The SFB program expired on September 30, 2008. For the link to the successor project click DK Computational Mathematics
Home
Appointments
Papers
Misc
Contact

Technical Reports

Publication Lists

Annual Reports


Publications of the Project F1310


Article


September 27, 2008

Bibliography

1
F. Chyzak, P. Paule, O. Scherzer, A. Schoisswohl, and B. Zimmermann.
The construction of orthonormal wavelets using symbolic methods and a matrix analytical approach for wavelets on the interval.
Experiment. Math., 10:67-86, 2001.
2
P. Deuflhard, H. W. Engl, and O. Scherzer.
A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions.
Inverse Problems, 14:1081-1106, 1998.
3
I. Frigaard and O. Scherzer.
The effects of yield stress variation of uniaxial exchange flow in a pipe.
SIAM. Appl. Math., 2000.
to appear.
4
I. A. Frigaard and O. Scherzer.
Uniaxial exchange of two bingham fluids in a cylindrical duct.
IMA J. Appl. Math., 1998.
To appear.
5
B. Hofmann and O. Scherzer.
Local ill-posedness and source conditions of operator equations in Hilbert spaces.
Inverse Problems, 14:1189-1206, 1998.
6
S. I. Kabanikhin, R. Kowar, and O. Scherzer.
On the Landweber iteration for the solution of a parameter identification problem in a hyperbolic partial differential equation of second order.
J. Inv. Ill-Posed Problems, 6(5):403-430, 1998.
7
S. I. Kabanikhin, R. Kowar, and O. Scherzer:.
On the Landweber iteration for the solution of a parameter identification problem in a hyperbolic partial differential equation of second order.
J. Inv. Ill-Posed Problems, 8:403-430, 1999.
appeared already 1998.
8
E. Radmoser, O. Scherzer, and J. Weickert.
Scale-space properties of nonstationary iterative regularization methods.
Journal of Visual Communication and Image Representation, 2000.
To appear.
9
O. Scherzer.
An iterative multi level algorithm for solving nonlinear ill-posed problems.
Numer. Math., 80:579-600, 1998.
10
J. Weickert and O. Scherzer.
On regularization and diffusion filtering.
J. Math. Imag. Vision., 12:43-63, 2000.




Please direct your comments or eventual problem reports to webmaster.

SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund