The SFB program expired on September 30, 2008. For the link to the successor project click DK Computational Mathematics
Home
Appointments
Papers
Misc
Contact

Technical Reports

Publication Lists

Annual Reports


Publications of the Project F1308


Article - 2002


September 27, 2008

Bibliography

1
H. Benameur and B. Kaltenbacher.
Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators.
Journal of Inverse and Ill-Posed Problems, 10(6):561-583, 2002.
2
M. Burger, V. Capasso, and G. Eder.
Modelling crystallization of polymers in temperature fields.
Z. Angew. Math. Mech., 82:51-63, 2002.
3
M. Burger, V. Capasso, and S. Salani.
Modelling multi-dimensional crystallization of polymers in interaction with heat transfer.
Nonlinear Analysis, Series B, Real World Applications, 3:139-160, 2002.
4
M. Burger, H. W. Engl, J. Haslinger, and U. Bodenhofer.
Regularized data-driven construction of fuzzy controllers.
J. Inverse and Ill-posed Problems, 10:319-344, 2002.
5
M. Burger and W. Mühlhuber.
Iterative regularization of parameter identification problems by SQP-methods.
Inverse Problems, 18:943-970, 2002.
6
M. Burger and W. Mühlhuber.
Numerical approximation of an SQP-type method for parameter identification.
SIAM J. Numer. Anal., 40(5):1775-1797, 2002.
7
H. W. Engl and P. Kügler.
Identification of a temperature dependent heat conductivity by Tikhonov regularization.
J. of Inverse and Ill-Posed Problems, 10:67-90, 2002.
8
B. Kaltenbacher, A. Neubauer, and A. Ramm.
Convergence rates of the continuous regularized Gauss-Newton method.
J. Inv. Ill-Posed Problems, 10:261-280, 2002.
9
B. Kaltenbacher and J. Schicho.
A multi-grid method with a priori and a posteriori level choice for the regularization of nonlinear ill-posed problems.
Numerische Mathematik, 93(1):77-107, 2002.
10
B. Kaltenbacher and J. Schöberl.
A saddle point variational formulation for projection-regularized parameter identification.
Numerische Mathematik, 91(4):675-697, 2002.




Please direct your comments or eventual problem reports to webmaster.

SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund