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1 Introduction

The identification of parameters in (partial) differential equations from measurements of
the solution is an important step in many modelling problems. Mathematically, it is
a (usually ill-posed) inverse problem which needs some regularization in order to cope
with noise in the data. We present industrially relevant parameter identification problems
from the areas of polymer growth, semiconductor modelling and elasticity and put these
problems into the functional-analytic framework of ill-posed nonlinear operator equations
in Hilbert spaces. In this framework, we discuss regularization methods with a special
emphasis on iterative regularization methods. One of these methods, namely Landweber
iteration, is used to solve the three parameter identification problems numerically. The
first two problems are mildly and severely ill-posed, respectively, while the third problem
has the new feature of containing also second derivatives of the unknown parameter which
leads to some questions which are not yet completely understood.

It gives us special pleasure to present this paper in a volume dedicated to Prof.Lavrentiev
due to the many contributions that Russian mathematicians, among them quite promi-
nently Prof.Lavrentiev and his school, have made to the field of inverse problems.
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2 An Example: Identification of the Nucleation Rate
in Polymer Crystallization

In [8], the following (one-dimensional) mathematical model for the non-isothermal crystal-
lization of polymers was developed ( see also [9] and [10] for higher dimension ):
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and boundary conditions
a—T(x,t) = a(T(x,t) — T'(x,t)) for x € 00 (6)
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where T denotes the temperature, § the degree of crystallinity, G the radial growth rate
of a nucleus and N the nucleation rate per unit length (dependent on temperature).

The diffusion coefficient D, the latent heat L and the heat transfer coefficient o can be
determined experimentally, as can sometimes the radial growth rate G. The aim is to iden-
tify the temperature-dependent nucleation rate N. This can be seen as the identification
of the nonlinearity N = N(T') in the coupled parabolic-hyperbolic system (1), (2). An
important question in such an identification problem, which has to be posed to the prac-
titioners before doing mathematics, is which data are available. Here, the experimentally
available data are:

e the temperature development at the boundary
T(x,t),x € 02,t € [0,t"] (8)
and

e the final degree of crystallinity
£l 1), € Q. (9)



We are dealing with a nonlinear inverse problem, which we first put into the abstract
formulation of an operator equation:

Let F' denote the operator mapping a given nucleation rate to the data described above.
F' cannot be computed explicitly, but evaluating F' involves

e solving the (nonlinear) parabolic-hyperbolic system (1)-(7) for T, &

e applying trace operators to obtain the calculated data (8), (9) for a given N.

Now, the inverse problem of determining N amounts to solving the nonlinear operator
equation B
F(N) = (noisy) data.

The problem of identifying the nucleation rate was treated in this framework in [11], we
come back to it later after having given an overview over the abstract theory of nonlinear ill-
posed operator equations, which is needed for an appropriate treatment of our identification
problem.

3 Functional-Analytic Theory of Nonlinear Ill-Posed
Problems

As a model for nonlinear ill-posed problems, we consider an operator equation

F(ﬂc) = Yo,

where F': D(F) C X — Y is a nonlinear operator between Hilbert spaces X and Y. The
basic assumptions on F' needed for a reasonable theory, which we will always make, are
that I is continuous and that F' is weakly (sequentially) closed, i.e., for any sequence

{z,} C D(F), weak convergence of z, to x in X and weak convergence of F'(z,) to y in
Y imply that z € D(F) and F(z) = y.

Here, F' is the "forward operator” for an inverse problem, i.e., the operator describing the
corresponding direct problem. In Section 2, F' was the operator mapping a given nucleation
rate to the data (8), (9). More general, F' is the operator mapping a given parameter in a
PDE to the solution of the PDE with this parameter if our inverse problem is a parameter
identification problem. In an inverse scattering problem, where we want to determine an
obstacle from measuring a wave scattered by this obstacle, F' maps the domain describing
the obstacle to the far field in a scattering problem as determined by the Helmholtz or
Maxwell equations in the exterior of that domain with an appropriate radiation condition
(cf. [15],[31]).

By definition, an inverse problem need not have a solution, and the solution need not be
unique. In the linear case, one reacts to these difficulties by defining a ”best—approximate



solution” as a least—squares solution of minimal norm (cf. [26], [32]). In the nonlinear
setting, the corresponding notion of a ”solution” is the concept of an ” z*—minimum-norm—
least—squares solution z,” introduced in [18] defined by the two consecutive minimization
problems

[ (21) — yol| = min{||[F(2) — yol|/z € D(F)}
and
|zo — 2|| = min{[|z — z*[| /|| F(z) — yol| = [|F(z1) — woll}-

Such an zy need not exist and, as opposed to the linear case, even if it exists, it need not
be unique. The choice of z* is crucial: It plays the role of a selection criterion determining
which among possibly many solutions is sought for, available a—priori information about
the unknown solution (e.g., about discontinuities in the solution or, in its derivatives)
should be entered into xy (which is easier said than done).

The following and many more results with proofs can be found in [32].

In the linear case, a problem is ill-posed if the forward operator is compact and has
infinite—-dimensional range, for which it is sufficient that the operator is compact, injective
and defined on an infinite-dimensional Hilbert space. The following result shows that
compactness and local injectivity imply ill-posedness also in the nonlinear case:

Proposition 3.1. Let F' be compact, F(zo) = yo,x0 € int D(F), F(z) = y be uniquely
solvable in a neighborhood of yo, and dim X = co. Then F~! is discontinuous in .

If we have noisy data, then we have to regularize (stabilize) the problem, since just applying
F~! to noisy data would not give a useful result due to the discontinuity. To be specific,
we assume that instead of y,, we have noisy data y° and assume that § is a norm bound
for the error, i.e.,

lyo —y°ll <6

holds.

In the linear setting, the (related) regularization methods of Lavrentiev (see [35], [40]) and
of Tikhonov ([43], [26]) are among the most widely—used and successful ones. Tikhonov
regularization can formally be carried over to the nonlinear setting via its variational
formulation by combining the two minimization steps involved in the definition of an ”z*—
minimum—norm-least—squares solution x;” into one minimization step, where the func-
tional to be minimized is a weighted sum of the squares of the two original functionals, the
weight being called the "regularization parameter”:

|F(z) = ¢°||* + af|z — 2*||> = min. over D(F).

We denote any minimizer by x° . Under our general assumptions about F, such a minimizer
exists, but in contrast to the linear case, it need not be unique. In the linear case, spectral
theory in Hilbert space is a powerful tool for analyzing convergence of various regularization
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methods (cf. e.g. [32]); in the nonlinear setting, this tool is not available, so that proofs
of results about convergence, stability and convergence rates of regularization methods for
nonlinear ill-posed problems are much more complicated. It was shown in [42] that for
a > 0, Tikhonov regularization is stable (in a multi-valued sense, since minimizers need
not be unique) and that, if the regularization parameter is chosen such that o = «(§) — 0
and % — 0, then 2% converges (again in a multi-valued sense) to an z*-~minimum-norm—
solution zy of F(z) = yo, if this equation has a solution; for the case that is has only a
least—squares solution see [5].

The following result about convergence rates has been proven in [18]:

Theorem 3.2. Let D(F) be convex and let xo be an z*-minimum-norm—solution. Assume
furthermore that

(i) F is Fréchet—differentiable,

(i1) there exists an L > 0 with ||F'(xo) — F'(2)|| < L||xo — z|| for all z € D(F),
(iii) there exists a w € Y with xo — x* = F'(z¢)*w,
(iv) L||w]| < 1.

Then, for a~ 4,
5, — zoll = O(V5).

The parameter choice rule in that Theorem is a so-called ”a—priori rule”, since it is chosen
just as a function of the noise level; a parameter choice rule that depends on the noise
level and on the actual data y° is called an ”a-posteriori rule”. For a—posteriori parameter
choice rules for Tikhonov regularization which always lead to optimal convergence rates
see [19] for linear and [20] for nonlinear ill-posed problems.

It is well-known (see e.g. [41]) that the convergence of regularization methods is arbitrarily
slow if the problem is really ill-posed. Convergence rates can only be obtained under
additional conditions on the (unknown) solution of the inverse problem, which are usually
given in the form of "source conditions” like

xo — 2% € R(F'(x0)") (10)

as in Theorem 3.2 (for more general forms and a more thorough discussion, see [32]). For
concrete forward operators F', such source conditions usually imply a-—priori smoothness
assumptions (related to smoothing properties of the forward map F'), which explains the
numerical experience that only smooth parts of zo — 2* can be resolved fast, and boundary
conditions, i.e., some boundary information about z, (which has then to be incorporated
into z*) has to be known in order to obtain a reasonable convergence rate. Also this can
be observed in practice.

The severeness of a source condition depends on the smoothing properties of the forward
operator. E.g., for the identification of the diffusion coefficient in a heat equation, (10)
essentially means that zo — z* € H?, the problem is "mildly ill-posed” (cf. [18]), while
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for inverse scattering (if xy denotes a parameterization of the unknown boundary of the
obstacle), not even the analyticity of zo — z* suffices for (10), the problem is ”severely
ill-posed” (cf. [30]).

In concrete cases, source conditions like (10) are difficult to interpret (see. e.g. [2]): they
are conditions about the solvability of an adjoint linearized equation. The main obstacle
in the interpretation of source conditions seems to be the adjoint. In [25], a variant of the
source condition (10) has been introduced for the problem of identifying ¢ = ¢(z) in

— = div (¢g(z) grad u).

o (¢(z) grad v)

The key idea there is that the adjoint involves the weak form of the PDE describing the
forward problem, which gives rise to a more natural source condition which is easier to
interpret. This idea has been carried over to the problem of identifying a temperature—
dependent diffusion coefficient ¢ = g(u) in

—div(g(u)grad u) = f(z) in @ C R"

u(r) =0 on 0

from (distributed or boundary) temperature measurements by Tikhonov regularization in
[21]. Like in the problem described in Section 2, this can be seen as the ”identification of
a nonlinearity”.

The inverse problems for ¢ = ¢(z) and g = ¢(u) are markedly different: On the one hand,
in more than one space dimension, the ”¢(u)—problem” seems to be easier due to the fact
that ¢ depends only on a one—dimensional variable (as opposed to the multi-dimensional
space variable). On the other hand, already the direct problem is nonlinear. But the main
numerical problem is that ¢ can be identified at best on the interval which is covered by
u = u(g), which is a—priori unknown.

In [21], a convergence rate of O(v/§) for Tikhonov regularization of the ”g(u)-problem” is
shown under a source condition whose interpretation via the ”Coarea Formula” ([24]) is, in
addition to gy — ¢* € H*, that u(gy) has no isotherms of vanishing (n — 1)-dimensional
Hausdorff measure, which is a reasonable condition since it says that each temperature for
which ¢ has to be determined has to be assumed ”sufficiently often”.

The following numerical results from [21] clearly show that ¢(u) can be determined only in
the temperature interval which is actually assumed, and that it can be determined quite
well there even with a rather bad ¢*:
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Figure 1: the true parameter ¢y and the noisy data z; at t = 0.5
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Figure 2: ¢, identified from z; with ¢* =4 and ¢* = 3

While for linear problems, Tikhonov and Lavrentiev regularization are certainly methods
of choice, Tikhonov regularization has a severe drawback for nonlinear problems: the
functional to be minimized is in general not convex, which makes finding a global minimum
difficult due to the possible presence of local minima. This makes iterative regularization
methods an attractive alternative, although of course also there, one has the problem of
local convergence.

4 TIterative Regularization of Nonlinear Ill-Posed
Problems

For nonlinear well-posed equations, Newton’s method is the basic iterative solution
method. It has fast local convergence, can be globalized, the theory is well-developed.
But what about Newton’s method for ill-posed problems?

The basis of Newton’s method is the linearization of F'(xz) = y at the current iterate xy:



the next iterate xy,1 is determined as solution of

F'(ag)(z — 2) = — (F(ax) — ). (11)

But for a nonlinear ill-posed problem, the linearization (11) is generally ill-posed: e.g., if
F is compact, so is F'(xy) (see [18] for a discussion about the relations between the ill-
posedness of a nonlinear problem and of its linearization). The obvious way to proceed is
to solve (11) stably by a regularization method for linear equations. If one chooses (linear)
Tikhonov regularization for that purpose, one obtains the Levenberg—Marquardt method:

Tg41 = T — (Fl(xk)*Fl(fk) + ak[)_lF’(xk)*(F(fk) - ?JJ)

with ap — 0 as k — oo, ||y — 30| < 6.

For well-posed problems, a complete analysis of the Levenberg-Marquardt method has
long been available; convergence for ill-posed problems has been proven in [27]. A variant
is the iteratively regularized Gaufi—Newton method:

ment = o = (F'(@0) F'(zi) + o) (F/ ()" (F () = 97) + e — O ) -

The additional last term provides additional stabilization by anchoring the iterates to ¢
(however, weaker as the iteration progresses). Convergence with rates have been shown in
(3] and [28].

One can also use an iterative method for solving the linear problem (11), which leads to
nested iterations (see [33],[34], [39]).

In any iterative method for solving a (linear or nonlinear) ill-posed problem, it is crucial
to stop the iteration at at the right step, the ”stopping index” n = n(d,%°) plays the role
of the regularization parameter in Tikhonov regularization. For proving convergence rates,
one needs again source conditions like (10) and conditions restricting the nonlinearity of
F (see [29] and [16] for a discussion of such conditions).

For well-posed nonlinear equations, invariance properties have been used for the systematic
development of a convergence theory for Newton-like methods (see [17]). In [16], such an
approach could also be developed for ill-posed problems:

The unregularized Newton method (in the form of the normal equation)

Tpi1 = Tp — (F'(:vk)*F’(xk)) B (F'(a:k)* (F(:vk) — y)) (12)

is invariant under affine transformations of G(z) := F'(z)* (F (x) — y) and under unitary

transformations of F. As noted above, for ill-posed problems, (12) is usually unstable,
so that (F'(z)*F'(x))~" has to be replaced by a continuous operator. There are several
possibilities:



(1) If (F'(x)*F'(x))~" is replaced (in an extremely crude way) simply by I, one obtains
a method which we will discuss below in several applications, called the (damped)
Landweber method

Tg+1 — T — Q)F,(xk;)* (F(.Tk) — y(S) .
(2) If (F'(zg)*F'(z))"" is replaced by (axl + F'(zy)*F’'(zx))”", one obtains the
Levenberg—Marquardt method.

(3) The Levenberg-Marquardt method augmented by the term
—(ad + F' ()" F' (wy,)) " e (g, — €)
for additional stabilization leads to the iteratively reqularized Gaufi—Newton method.

The basic condition used for the convergence analysis is the ” Newton—Mysovskii—condition”
I(F'(2) — F'(@") F'(@)#]| < Cnurlle — 2|

with a left inverse F’(z7)#; in order to avoid confusion with the starting value x4 of the
iteration, we use z' as symbol for the true solution.

Under a Newton—Mysovskii—condition, one can prove the following result for the iteration
79 defined via the damped Landweber method:

Theorem 4.1. If
at — o = (F'(«") F'(z")) w

1

Jor some 0 <v < 5

and ||wl|| is sufficiently small, then
2" = 23| < eflwl|(k + 1)~
or 0 < k < k., where the stopping indez k, is defined via the ”discrepancy principle
0 < k < k,, where the stopping indez k, is d d via the ”di inciple”
Iy’ — F(x4.)

with a suitable T > 2.
For 6 = 0, this rate holds for all k. Otherwise,

<6< |y’ = Flap)l, 0<k<k.,

laf, —a'll = 0 (9755 ).
For v = 1, we obtain a source condition z' — zy € R(F’'(z")*) similar to (10) and a
convergence rate O(v/9)).

A systematic treatment of many iterative methods for solving nonlinear ill-posed problems
can be found in [23].



5 Identification of the Nucleation Rate in Polymer
Crystallization by Landweber Iteration

We return to the problem of identifying the nucleation rae N in

oT PT ¢
% = Pamtly

9 1 o\ 9 (G(T)o¢ 9 ~
ot (é(T)(l _g)§> T Oz (ﬁa_x) +2§(N(T))

defined in Section 2 and recall the availabe data:

e the temperature development at the boundary

T(z,t),z € 00,t € [0,t"]

e the final degree of crystallinity

E(z,t7), z el

By defining F' as the operator taking N to the data, the problem can be viewed in the
abstract framework of Sections 3 and 4, and Landweber iteration can be formally applied.
The operator F' (Nk)* appearing in the iteration can be characterized by linear system of
PDE’s (see [11] for details). The source condition Nt — Ny € R(F'(Ny)*) can be interpreted
as requiring that NT — N, € H?, which means that if we want a reasonable convergence
rate, we have to incorporate details of NT which are less smooth than H? into the initial
guess Np; in addition, the source condition includes boundary conditions for Nt — N, that
can be fulfilled if the experiment covers the whole temperature range from the melting
point down to the glass transition temperature.

Our numerical tests confirm these predictions from the theory: The convergence rate O (v/4)
can be numerically verified for data covering the whole temperature range, while for a
restricted temperature range, convergence is slower. Also, the role of the stopping rule
(which was done according to the discrepancy principle described in Theorem 4.1) can be
seen quite dramatically; the following figures show results with 1 % error in the data:

10



Figure 4: Residual (lower curve),

Figure 3: Exact solution vs. de- error (upper curve) as function of
termined solution at iterate k, iteration index. * : stopping in-
dex

While the residual decreases steadily as the iteration progresses, the error between the
iterates and the exact solution first decreases, but then increases quite fast again; this turn
appears close to the stopping index determined by the discrepancy principle.

In [7], the iteratively regularized GauB-Newton method (IRGN) has been used for the
same problem. While it was faster for exact data, the instability (i.e., the rise in the
error just described) appeared earlier, which compensates the faster convergence. Thus, in
the presence of noise, a theoretically faster method like IRGN need not be advantageous
over the Landweber method, which is much simpler to implement (and cheaper since
the iteration involves no inversion of an operator, in contrast to IRGN). Based on this
observation, we used Landweber iteration also for other inverse problems with good results.
While the problem described in this Section was mildly ill-posed, we now report about our
experience with Landweber iteration for a severely ill-posed problem.

6 Identification of Doping Profiles in Semiconductor
Equations

The results surveyed in this Section are joint work with Martin Burger, Peter Markowich
and Paola Pietra and are published in [12]. They concern the identification of the doping
profile in the stationary semiconductor equations (based on the drift-diffusion model) and
show close relations to impedance tomography; we believe that [12] gives directions for
many possible inverse problems to be studied in the future.

To set the stage, we first have to present the stationary drift-diffusion equations; for details,
we refer to [37].

Let V denote the electrostatic potential, n the electron density, p the hole density, ¢
the elementary charge. By pu, and p,, we denote the electron and hole mobilities, by
D,, and D, the electron and hole diffusion coefficients, respectively, and by €, the semi-
conductor permittivity. We assume that the recombination—-generation rate R has the form
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R = F(n,p,z) - (np — n?) with F > 0,n; being the intrinsic carrier density. The quantity
which we finally want to determine is the doping profile C, i.e., the density difference
between ionized donors and acceptors.

With this notation, the stationary drift—diffusion equations read as follows:

div(e,VV) =q(n—p —C) in Q (Poisson equation)
div(D,Vn — u,nVV) =R in Q (electron continuity equation)
div(D,Vp + u,pVV) =R in (hole continuity equation),

with the following boundary conditions:
e homogeneous Neumann conditions on 92y C 02

e on 0Q2p (assumed to have positive measure in 0€):

Here, Ur denotes the thermal voltage and U the applied potential.
The standard assumption that the ” Einstein relations”

D, = p,Ur, D, = pyUr, (13)

hold enables the transformation of this system into ”Slotboom variables” u and v via

n = Cyo2e"/Ury, p = Cyd%e YUy (14)
with the scaling parameter
5= 2L
Cy’

where Cj is a typical value for the doping profile.
Transformation into dimensionless form with scaled length 7 (where L is a typical device
length), scaled mobilities



and rescaled potential ULT yields (for constant ;):

NAV =6 (e"u—eVv) - C in Q2 (15)
div.J, = §*'Q(u, v, V,z)(uv — 1) in Q2 (16)
divJ, = —5'Q(u, v, V, z)(uv — 1) in (17)
Jn = find’e" Vu in Q (18)
Jp = —fip6%e”V Vv in O (19)
with
2 €sUr
- qC,L?’

Q(u,v,V,z) = F(n,p,x); Jn, J, are the scaled electron and hole current densities, respec-
tively.
The transformed boundary conditions are:

eondy: % =0,J,-v=0,J,-v=0

eondp:u=eV v=_el,

1
V=U+Vy=U+1In (2—52(C+\/C2+452)).

In this dimensionless form, A and ¢ can be used (by letting them tend to 0) to construct
reduced models. For this and existence, uniqueness, and regularity of solutions see e.g.
37]. E.g., if

CeD:={Cel’(Q)|C<C<Cae inQ} (20)

holds, then a weak solution
(Vou,v, Iy, Jp) € H(Q)? x L*(Q)? x L*(Q)*.

exists (under reasonable assumptions on 0f2). However, uniqueness holds only for small
applied potential U. Thus, we consider the problem “around equilibrium” (i.e., linearized
around U = 0). The aim is to identify the doping profile C' from indirect measurements.
The following measurements at a contact I'; are possible:

e the current flow

I(T)) = /F (Jo + J,).dv (21)

e the mean capacitance
(22)
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which, in both cases, is just one number for each applied potential. Since measurements
for small U are strongly correlated, they will in practice not be enough to determine C' as
a function, but only a smaller number of parameters. Possible remedies are

e to use measurements away from equilibrium; however, there is no sound mathematical
theory away from equilibrium yet;

e to consider the transient case (see [7] for first results in this direction).

For a first mathematical analysis and first numerical studies for the inverse doping
problem, we consider the following idealized data:

Voltage—to—current data are given by measurements of the normal component of the

. . 3 .
current density J.v = (J, + J,).v on I'y C 0Qp for all applied voltages U € H2(0S2p) with
I|IU|| < r for some small r > 0.

For capacitance data around equilibrium see [12].

We now consider the problem around equilibrium: For U = 0, u = v =1 and V = V?,
where V0 solves the Poisson problem

NAVO ="’ — eV —C in (23)
V0=V on 0€lp (24)

0
aaly =0 on 0Qy. (25)

We linearize the problem around U = 0 into direction A and obtain:

NAV =V a—e o+ (¢ +e V)W in (26)
div (,uneVOVﬂ) = Qo(V°,z) (i + 0) in 0 (27)
div (,up(fVOVﬁ) = Qo(V°,z)(a + ) in 0 (28)

with Qq(V?, z) := Q(1,1,V?), homogeneous Neumann conditions on 9Qy and

V=h on 0€Qp (29)
1 =—h on GQD (30)
v=nh on 0€1p. (31)

Here, 4,7 and hence also J,, and jp do not depend on V. Thus, for these quantities, the
linearized Poisson equation is not needed.
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We now introduce the notation for the wvoltage—to—current map: For a given doping pro-
file C,

Sc: B(0)C H2(0Qp) — LA(Iy)

2
U — J.Z/|I'1. (3 )

For sufficiently small U, 3¢ is well-defined and smooth: $¢ € C®(B,(0), L*(T')). - (U)®
can be evaluated via solving the linearized drift-diffusion system, e.g.:

01U _y. 00
Sc® = E,C(O)q) = (ane‘/m% — Hp€ Vbla_y> ‘3QD’

where (1, 0) solves

div (unev‘)va = Qo(V° 2)(a+d); div (upe_VOVﬁ) Qo(V%z)(a+19) inQ (33)

S ~—

= _& =0 on 0Qp
(34)
o0t 00
% =0 % =0 on aQN,
(35)

and V? solves the (nonlinear) equilibrium Poisson problem.

Note that S¢ is a compact linear operator, i.e., the inverse problem of determining the
applied potential from the current (which is not the problem we consider here) would be
ill-posed. We want to determine C from s or from Sc ("reduced voltage—to—current
data”).

Since 8¢ maps Dirichlet data for (u,v) to a linear combination of their Neumann data, it is
similar to the well-known Dirichlet—to—Neumann map. Hence, results from it impedance
tomography, where one determines e.g. a conductivity from the Dirichlet—to—-Neumann
map, should have some bearing on the inverse doping problem; below, we give some simple
examples for this. E.g., the identification of C from reduced voltage-to—current data can
be done in the following two steps:

Identify V° in

div (,uneVOV

>
N——
Il

Qo(VY, z)(i+ 8); div (upe*ww) = Qo(V,z)(i+8) inQ

u=—-P =7 on 0Q2p
0i 00
5—0 5—0 onaﬁN.

and then compute C' from
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0

NAV =V — eV (¢ in Q.

The similarities to impedance tomography are even more strinking in special cases:

The unipolar case: Here, p = 0 (i.e., v = 1). Determining C' from reduced voltage—to—
current data on all of 92 reduces to identifying C in

NAV ="’ — eV —C in Q (36)
div (J“va) =0 in O (37)
VO =V on OS2 (38)

from the Dirichlet-to-Neumann map i|sn — %bg; since V9 is known on 052, % can be
computed from the current J = uneVO%. Thus, identifiability results from impedance
tomography can be translated into our situation:

Theorem 6.1. Let  C R? be a bounded Lipschitz domain and let Iy = 0Qp =
002.  Then, for two doping profiles Cy and Cy in D, the equality S¢, = Sc,
implies that C; = Cy.

This follows from [38] (or from [6] for C' € L>(Q) N WP (Q)).

Zero—Space Charge Limit: This is the model obtained by letting A tend to 0. The equilib-
rium Poisson equation reduces to sinh V° = 2C, the linearized equations to

div (p,aVia) = q(a,z)(a+ ) (39)
div (pya 'Vd) = gq(a,z)(d+ ) (40)

with
a=a(C) = ™ 4(a,z) = Q(1,1,1n(a), ). (41)

The inverse doping problem is then the problem of identifying the parameter a in these
equations from S¢.

A practically important special case which we also use for numerical tests is
the P — N—Diode: Here, the domain is split into two subregions

P where C >0
N where C <0.

The curve I' between P and N is called p — n—junction.
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8QD— Fl

Figure 5: Two-dimensional cross section of a p-n diode.

We assume that C is piecewise constant, there are two Ohmic contacts I'1, 'y = 0Qp\I'1,
and the applied potential has the form

U (constant) for x € Ty

Ulz) = { 0 for z € 0Q2p — I'y. (42)

The aim is to identify I'. As data, we use

e the current I¢(U) := JY -v on 'y C 0Qp for all sufficiently small U
or

® go = %(O), which is a function on I'y : go(t) = Sc(t - xr,)-

In the special limiting case ”zero space charge and low injection”, i.e., A — 0 and then
d — 0, a result from [1] implies that I" is uniquely determined by gc and that the inverse
problem is severely ill-posed.

For the numerical solution of determining a p — n—junction, we want to use Landweber
iteration. For this, the theory presented in Section 4 does not yet suffice, since for severely
ill-posed problems, where the forward operator is ”exponentially smoothing”, i.e., singular
values of its linearization decay exponentially, source conditions like

ot — 2" € R(F'(z")*)
are much too strong, Holder convergence rates like

|z, = a'|l = O(V9)

cannot be expected. The remedy are ”logarithmic” source conditions (to counter expo-
nential smoothing) which yield logarithmic convergence rates:
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With the notation of Section 4, we recall the damped Landweber iteration as
Thyr = 2h — wF' (1) (F(a}) — o).
We then have the following result about logarithmic convergence rates (see [16]):

Theorem 6.2. Let a Newton—Mysovskii—condition hold. With

—1 —p

and p > 1, let
o=z = fp(F'(:cT)*F'(a:T))w

hold with ||w|| sufficiently small. Then
=" = 23]l < e(in k)77,

Iy’ = Fa)l < ek™/*(In k)~

and
|z}, — 'l = O((—Ind)?)

hold, if k, is defined via the discrepancy principle.

Analogous results hold also for the iteratively regularized Gaui—Newton method (see [30],
[16]. As mentioned in Section 4, a source condition like (10) does not hold in inverse
scattering even if the difference between the true obstacle boundary and its a—priori guess
is analytic. The use of a logarithmic source condition as in Theorem 6.2 is appropriate
here: In [30] (see [31] for more details), the iteratively regularized Gau—Newton method
was used (in H?') for determining an impenetrable sound-soft obstacle in R? from the far—
field pattern for one incoming plane wave: Let z' denote a parameterization of the true
boundary, x, the initial guess. Then the logarithmic source condition

z' — 9 € R(f,(F'(a"))"F'(a"))
(as in Theorem 6.2) means essentially that
zt —x € HY?P,

which is perfectly reasonable. The following figures show numerical results. Left, the
result after 15 iterations using exact data is shown: the numerical and the true solutions
are virtually indistinguishable. The Figure to the right shown the result using data with
5% noise after 3 iterations as obtained from the discrepancy principle: The result is pretty
good for a severely ill-posed problem. In both pictures, x denotes the wave number in the
Helmholtz equation, and the unit circle was used as initial guess for the iteration.
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Figure 6:

The convergence rate
23, = 2l = O((=1n6)7)

obtained from the Gaufi-Newton analogue of Theorem 6.2 could be verified numerically.

We now return to the numerical solution of the inverse doping problem for a P— N —junction
and report on results obtained by Landweber iteration:

Reconstruction

Reconstruction
T T

o
01
02|
03|

y

04

05 == " -

06

07

Figure 7: Reconstruction using noisy data from the reduced model for noise levels § = 2.5%
(left) and 6 = 10% (right) compared to the exact junction (dotted).
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Development of the Error during the Iteration Development of the Error during the Iteration
T T T : T T T T T T T

80 100 120 ) 5 10

0 20 40 60 15 20
Number of Iterations Number of Iterations

Figure 8: Evolution of the error between reconstruction and exact junction during the
iteration, for § = 2.5% (left) and 6 = 10% (right). The stopping index obtained with the
generalized discrepancy principle is marked by a dot.

Similar results were obtained with capacitance data ([12]). For first results using the
transient drift—diffusion model, where we have more data due to the time—dimension, see
[7].

We close this Section by mentioning that semiconductor models (also more general ones
than the drift—diffusion equations) offer a lot of practically important and mathematically
interesting inverse problems, where links to the well-developed theory of the Dirichlet-to—
Neumann map can be exploited.

7 An Inverse Elasticity Problem from Industry:
Windshield Design by Sagging

To manufacture a car wiendshield by the ”"sagging process”, a sheet of glass is put onto a
frame and heated, which changes the Young’s modulus so that the glass sheet bends due
to gravity. The inverse problem is how to heat the glass sheet in order to achieve a desired
final shape. Actually, this inverse problem, which can also be viewed as control or optimal
design problem, consists of two subproblems:

e to determine the temperature regime from the desired Young’s modulus

e to determine the Young’s modulus (as a function of position) from the desired dis-
placement.

We consider the second of these inverse problems; for a more detailed description see [22].
The vertical displacement w of the glass (covering, in undeformed state, a two—dimensional
domain Q) satisfies the fourth order equation

1 1 )
(E(wee + §wyy))m + (Ewwy)wy + (E(wyy + §wm))yy =—g in
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with appropriate boundary conditions on w, where we consider homogeneous Dirichlet
conditions here. In reality, lift—off at the frame has to be considered, so that the direct
problem leads to a variational inequality (see [36]). The inverse problem is to find the
Young’s Modulus E = E(z,y) given a desired deformation w. This can be considered as a
PDE for the unknown E:

. 1. . . 1. :
((dgq + Ewyy)E)ww + (Way E)azy + ((yy + §www)E)yy =—g in Q.
Considered as a PDE for E, this equation

e is of second order in E

e changes its type between elliptic and hyperbolic in dependence on w; in practice,
typically both elliptic and hyperbolic regions appear.

The parameter identification problems considered so far were, if considered as PDEs for F,
of first order. In this Section, we study the question how the fact that we now have a second
order equation influences the numerics (and the analysis) of the parameter identification
problem. Furthermore, we ask the same question concerning the type of the PDE in FE.
We will see that in fact, both phenomena have an influence on the parameter identification
problem even if we do not solve it by directly solving the PDE for E (which would amount
to the ”equation error approach” for solving the parameter identification problem) but
by Landweber iteration (which is based on the ”output-least—squares approach”, cf. [4]).
This is somewhat astonishing since in the Landweber iteration formulation, the PDE for E
does not even appear. The output—least—squares approach, where we determine E based
on the minimization of
E = |lo - wgl,

where wg denotes the solution of the 4th order PDE for given FE| is certainly more appro-
priate since w is a target which we want to approximate with some accuracy, while in the
equation error approach, there would be no room for a tolerance in w.
In order to investigate the questions raised above, we consider a ”toy problem” which
shares with the original problem its key features, but is simpler numerically, since the direct
problem is a second order PDE. We have, in the meantime, also started to investigate the
full problem, the results are comparable.
We consider the following direct problem: Given E = E(x,y) > 0, solve the second order
elliptic PDE

—(Bwz)e — (Ewy)y — (wEyg)y — E, =g in Q

with Dirichlet boundary conditions.
The wnverse problem is, given w, to find E satisfying

— (W E)y — (WyE)y — (WE)y — Eyy = g in Q.
Considered as second order PDE for F, the principal part is
= WEy — Eyy..

hence, the equation for F is
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e elliptic where w > 0
e hyperbolic where w < 0.

The special case w(z,y) = y leads to the Tricomi equation (see e.g. [24]).

In [22], the numerical solution of this inverse problem by Landweber iteration and the
numerical results are described in detail. Since the inverse problem is a second order
PDE for E, also boundary conditions have to be imposed on E (where the answer to the
question which conditions should be imposed depends on the type of this PDE). In the
following results, E was fixed on the boundary. For this case, a basic observation was that
Landweber iteration converges much faster in the purely elliptic case, where the PDE for
E is elliptic everywhere (symbolized by a broken line in Figures 9 and 10) compared to
the purely hyperbolic case (the solid lines in Figures 9 and 10), and the final accuracy is of
about one order of magnitude better (which is understandable since boundary conditions
for E are appropriate in the elliptic but not in the hyperbolic case):

0.04

lo—w(Ex)l| 12
= RO ye ke

|1E—Eg| g1
a 2 _ME® v k
||w||L2(Q)

Figure 9:
g ||E||H1(Q)

Figure 10:

Interestingly, the error structure in the final iteration is markedly different between the
elliptic and hyperbolic cases:
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Figure 12: E — Ejq, hyperbolic
case

Figure 11: E — FEq, elliptic case

Figure 13: E — E1g9, elliptic case, Figure 14: E — Ejq, hyperbolic
top view case, top view
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With noisy data, we obtain the typical ”semi—convergence” behaviour (cf. Section 5), i.e.,
the error first decreases and then increases again due to propagated noise:

. [|@° —w(E)|| 2 . |E—Ex|l 1
Figure 15: — = vs. k Figure 16: WH(Q) vs. k
101l 2 (q) HY(®)

A case where the equation for F is hyperbolic for z < 0 and elliptic for z > 0 (w(z,y) = z,
so that the equation for E is a Tricomi-type equation) is shown in the next figure:

Figure 17: E — E19g, mixed case,
top view
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Comparing this picture with the characteristics of the PDE for E, one sees that there must
be some connection. However, we are not (yet) able to say precisely what this connection
is.

o e L e

Figure 18: characteristics for w = x

This problem certainly needs more analysis. A conclusion of these numerical arguments is
certainly that for a parameter identification problem which is of second order in the un-
known parameter, mathematical properties of the PDE fulfilled by F play a role even if this
PDE is not directly used as in the output—least—squares approach. Thus, parameter identi-
fication problems where second derivatives of the parameter appear as the identification of
Young’s modulus in the plate equation from elasticity show some new features compared
to more traditional parameter identification problems where the parameter appears with
first derivatives at most.

We finally mention a new and quite promising approach to parameter identification which
somehow combines the output-least—squares and the equation—error approaches, namely
the minimization of the output defect subject to the equation considered as equality con-
straint by Sequential Quadratic Proramming ([13], [14]).
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