The SFB program expired on September 30, 2008. For the link to the successor project click DK Computational Mathematics
Home
Appointments
Papers
Misc
Contact

Technical Reports

Publication Lists

Annual Reports


Publications of the Project F1317
September 27, 2008

Bibliography

1
M. Burger and A. Neubauer.
Analysis of Tikhonov regularization for function approximation by neural networks.
Neural Networks, 16:79-90, 2003.
2
H. Gu and S. Kindermann.
Solution analysis of pdes related to the Mumford-Shah functional with symbolic computation.
Technical report, University Linz SFB F1317, September 2003.
3
B. Kaltenbacher, A. Neubauer, and A. Ramm.
Convergence rates of the continuous regularized Gauss-Newton method.
J. Inv. Ill-Posed Problems, 10:261-280, 2002.
4
S. Kindermann.
Algorithms for ill-posed problems with discontinous solutions: The moving grid method and Hamilton-Jacobi equations.
SFB Status Seminar in Strobl, April 2002.
5
S. Kindermann.
Regularisierung von schlecht gestellten Problemen mittels Kurven und Oberflächendarstellungen.
Invited talk at University Göttingen, July 2002.
6
S. Kindermann.
Regularization by Hamilton-Jacobi type equation.
Conference on Computational Methods for Inverse Problems, Strobl, August 2002.
7
S. Kindermann.
A new iterative regularization method using an equation of Hamilton-Jacobi type.
Technical report, University Linz SFB F1317, July 2003.
8
S. Kindermann and A. Leitao.
On regularization methods based on dynamic programming techniques.
Technical report, University Linz SFB F1317, August 2003.
9
S. Kindermann and A. Neubauer.
Parameter identification by regularization for surface representation via the moving grid approach.
SIAM J. Contr. Optim., 2003.
to appear.
10
A. Neubauer.
Estimation of discontinuous solutions of ill-posed problems by regularization for surface representations: numerical realization via moving grids.
Int. Conference on Inverse Problems, Hongkong, January 2002.
11
A. Neubauer.
Estimation of discontinuous solutions of ill-posed problems by regularization for surface representations: numerical realization via moving grids.
In Y. C. Hon, M. Yamamoto, J. Cheng, and J. Y. Lee, editors, Recent Development in Theories and Numerics, International Conference on Inverse Problems, pages 67-83, Singapore, 2003. World Scientific Publisher.
12
R. Stütz.
On the moving grid method for parameter identification problems.
Master's thesis, Johannes Kepler University Linz, Industrial Mathematics Institute, 2004.




Please direct your comments or eventual problem reports to webmaster.

SpezialForschungsBereich SFB F013 | Special Research Program of the FWF - Austrian Science Fund