The SFB program expired on September 30, 2008. For the link to the successor project click DK Computational Mathematics
Home
Appointments
Papers
Misc
Contact

Technical Reports

Publication Lists

Annual Reports


Publications of the Project F1309
September 27, 2008

Bibliography

1
A. Becirovic.
Calculation of shape derivatives for the Stoke's problem.
Master's thesis, J. Kepler University Linz, Institute of Computational Mathematics, July 2003.
In German.
2
M. Burger.
All-at-once approaches for parameter identification problems: iterative regularization by SQP methods.
Invited talk at the minisymposium ``Computational Inverse Problems'' at the SIAM 50th Annual Meeting, Philadelphia, USA, July 2003.
3
M. Burger, E. Lindner, and W. Mühlhuber.
Automatic differentiation and optimal sizing of industrial components.
Optimization 2001, Aveiro, Portugal, July 2001.
4
M. Burger, E. Lindner, and W. Mühlhuber.
Optimal sizing of industrial components.
2001 SIAM Annual Meeting, San Diego, Ca, July 2001.
5
M. Burger and W. Mühlhuber.
Iterative regularization of parameter identification problems by SQP methods.
SFB Report 01-18, SFB F013, University Linz, 2001.
6
M. Burger and W. Mühlhuber.
Numerical approximation of an SQP-type method for parameter identification.
SFB Report 01-19, SFB F013, University Linz, 2001.
7
M. Burger and W. Mühlhuber.
Simultaneous SQP-methods for parameter identification problems.
SFB-Workshop, Strobl, Austria, June 2001.
8
M. Burger and W. Mühlhuber.
Iterative regularization of parameter identification problems by SQP-methods.
Inverse Problems, 18:943-970, 2002.
9
M. Burger and W. Mühlhuber.
Numerical approximation of an SQP-type method for parameter identification.
SIAM J. Numer. Anal., 40(5):1775-1797, 2002.
10
M. Burger and R. Stainko.
On a alternative approach to stress constrained topology optimization problems.
DMV 2004, September 2004.
11
M. Burger and R. Stainko.
On a alternative approach to stress constrained topology optimization problems.
Oberwolfach Seminar on Shape Optimization, September 2004.
12
M. Burger and R. Stainko.
Phase-field relaxation of topology optimization with local stress constraints.
Technical Report 2004-35, J. Kepler University Linz, SFB F013, 2004.
13
M. Burger and R. Stainko.
Phase-field relaxation of topology optimization with local stress constraints.
First Austrian Numerical Analysis Day, April 2005.
14
C. C. Douglas, G. Haase, and U. Langer.
A Tutorial on Elliptic PDE Solvers and Their Parallelization.
Software, Environments, and Tools,. SIAM, Philadelphia, 2003.
ISBN 0-89871-541-5.
15
M. Fischer.
Fast strategies for optimal sizing.
Master's thesis, Johannes Kepler University Linz, Institute of Computational Mathematics, March 2003.
16
G. Haase.
Advanced iterative solvers in optimization.
TU Györ, July 1998.
17
G. Haase.
Mass reduction of injection moulding machines.
ELTE University Budapest, November 1998.
18
G. Haase.
Optimization of machine support using advanced iterative solvers.
Numerical Methods and Computational Mechanics 98, Miskolc, August 1998.
19
G. Haase.
From the unit square to applications : advanced iterative solvers.
Old Dominion University, Norfolk, April 1999.
20
G. Haase.
Why mathematicians are still necessary to industry since engineers can do everything ?
University of Kentucky, Lexington, April 1999.
21
G. Haase.
Parallele Algorithmen für Partielle Differentialgleichungen.
Habilitation, Technisch-Naturwissenschaftliche Fakultät, Johannes Kepler Universität Linz, April 2001.
22
G. Haase.
Optimal sizing and shape optimization in structural mechanics.
Int. Conf. on Industrial Mathematics at IIT Bombay, India., December 2002.
23
G. Haase.
Optimal sizing and shape optimization in structural mechanics.
Conference on Curves and Surfaces - Saint-Malo, France, June 2002.
24
G. Haase.
Optimal sizing and shape optimization in structural mechanics.
Sandia National Labs Livermore, California, April 2003.
25
G. Haase.
Optimal sizing and shape optimization in structural mechanics.
16th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar (Germany), June 2003.
26
G. Haase, M. Kuhn, and U. Langer.
Parallel multigrid 3D Maxwell solvers.
Parallel Computing, 6(27):761-775, 2001.
27
G. Haase, U. Langer, E. Lindner, and W. Mühlhuber.
Various methods for structural optimization problems with industrial applications.
In W. A. Wall, K.-U. Bletzinger, and K. Schweizerhof, editors, Trends in Computational Structural Mechanics, pages 623-636. CIMNE, May 2001.
28
G. Haase, U. Langer, E. Lindner, and W. Mühlhuber.
Various methods for structural optimization problems with industrial applications.
Int. Conf. on Trends in Computational Structural Mechanics, Schloß Hofen, May 20-23, 2001, May 2001.
29
G. Haase, U. Langer, E. Lindner, and W. Mühlhuber.
Optimal sizing of industrial structural mechanics problems using automatic differentiation.
In G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors, Proceedings of ``Automatic Differentiation 2000: From Simulation to Optimization, pages 181-188. Springer, 2002.
30
G. Haase, U. Langer, E. Lindner, and W. Mühlhuber.
Optimal sizing of industrial structural mechanics problems using automatic differentiation.
In K. Gürlebeck, L. Hempel, and C. Könke, editors, Digital Proceedings of the 16th International Conference on the Application of Computer Sciences and Mathematics in Architecture and Civil Engineering, Weimar, June 10-12, 2003, pages 1-18, Weimar, 2003. IKM.
http://euklid.bauing.uni-weimar.de/ikm2003/papers/160/M_160.pdf.
31
G. Haase, U. Langer, E. H. Lindner, and W. Mühlhuber.
Multilevel optimization of industrial structural mechanics problems.
GAMM Jahrestagung 2000, Göttingen, April 2000.
32
G. Haase, U. Langer, E. H. Lindner, and W. Mühlhuber.
Optimal sizing of industrial structural mechanics problems using automatic differentiation.
AD 2000, Nice, June 2000.
33
G. Haase, U. Langer, E. H. Lindner, and W. Mühlhuber.
Optimal sizing using automatic differentiation.
In K.-H. Hoffmann, K. H. W. Hoppe, and V. Schulz, editors, Proceedings of Fast Solution of Discretized Optimization Problems, volume 138 of International Series on Numerical Mathematics (ISNM), pages 120-138. Birkhäuser, 2001.
34
G. Haase and E. Lindner.
Advanced iterative solvers and optimal design of industrial machine components.
Institutsbericht 543, Institute of Analysis and Computational Mathematics, Johannes Kepler University Linz, July 1998.
35
G. Haase and E. Lindner.
Advanced iterative solvers and optimization.
ECMI Newsletter, 24:5-7, October 1998.
36
G. Haase and E. Lindner.
Optimization of machine support using advanced iterative solvers.
GAMM-Jahrestagung 98, Bremen, April 1998.
37
G. Haase and E. Lindner.
Mass saving on an injection moulding machine and following projects.
ICIAM 99, Edinburgh, July 1999.
38
G. Haase, E. Lindner, W. Mühlhuber, and C. Rathberger.
Optimal sizing and shape optimization in structural mechanics.
Technical Report SFB-Report 03-06, University of Linz, SFB F013, May 2003.
39
G. Haase, E. Lindner, W. Mühlhuber, and C. Rathberger.
Optimal sizing and shape optimization in structural mechanics.
In M. C. Joshi et al., editors, Industrial Mathematics, pages 221-240. Narosa Publishing House, New Delhi, India, 2006.
40
G. Haase, E. Lindner, and C. Rathberger.
Fast shape design for industrial components.
In A. D. Bucchianico, R. M. M. Mattheij, and M. A. Peletiers, editors, Progress in Industrial Mathematics at ECMI 2004, volume 8 of European Consortium for Mathematics in Industry, pages 361-365, Berlin, Heidelberg, 2006. Springer Verlag.
41
G. Haase and E. H. Lindner.
Advanced iterative solvers and optimal design of industrial machine components.
In L. Arkeryd, J. Bergh, P. Brenner, and R. Petterson, editors, Progress in Industrial Mathematics at ECMI 98, pages 247-254, Stuttgart, 1999. Teubner.
42
G. Haase and E. H. Lindner.
Advanced solving techniques in optimization of machine component.
Computer Assisted Mechanics and Engineering Sciences, 6(3):337-343, 1999.
43
K. Hauser.
Hierarchical methods for simulation and optimal design in magnetic field problems.
Master's thesis, Johannes Kepler University Linz, Institute for Analysis and Computational Mathematics, September 1999.
44
U. Langer.
Computational Electromagnetics: From the Simulation to the Optimization.
Invited talk at CosComp 2006, Vienna, February 9-11, 2006, February 2006.
45
U. Langer.
Computational electromagnetics: From the simulation to the optimization.
Invited talk at the TU Berlin, 15 March 2006, March 2006.
46
U. Langer.
Computational electromagnetics: From the simulation to the optimization.
Invited talk at SCAI Colloquium, St. Augustin, Germany, 11 June 2007, June 2007.
47
U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, and W. Zulehner, editors.
Domain Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering, Heidelberg, 2007. Springer.
48
U. Langer, G. Haase, E. Lindner, and W. Mühlhuber.
Multigrid methods for structural optimization problems with industrial applications.
Invited talk at the Workshop on Fast Solution of Discretized Optimization Problems, May 2000.
49
U. Langer and C. Pechstein.
Coupled finite and boundary element tearing and interconnecting methods applied to nonlinear potential problems.
Technical Report 06-01, University Linz, SFB F013, 2006.
50
U. Langer and C. Pechstein.
Coupled finite and boundary element tearing and interconnecting solvers for nonlinear potential problems.
Journal of Applied Mathematics and Mechanics (ZAMM), 2006.
accepted for publication.
51
E. Lindner.
Fast shape design for industrial components.
ECMI 2004, June 2004.
52
E. Lindner and G. Haase.
Advanced iterative solvers and optimal design of industrial components.
ECMI 98, Gothenburg, June 22-27 1998.
53
N. Lorenz.
Shape optimization of air-conducting components of the suction part of an engine.
Master's thesis, J. Kepler University Linz, Institute of Computational Mathematics, April 2002.
In German.
54
D. Lukáš.
Shape optimization of a magnetic separator.
Master's thesis, VŠB-Technical University of Ostrava, Czech Republic, 1999.
In Czech.
55
D. Lukáš.
Shape optimization of homogeneous electromagnets.
Poster at the conference Scientific Computing in Electrical Engineerng (SCEE 2000), Warnemünde, Germany, August 2000.
56
D. Lukáš.
Shape optimization of homogeneous electromagnets.
Technical Report 00-30, SFB F013, Johannes Kepler University Linz, Austria, 2000.
57
D. Lukáš.
Shape optimization of homogeneous electromagnets.
In Scientific Computing in Electrical Engineering (SCEE 2000), volume 18 of Lecture Notes in Computational Science and Engineering, pages 145-152. Springer, 2001.
58
D. Lukáš.
On a numerical solution to a 3d optimal shape design of homogeneous electromagnets and the existence result.
Talk at the conference Computational Methods in Inverse Problems 2002, Strobl, Austria, August 2002.
59
D. Lukáš.
On the existence of a solution of a 3-dimensional optimal shape design problem of homogeneous electromagnets.
Talk at the Seminar on Current Problems in Numerical Analysis, Mathematical Institute of the Czech Academy of Sciences, Prague, January 2002.
60
D. Lukáš.
2d shape optimization for magnetostatics.
Tutorial of a students project at the conference Industrial Mathematics and Mathematical Modelling (IMAMM 2003), Roznov pod Radhoštem, Czech Republic, July 2003.
61
D. Lukáš.
A finite-element approximation of vector linear boundary value problems of the 2nd order and an application to magnetostatics.
In Proceedings of the Seminar on Numerical Analysis dedicated to the jubilee of Ivo Marek, pages 37-38, 2003.
62
D. Lukáš.
Multilevel solvers for 3-dimensional optimal shape design.
Poster at the International Workshop on Numerical and Symbolic Scientific Computing 2003, Strobl, Austria, June 2003.
63
D. Lukáš.
Multilevel solvers for 3-dimensional optimal shape design with an application to magnetostatics.
Talk at the 9th International Symposium on Microwave and Optical Technology 2003, Ostrava, Czech Republic, August 2003.
64
D. Lukáš.
On solution to an optimal shape design problem in 3-dimensional linear magnetostatics.
Applications of Mathematics, 49(5):441-464, 2003.
65
D. Lukáš.
On the road - between Sobolev spaces and a manufacture of homogeneous electromagnets.
In Transactions of VŠB-Technical University of Ostrava, Czech Republic, volume 2 of Computer Science and Mathematics Series, pages 81-90, 2003.
66
D. Lukáš.
Optimal Shape Design in Magnetostatics.
PhD thesis, VŠB-Technical University of Ostrava, Czech Republic, September 2003.
67
D. Lukáš.
An integration of optimal topology and shape design for magnetostatics.
In A. M. Anile, G. Ali, and G. Mascali, editors, Proceedings of SCEE 2004, volume 9 of Mathematics in Industry, pages 227-232, 2006.
68
D. Lukáš.
A multigrid method for coupled optimal topology and shape design in nonlinear magnetostatics.
In A. B. de Castro, D. Gomes, P. Quintela, and P. Salgado, editors, Proceedings of ENUMATH 2005, pages 1015-1022, 2006.
69
D. Lukáš.
Multigrid-based optimal shape and topology design in magnetostatics.
In T. Boyanov, S. Dimova, K. Georgiev, and G. Nikolov, editors, Proceedings of NM&A 2006, Lecture Notes in Computer Science, pages 82-91, 2007.
70
D. Lukáš and P. Chalmovianský.
A sequential coupling of optimal topology and multilevel shape design applied to two-dimensional nonlinear magnetostatics.
Computing and Visualization in Science, 10(3):135-144, 2007.
71
D. Lukáš, D. Ciprian, J. Pištora, K. Postava, and M. Foldyna.
Multilevel solvers for 3-dimensional optimal shape design with an application to magneto-optics.
In Proceedings of the 9th International Symposium on Microwave and Optical Technology (ISMOT 2003), volume 4445 of Proceedings of the International Society for Optical Engineering (SPIE), pages 235-239, 2003.
72
D. Lukáš, I. Kopriva, D. Ciprian, and J. Pištora.
3d optimal shape design of homogeneous electromagnets.
Talk at the conference Modelling 2001, Pilsen, Czech Republic, August 2001.
73
D. Lukáš, I. Kopriva, D. Ciprian, and J. Pištora.
Shape optimization of homogeneous electromagnets and their application to measurements of magnetooptic effects.
In Records of COMPUMAG 2001, volume 4, pages 156-157, 2001.
74
D. Lukáš, I. Kopriva, D. Ciprian, and J. Pištora.
Shape optimization of homogeneous electromagnets and their application to measurements of magnetooptic effects.
Proposal of a new benchmark problem at the TEAM (Testing Electromagnetic Analysis Methods) workshop 2001, Evian, France, August 2001.
75
D. Lukáš, I. Kopriva, D. Ciprian, and J. Pištora.
Shape optimization of homogeneous electromagnets and their application to measurements of magnetooptic effects.
Poster at the conference Computation of Electromagnetic Fields (COMPUMAG 2001), Evian, France, August 2001.
76
D. Lukáš, I. Kopriva, D. Ciprian, and J. Pištora.
Shape optimization of homogeneous electromagnets and their application to measurements of magnetooptic effects.
Talk at the Seminar on Applied and Numerical Mathematics (SANM 2001), Kvilda, Czech Republic, September 2001.
77
D. Lukáš, U. Langer, E. Lindner, R. Stainko, and J. Pištora.
Computational shape and topology optimization with applications to 3-dimensional magnetostatics.
In U. Langer, R. W. Hoppe, and R. Hiptmair, editors, Proceedings of the Oberwolfach Workshop on Computational Electromagnetism 2004, volume 1 of Oberwolfach Reports, pages 601-603, 2004.
78
D. Lukáš, W. Mühlhuber, and M. Kuhn.
An object-oriented library for the shape optimization problems governed by systems of linear elliptic partial differential equations.
In Transactions of VŠB-Technical University of Ostrava, Czech Republic, volume 1 of Computer Science and Mathematics Series, pages 115-128, 2001.
79
D. Lukáš, J. Vlcek, Z. Hytka, and Z. Dostál.
Optimization of dislocation of magnets in a magnetic separator.
In Transactions of VŠB-Technical University of Ostrava, Czech Republic, volume 1/1999 of Electrical Engineering Series, pages 1-12, 1999.
80
W. Mühlhuber.
Importing geometries from CAD systems.
SFB Workshop, Strobl, Austria, September 1998.
81
W. Mühlhuber.
Numerical solution of contact problems and applications.
GAMM Workshop, Kiel, Germany, July 3-5 1998.
82
W. Mühlhuber.
Optimal sizing using automatic differentiation.
IWR, TU Dresden, November 1999.
83
W. Mühlhuber.
Mesh generation of CAD-geometries using STEP.
IWR Heidelberg, Prof. G. Wittum, April 2000.
84
W. Mühlhuber.
Optimal sizing using automatic differentiation.
SFB Report 00-34, SFB F013, University Linz, December 2000.
85
W. Mühlhuber.
Various aspects of shape optimization.
TMR Workshop on Inverse Problems, Strobl, June 2000.
86
W. Mühlhuber.
Optimal design of industrial components.
SIAM-EMS Conference, Berlin, September 2001.
87
W. Mühlhuber.
Optimal design of industrial components.
Workshop on Adjoints - Analysis and Applications, Decin, Czech Republic, September 2001.
88
W. Mühlhuber.
Optimal sizing of structural mechanics problems.
IWR, TU Dresden, March 2001.
89
W. Mühlhuber.
Triangulation and mesh generation for FE-problems.
SFB-Workshop, Strobl, Austria, June 2001.
90
W. Mühlhuber.
Efficient Solvers for Optimal Design Problems with PDE Constraints.
PhD thesis, University of Linz, Inst. for Computational Math., April 2002.
91
C. Pechstein and B. Jüttler.
Monotonicity-preserving interproximation of B-H-curves.
Journal of Computational and Applied Mathematics, 196(1):45-57, 2006.
92
C. Rathberger.
Fast product design with modern optimization software: Shape optimization.
Master's thesis, University of Linz, Inst. for Computational Math., July 2002.
93
A. Rösch and R. Simon.
Linear and discontinuous approximations for optimal control problems.
Numerical Functional Analysis and Optimization, 26(3):427-448, 2005.
94
A. Rösch and R. Simon.
Superconvergence properties for optimal control problems discretized by piecewise linear and discontinuous functions.
Numerical Functional Analysis and Optimization, 28(3-4):425-443, 2007.
95
J. Schöberl and W. Zulehner.
On Schwarz-type smoothers for saddle point problems.
Numerische Mathematik, 95:377-399, 2003.
96
J. Schöberl and W. Zulehner.
Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems.
SFB-Report 2006-19, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2006.
97
J. Schöberl and W. Zulehner.
Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems.
SIAM J. Matrix Anal. Appl., 29:752-773, 2007.
98
R. Simon.
Fast solution of KKT systems arising from a model control problem.
GAMM-SIAM Conference on Applied Linear Algebra, Düsseldorf, July 2006.
99
R. Simon.
Multigrid Solver for Saddle Point Problems in PDE-Constrained Optimization.
PhD thesis, Johannes Kepler University, SFB F013, 2007.
In preparation.
100
R. Simon.
On schwarz-type smoothers for saddle point problems with applications to PDE-constrained optimization problems.
Workshop: ``Optimierungsmethoden, Approximation und Adadptivität bei Optimierungsproblemen mit partiellen Differentialgleichungen'', Linz, March 2007.
101
R. Simon.
On Schwarz-type Smoothers for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems.
3rd Austrian Numerical Analysis Day, April 2007.
102
R. Simon.
On Schwarz-type Smoothers for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems.
6th International Congress on Industrial and Applied Mathematics, Zurich, July 2007.
103
R. Simon and W. Zulehner.
On schwarz-type smoothers for saddle point problems with applications to pde-constrained optimization problems.
SFB Report 2007-01, Johannes Kepler University Linz, SFB ``Numerical and Symbolic Scientific Computing'', 2007.
104
R. Stainko.
A multilevel approach to the minimal compliance problem in topology optimization.
Technical Report 03-14, J. Kepler University Linz, SFB F013, September 2003.
105
R. Stainko.
A 3d multilevel approach to the minimal compliance problem in topology optimization.
EUCCO 2004, March 2004.
106
R. Stainko.
An adaptive multilevel approach to stress constrained topology optimization problems.
Technical Report 2004-20, J. Kepler University Linz, SFB F013, 2004.
107
R. Stainko.
A multilevel approach to the minimal compliance problem in topology optimization.
GAMM 2004, March 2004.
108
R. Stainko.
Phase-field relaxation of topology optimization with local stress constraints.
Technical University of Denmark, February 2005.
109
R. Stainko.
Phase-field relaxation of topology optimization with local stress constraints.
Workshop on Level Set Methods for Direct and Inverse Problems, Linz, September 2005.
110
R. Stainko.
Phase-field relaxation of topology optimization with local stress constraints.
IUTAM Symposium on Topology Design Optimization of Structures, Machines and Materials, Rungsted, Denmark, November 2005.
111
R. Stainko.
An adaptive multilevel approach to the minimal compliance problem in topology optimization.
Communications in Numerical Methods in Engineering, 22:109-118, 2006.
112
R. Stainko.
Advanced Multilevel Techniques to Topology Optimization.
PhD thesis, J. Kepler University Linz, SFB F013, February 2006.
113
R. Stainko.
An optimal solver for a kkt-system arising from an interior-point formulation of a topology optimization problem.
Technical Report 06-10, J. Kepler University Linz, SFB F013, 2006.
114
R. Stainko and M. Burger.
Phase-field relaxation of topology optimization with local stress constraints.
IPAM Inverse Problems Reunion Conference, Lake Arrowhead, June 2005.
115
R. Stainko and M. Burger.
Phase-field relaxation of topology optimization with local stress constraints and an optimal KKT-solver.
Workshop on Dircet and Inverse Field Computations in Mechanics, Linz, November 2005.
116
R. Stainko and M. Burger.
A one shot approach to topology optimization with local stress constraints.
In M. P. Bendsoe, N. Olhoff, and O. Sigmund, editors, IUATM Symposium on Topology Design Optimization of Structures, Machines and Materials, volume 137 of Solid Mechanics and its Applications, pages 181-184. IUTAM, Springer, 2006.
117
R. Stainko and M. Burger.
Phase-field relaxation of topology optimization with local stress constraints.
SIAM Journal on Control and Optimization, 45(4):1447-1466, 2006.
118
W. Zulehner.
A class of smoothers for saddle point problems.
Computing, 65:227-246, 2000.
119
W. Zulehner.
Analysis of iterative methods for saddle point problems: A unified approach.
Mathematics of Computation, 71(238):479-505, 2001.
120
W. Zulehner.
On kernel-preserving schwarz-type smoothers for saddle point problems.
Workshop: Schnelle Löser für Partielle Differentialgleichungen, Oberwolfach, June 2003.
121
W. Zulehner.
On kernel-preserving smoothers for saddle point problems.
11th Copper Mountain Conference on Multigrid Methods, April 2003.




Please direct your comments or eventual problem reports to webmaster.

SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund