraic multigrid and element preconditioning II.
Technical Report 99-18, Johannes Kepler Universität Linz, Institut für Mathematik, 1999.
26
S. Reitzinger and J. Schöberl.
Algebraic multigrid for edge elements.
Technical Report 00-15, SFB Report, 2000.
27
S. Repin and J. Valdman.
Functional a posteriori error estimates for problems with nonlinear boundary conditions.
Technical Report 2006-25, Johannes Radon Institute for computational and applied mathematics (RICAM), 2006.
28
M. Schinnerl and J. Schöberl.
Multigrid methods for the 3D simulation of nonlinear magneto-mechanical systems.
SFB-Report 99-30, University Linz, SFB F013, Dec. 1999.
29
J. Schöberl.
Objektorientiertes Finite Element Programm FEPP.
Johannes Kepler Universität Linz, Institut für Mathematik, 1998.
Programmdokumentation via http://nathan.numa.uni-linz.ac.at/Staff/joachim/cpp/doc/index.html.
30
J. Schöberl.
Multigrid methods for a class of parameter dependent problems in primal variables.
Technical Report 99-03, University Linz, SFB013, 1999.
31
J. Schöberl.
Commuting quasi-interpolation operators for mixed finite elements.
Technical Report ISC-01-10-MATH, Texas A$\&$M University, Institute for Scientific Computation, College Station, Texas, 2001.
32
J. Schöberl.
High order finite elements.
Chemnitzer FEM Symposium, Poster presentation, September 2003.




Please direct your comments or eventual problem reports to webmaster.

SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund