Symbolic Methods for the Element
Preconditioning Technique *

U. Langer! S. Reitzinger? J. Schicho?
28th January 2002

Unstitute for Computational Mathematics, University of Linz
2 RISC, University of Linz

Abstract

The method of element preconditioning requires the construction of an M-matrix
which is as close as possible to a given symmetric positive definite matrix in the
spectral sense. In this paper we give a symbolic solution of the arising optimiza-
tion problem for various subclasses. This improves the performance of the resulting
algorithm considerably.
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1 Introduction

The condition number of the stiffness matrix K, arising from the finite element discretiza-
tion of second-order elliptic boundary value problems typically behaves like O(h™2) as h
tends to zero, where h denotes the usual discretization parameter characterizing a regular
finite element discretization. This means practically, that the stiffness matrix has a large
condition number on a fine grid. That is the reason why the classical iterative methods
exhibit slow convergence This drawback can be avoided by multigrid methods (see, e.g.
[6]) or multigrid preconditioned iterative methods [8].

In contrast to the geometrical multigrid method (MGM) that is based on a hierarchy
of finer and finer meshes, the algebraic multigrid (AMG) method needs only single grid
information, usually the matrix and the right-hand side of the system that is to be solved.
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der wissenschaftlichen Forschung (FWF)’ - under the grant SFB F013 ‘Numerical and Symbolic Scientific
Computing’ and under the project P 14953 "Robust Algebraic Multigrid Methods and their Parallelization’.



In AMG, the hierarchy of coarser and coarser representation of the fine grid problem must
be generated algebraically.

It is well known that an AMG method works well if K} is an M-matrix, but this is
hardly the case in many real life applications. Thus, if K} is not an M-matrix then it is
desirable to derive an AMG preconditioner for K} from a nearby, spectrally equivalent M-
matrix By, that is sometimes called regularizator [8]. In [5], we construct such an M-matrix
regularizator. The main idea is to localize the problem: for each element, we compute
an M-matrix which is as close as possible (in the spectral sense) to the element matrix.
Then we assemble these M-matrices by the help of the element connectivity relations and
get our regularizator Bj, from which we afterwards derive the AMG-preconditioner (see
Subsection 2.2 for details).

In [5], we solve these optimization problems numerically, by a sequential quadratic pro-
gramming algorithm using a Quasi-Newton update formula for estimating the Hessian of
the objective function. Unfortunately, this subtask turns out to be a bottleneck, because
in some practically important cases we have to solve a large number of such optimization
problems. Moreover, the numerical solution does not always get close to the global opti-
mum, because there are several local optima, and on some of them the objective function
is not even differentiable.

In this paper, we solve various cases of these optimization problems symbolically. For
various element matrices involving only one symbolic parameter, we can find a closed form
solution in terms of polynomials. A similar formula is given for general 2 x 2 matrices, but
here there are several closed forms, and some inequalities need to be checked in order to
determine which one has to taken. For general 3 x 3 matrices, a similar closed form would
be theoretically possible, except that we need also square roots and — in one case — roots
of higher degree polynomials (see Section 3). But such a closed formula would be too large
to be useful, so we prefer to give a “formula” consisting of a program with arithmetic or
square root (and in one case higher order root) assignments and if then else branches,
but no loops. This is done in Section 3. Using these formula, we can compute the optimal
preconditioners faster and more accurately (see Section 4).

2 Problem Formulation

In this section we explain the idea of the element preconditioning technique proposed in
[5], and isolate the most crucial subproblem, namely the problem of the construction of
M-matrices which are as close as possible to the finite element stiffness matrices in some
spectral sense.

2.1 Finite Element Discretization

For simplicity, let us consider the weak formulation

Find u e V: /(Vtqu + ouv) dx = / fvdx Vv eV (1)
Q Q
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of the potential equation —Au + ou = f in {2 under homogeneous Neumann conditions on
the boundary 0f2 of 2 as some model problem for explaining the element preconditioning
technique. The computational domain Q C R? (with d = 2,3 the spatial dimension) is
bounded with a sufficiently smooth boundary 0€2. The test space V coincides with the
Sobolev space H'(f2), o > 0 denotes a real parameter and f € L,(€) is a given right-hand
side. In order to ensure solvability of the boundary value problem (1) in the case o = 0,
we assume that f is Ly-orthogonal to all constants.

A finite element (FE) discretization of the computational domain ) results in some
FE-mesh 7, = {Q" : r € 7,} (see Figure 1 for an FE-discretization of the unit square by
rectangular and triangular elements) such that

a=Ja,
TETH

with the index set 7, of all finite elements, the set of all nodes {z; : i € @y}, the index set
wy, of all nodes and the typical mesh size h. The FE-basis ® = {(p[j] (), ] € wh} spans

3
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Figure 1: FE-discretizations of the unit square.

the FE-space V, = span{®} C V and changes (1) into the FE-scheme
Find u, € V), : /(Vtuthh + oupvy) dr = / fopdx Vv, € 'V (2)
Q 0

that is equivalent to the linear system of FE-equations

Find w, € R™ ' Kuu, = f, in R™ (3)

for defining the coefficients uE] in the FE-ansatz
un(e) = Y uy! - (), (4)
1EWp,
where K, € RV»*Nh denotes the stiffness matrix, f, € R™ denotes the load vector, and

U, = (u%]) € R™ is the solution vector of nodal unknowns ug]. We assume that the
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FE-basis functions are of Lagrangian type such that ¢ll(z;) = dij, where 0;; denotes the
Kronecker delta. Since the FE-bases is assumed to have local support the corresponding
integrals are evaluated locally on each element, i.e.,

/(Vtuthh + oupvy) dz = Z / (V'up Vo, + oup vp) d .
Q TETH ar

By using the FE-ansatz (4) we get, on each element, an integral of the form
(K7)ji =/ (VilIV ol 4 ol ol dx

for calculating the coefficients (K7} );; of the element stiffness matrix KJ. In the case of n,
bases functions on element Q' (r € 73), we arrive at an K} € R* " that is symmetric and
positive (semi)definite. Then the global stiffness matrix K; € RV»*Mt will be assembled
from the local element stiffness matrix by the usual assembling procedure that can be
represented in the form

Ky=)_ CIK;C,, (5)

TETH

where the matrices C, € R* %N denote the so-called element connectivity matrices.

2.2 Element Preconditioning

The condition number of some regular matrix A € R**" is defined by

k(A) = [lA]l- A,

where || - || is an appropriate matrix norm. For an SPD matrix A, the so-called spectral
condition number Do (A)
A — max
K,( ) )\min(A)

is based on the spectral norm ||A|| = \/Amax(A*A) = Amax(A), where Apax(A) and Apmin(A)
denotes the maximal and minimal eigenvalue of the matrix A, respectively. The matrix A
denotes the transpose of A.

The SPD matrices A, B € R™*" are called spectrally equivalent if

Jei,c0 € RY 1 ¢y - (Bu,u) < (Au,u) < ¢ - (Bu,u)  Vu € R (6)

which is briefly denoted by ¢; - B < A < ¢y - B. Therein (-,-) denotes the Euclidean inner
product. In addition, (-,-)4 denotes the A-energy inner product corresponding to the SPD
matrix A, i.e., (A-,-). Obviously the best possible constants are given by the solution of

the generalized eigenvalue problem
Au = ABu



with ¢; = Apin(B™Y2AB7Y/2) and ¢y = Apax(B~/2AB71/2).
An important subclass of regular matrices are M-matrices. For SPD matrices, this class
is defined as follows:

Mn:{AeR"X" : ai,->o,a,-jgo,i7éj,2aijzo}.

i=1

A crucial point in the FE-simulation is the solution of the linear (in the case o > 0:
symmetric and positive definite) system of equations (3). It is well known that an AMG
method works well if K, € My, , but this is hardly the case in many real life applications.
Thus, it is desirable to derive an AMG preconditioner for Kj from a nearby, spectrally
equivalent matrix By, that is sometimes called regularizator [8]. Especially, in our case
we need an M-matrix for applying the standard AMG efficiently. Consequently, if we are
able to construct such a symmetric, positive definite regularizator Bj in the class of the
M-matrices, then we can derive a good preconditioner Cy, for K} by applying a symmetric
AMG cycle to By, instead of K. Finally, the constructed preconditioner C}, is used in a
preconditioned conjugate gradient solver. This approach was presented in [5].

In order to be able to construct an M-matrix B, efficiently we have to localize the
problem. The basic idea is the content of the following lemma.

Lemma 2.1. Let the stiffness matriz K, € RN»*Ne be SPD, and K}, be assembled from
SPD element matrices Kj, € R**" r € 1, i.e., K, can be represented in the form (5).
Further, let us suppose that, for all r € 7, there are SPD matrices B; € M, such that
the spectral equivalence inequalities

c)-By < Kj <cy- B} Vr € 1, (7)
hold, with h-independent, positive spectral equivalence constants c] and ci,. Then the matrix

B,= Y C!BiC, ®)

TETH

15 spectrally equivalent to the stiffness matriz Ky, i.e.,
¢1- By < Kp < ¢y By, (9)
with the spectral equivalence constants
¢ = ireuTl;{c{} and co = ggf{cg}
Additionally, the matriz By, is SPD and belongs to the class My, .
Proof. see [5]. O

Our particular interest in this paper consists in the construction of such an SPD M-
matrices Bj that are as close as possible to Kj in the spectral sense. Thus, Lemma 2.1
provides the theoretical background for Algorithm 1. This algorithm returns the best SPD
matrix By, € My, in the sense of the localized problem.
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Algorithm 1 GeneralSpectralMatrix ()
for all » € 7, do
Get the element matrix Kj € R *"
if K} ¢ M, then
Calculate B} from the restricted minimization problem

Amaz ((B) Y2 K} (Bp)~1/?)

Amin(B)) TPEL(BY) 77) 7 00

subject to By € M,, and B} is SPD
else
Set By = K,
end if
Assemble B}
Assemble Kj
end for

Remark 2.2.

1. We note that in the 2D case n, = 3 and n, = 4 correspond to linear and bilinear
elements, respectively. Similarly, linear and trilinear elements for the 3D case are
represented by n, = 4 and n, = 8, respectively.

2. In the case of symmetric positive semidefinite element matrices Kj the tech-
nique applies again.  Now the generalized spectral condition number has to
be minimized, i.e., /\min((B};)_l/QK,’;(BIL)_l/Q) has to be replaced by Amim =
min{A((B}) "2 K} (By)~'/?), A # 0}.

3. For our special case o = 0, the element stiffness matrices are symmetric positive
semidefinite. But such K} can be transformed to an SPD one by eliminating the last
row and column (kernel elimination), see [5].

For the rest of the paper we skip the indices of the element stiffness matrices, i.e.
K = K} whenever no ambiguities can occur. In the following we give three typcial examples
from the FE-discretization where the M-matrix property is lost.

Example 2.3. We study the case of anisotropic rectangular and triangular elements (see
Figure 2) where we can establish the dependency of the condition number on the anisotropic
parameter q explicitly. Further we always use the variational form (1) for our examples.

1. Let us consider the case of an anisotropic rectangular element with bilinear FE-
functions and set 0 = 0. The element stiffness matriz has the form

242¢° 1-2¢° —24¢* —-1—¢°
1 [1-2¢2 242¢2 —-1—¢*> —2+¢°
6g | —2+¢ -1-¢*> 2+2¢> 1-2¢°
—1—q¢*> —24¢* 1-2¢° 2+2¢*

(10)
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After eliminating the last row and column, the element stiffness matriz K ¢ Mj for
0<qg</1/2.

2. The second example is due to the triangle with o = 0. In this case the element
stiffness matriz has the form

1+¢2 1—-¢*> -2
K= 1—¢> 1+¢* -2]. (11)
7\ —2 2 4

Again after a proper reduction to the SPD case K ¢ My for 0 < g < 1.

3. As a third example we consider our model bilinearform with o = 1 and calculate the
element stiffness matriz on the triangle, where some mass lumping is used, i.e.,

1422 1—¢* -2
1 2 2
K=_|1-¢ 1+2¢° -2 | (12)
7\ -2 —2 44

Again, K ¢ Ms for 0 < g < 1.

: AN

1 1

Figure 2: Thin FE-structures.

In the case of higher-order ansatz fucnctions that are very important in practical ap-
plication, we can not expect to get M-matrices at all.

2.3 An Optimization Problem

The critical step in Algorithm 1 is the solution of the restricted minimization problem:
given an SPD matrix K, find an SPD M-matrix B such that the condition number of
B~Y2KB~'? is as small as possible. In this situation, we say that B is the closest M-
matrix to K in the spectral sense.

We need to solve many instances of the problem, in general, one for each element !
If the dimension of the matrices is a equal to n, then we have an optimization problem
with W variables (for the coefficients of B, up to scalar multiplication) depending
on the same number of parameters (for the coefficients of K, up to scalar multiplication).
The number n is relatively small, i.e. n < 30; in typical applications (i.e. low-order finite
elements), we have n = 2, 3,4 (see Example 2.3).
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The search space is a convex polyhedron in projective space, which is independent of
the parameters. We can reformulate the problem in such a way that the objective function
is independent of the parameters (of course, this makes the search space vary).

We write K = A'A by the Cholesky decomposition. Then the inverse of the matrix
B~Y2K B2 is similar to

C:= AB™'*(B"?K~'B'*)B'/?A™" = (A")"'BA™".

Finding the closest M-Matrix B is equivalent to finding an SPD matrix C such that A'C' A
is an M-Matrix (equal to B), which has smallest possible condition number.

In the reformulation, the search space is described by linear inequalities in the coeffi-
cients of C. More precisely, the inequalities are of the type

(ai,aj)0§0f0r1§i<j§n+1,

where ay,...,a, are the columns of A, and a,41 := —a; — -+ — a,, and (u,v)c = (u, Cv)
is the scalar product defined by C. This follows from the fact that (a;, a;)¢ is the (¢, j)-th
entry of the matrix A'C A for 4, j < n, and that (a;, —a,1)c is the i-th row sum. The search
space depends on the vectors ai,...,a,4+1 in a symmetric way. The vectors ay, ..., a1
fulfill the symmetric condition a; + - - - + a1 = 0 and the restriction that each n of them
are linearly independent.

In [5], the restricted optimization problem is solved by a sequential quadratic program-
ming algorithm using a Quasi-Newton update formula for estimating the Hessian of the
objective. An additional difficulty is the fact that the objective function is not everywhere
differentiable: The gradient does not exist for matrices with multiple maximal or minimal
eigenvalue. This is a subset of measure zero, but unfortunately it contains the optimum in
some cases, as experiments have shown.

3 A Symbolic Solution of the Optimization Problem

As the restricted problem is strictly algebraic, we can approach it by general quantifier
elimination methods such as the method of Grébner bases [1, 2] or the method of cylindrical
algebraic decomposition [3, 7, 4]. For n = 2, this indeed gives a formula for the solution
(see Remark 3.2 below). For n = 3 or higher, the number of variables is too large for
such an approach to work. It is therefore necessary to exploit the specific structure of the
problem.

3.1 Cases where the objective function is differentiable

In the space of all SPD matrices modulo scalar multiplication, the objective function has
only one local minimum, namely the identity matrix I. If the optimum is assumed in the
interior of the search space X(ay, ..., an11), then this optimum must be equal to this local
optimum. Clearly, this happens only if the given matrix K is already an M-matrix.



In the other case, the optimum is assumed on the boundary. We like to distinguish
cases specifying on which face the boundary is assumed. In order to do this in a convenient
way, we introduce some terminology.

Let C be a point on the boundary of ¥(a1,...,a,41) (or ¥ for short). Then there is
unique face F' such that C is contained in the interior of of F', where the interior of a face
is defined as the face minus the union of all subfaces. We call this face F'(C). The linear
subspace carrying F'(C) is denoted by E(C). It is defined by equalities (a;,a;)c = 0 for
a set of index pairs (7,7), i # j; this set is denoted by 7(C). If we replace each defining
equation by its corresponding inequality (a;,a;)c < 0, then we get a convex cone, which
we denote by U(C).

Example 3.1. Assume that C lies on the interior of the mazimal face (also called facet)
defined by vectors a1, as. Then we have

E(C) ={C | (a1, a2)c = 0};
F(C)=E(C)NL;

U(C) ={C | (a1, a2)c < 0};
o 7(C) = {(1,2)}.

In order to find the optimum in the case where it lies in the interior of a face F', we
restrict the objective function to the corresponding linear subspace E and study the local
minima.

Assume that E is a hyperplane, defined by (a;,a;)c = 0, where (a;,a;) > 0. (If
(a;,a;) <0, then the unity matrix is the global optimum of the half space.) Let @;, @; be
the normalizations of a;, a; to unit length. We set s := a; + @; and d := @; — @;. For any
matrix C in E, we have (s, s)¢ = (d, d)¢, and therefore

max =1t w)o _ {d,d)c/ld|* _ sl
i = 2 2°
minyy=1(v,v)c — (s, 8)c/llslI>  [d]
Equality is assumed iff s and d are eigenvectors to the elgenvalues i |‘|2)\ and A for some
scaling factor A, and all other eigenvalues lie between these two values. Since s and d are

orthogonal, this is indeed possible. The set of all matrices satisfying these conditions is
denoted by II(a;, a;).

cond(C) =

Remark 3.2. In the case n = 2, lI(a;, a;) has exactly one element (up to scaling). This
element is easy to compute. Moreover, the hyperplanes are the only possible faces, because
any matriz in a lower-dimensional subspace is already singular. Carrying out the compu-

. . . . b
tation, one obtains the following formula for the closest M-matriz to K = ( Z . >

a 0
1. [fb>0thenB—<0 c>'



a —a
2. Ifa+b<0, then B= ( —a 2a—|—2b+c)'

3. Ifb+¢<0, then B = ( at2+2 _C).

—c c
4. Otherwise, K is already an M-matriz, and B = K.

The same result can also be obtained by the general method of Grobner bases mentioned
above.

The following lemma is useful because it allows to reduce other cases to the hyperplane
case.

Lemma 3.3. Let Cy be a boundary point of . Assume that the objective function cond,
restricted to U(Cy), has a local minimum at Cy. Assume that the mazimal and the minimal
ergenvalue of Cy are simple. Then Cy s a global minimum. Moreover, there exist two
vectors a,b € R, such that

1. E(Cy) is contained in the set {C | {(a,b)c = 0}.

2. U(Cy) is contained in the set {C | {(a,b)c < 0}.
__ cond(Cp)—1

3. cos(£(a,b)) = Egnd(ﬁ.

We call the pair of vectors (a,b) the “quard” of Cy.

Proof. Let u and v be the normalized eigenvectors to the eigenvalues A, and A, of Cy.
The gradient of the cond function at Cj is equal to

)\2

/\minuiuj - /\mamvz’vj
(grad cond)g, = .
min 1,

Since Cj is a local minimum in E(C)), the gradient must be orthogonal to E(Cp), or
equivalently
Amin(“; U'>C - /\mam<va v>C’ =0

for all C' € E(Cy). With

a = )\mmu + V /\mag;U; b:= _\//\mznu + \//\mazva

we obtain (1).
Since Cj is also a local minimum in U(Cy), the gradient must have nonnegative scalar
product with all vectors from Cy into U(Cy). Equivalently, we can write

/\min<uau>C - /\maz<va U)C’ Z 0

for all C' € U(Cy), and (2) follows.
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Since u and v are orthogonal, the equation (3) follows by a straightforward computation.
Finally, for all C € U(Cy) we have

<U,U>C )‘ma;c
> >
cond(C) > 00 = Ao (13)

by the above equation. For Cy, equality holds in (13) and hence the minimum is global. [

Let 7 be a set of pairs of indices, and let F', E and U be the corresponding face, linear
subspace, and convex cone. If the optimum lies in the interior of F', then the guard must
satisfy the conditions (1) and (2) of Lemma 3.3. Therefore, we call any pair (a, b) of vectors
satisfying (2), (3), and (a, b) > 0 — this is a consequence of (3) in Lemma 3.3 — a “possible
guard” for 7.

The set of all possible guards may be infinite. (We consider two guards as different if
they do not arise one from the other by scaling or by switching the vectors. Note that we
can scale both factors independently with positive factors, and the whole pair with —1.)
For instance, let 7 := {(1,2),(1,3)}, and assume that (as, as) > 0 and {a;,a3) > 0. Then
(a1, Aag + pas) is a possible guard for any A > 0,z > 0.

Let (a,b) a possible guard. Then we can show that cond(C) > % for any
C € U, as in the proof for the hyperplane case above. Therefore each possible guard gives
a lower bound for the objective function. If (a,b) are guards for the optimum Cj, then
this lower bound is assumed for Cy. If (a/,d') is another guard with £(a’,0’) > £(a,b),
then (a’, ') gives a lower bound which cannot be achieved inside U, because it is smaller
than the condition number of the global optimum. Therefore, we only need to consider the
possible guards enclosing the smallest possible angle.

For the above example, we will see later that the set of all possible guards is equal to
{(ai,Aag + paz) | A >0, > 0, or u > 0}. If the orthogonal projection b of a; into the
plane spanned by a9, as is a positive linear combination of ay, as, then (a;, b) is the positive
guard enclosing the smallest possible angle.

Algorithm 2 OptimizeByGuards (n=3)
for all sets 7w of pairs of indices do
compute the possible guard (a, b) enclosing the smallest possible angle
if II(a,b) N2 # 0 then
return a matrix in II(a,b) N X
exit
end if
end for
return failure

In the case n = 3, we can compute the possible guard enclosing the smallest possible
angle by sorting out cases, as shown below. For each guard (a, b), the set I1(a, b) of possible
optima is a line segment. It can be represented by its two deliminating points, which can be
computed easily. Intersecting a line segment with a polyhedron given by linear inequalities

11



is again easy: we only need to evaluate the left hand side at the two deliminating points,
check the signs, and compute the linear combination giving a zero value if the two signs
are different. Using Algorithm 2, we can compute the global optimum assuming that its
largest and smallest eigenvalue are simple, i.e. that the objective function is differentiable
at this point.

In the following case by case analysis, we make the following global assumptions: The
indices i, j, k, [ are pairwise different. We assume that (u, v) is a possible guard. The vectors
u,v are expressed in the basis a;, a;, ax: u = uia; + usa; + usag, v = via; + vea; + vsay.
We define positive semi-definite matrices C1 := a;a}, Cy = a;a}, C3 = apay, Cy :=
(a; — aj)(a; — a;)t, Cs := (a; — ax)(a; — ax)*, C == (a; — ax)(a; — a;)*. Note that if one of
these matrices C, lies in F, (resp. U), then it must also satisfy (u,v)c, = (resp. <) 0, by
condition (1) and (2) of Lemma 3.3 and by continuity.

Pairs: 7 = {(4,7)}. Obviously, the only possible guard is (a;, a;).

3-chains: 7 = {(4,7), (j,k)}. Since Cy, Cs, Cs, Cg are in E, we get
UV = Uge = uzvz = (u; — u3z)(v; — v3) = 0.
Up to scaling and switching, the general solution is
Uy =uz =vy = 0,us = 1,01 = \,v3 = U4

Since Cy, C5 are in U, we get A > 0, 4 > 0. The smallest possible angle is enclosed for
choosing v to be the projection of u = a; to the plane spanned by as, a3, if this projection
is a positive linear combination, or by choosing v = a5 or ag otherwise.

Double pairs: 7 = {(i,j), (k,1)}. Since C;, Cy, Cs, Cs are in E, we get
w1V = ugve = (u1 — ug)(v1 — v3) = (ug — us)(ve = v3) = 0.

Up to scaling and switching, we get the following three solutions:

u=(1,0,0),v =+£(0,1,0);

u=(1,0,1),v = +(0,1,1);

u=(1,0,0),v =+(1,1,1).
Since C3, C4 are in U, we can discard the second solution. Therefore, we have precisely
two possible pairs, namely (a;, a;) and (a, a;).
Triangles: 7 = {(i,7),(J,k), (i, k)}. Since Cy, Cs, C3 are in E, we get

ULV1 = UgVg = Ug¥3 = 0.

All solutions have already appeared as possible pairs of a 3-chain. Therefore, the set
of possible pairs is equal to the union of the sets of possible pairs of the three 3-chains
contained in 7.
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4-chains: 7 = {(4,7), (4, k), (k,1)}. Since Cy, Cy, Cg are in E, we get
u v = Uy = (uy — ug)(vy —v3) =0.
The are three parametrized solutions:
u=(1,0,1),v = (0, \, u);

u=(0,1,0),v = (A0, u);
u=1(0,0,1),v = (A, i, A).

The second and the third have already appeared as possible guards for the two 3-chains
contained in 7. The first is new. Since C3, Cy, Cg are in U, we get the additional restrictions
A <0, > 0. The smallest possible angle is enclosed for choosing v to be the projection
of u = a1 + ao = —a3 — a4 to the plane spanned by as, a3, if this projection is a linear
combination with coefficients A < 0, and p > 0.

Other: It is not possible to have an a; which is orthogonal to all a;, j # ¢ — these other
a; form a basis of R* and a;, being different from zero, cannot be orthogonal to the whole
R3. We also cannot have a 4-cycle, because this leads to the contradiction

(az- + ag,a; + ak>c = —(ai =+ ag, a; + al>c = 0.
Therefore there are no other cases.

Remark 3.4. Forn > 4, a similar case by case analysis is possible, and we can determine
the possible guards enclosing a minimal angle. It is less obvious to determine whether
(u,v) VX # O in this case. But if [1(u,v) has a non-empty intersection with the border
of ¥, then there is a superset of index pairs such that an optimum can be found on the
corresponding smaller linear subspace. Thus, it suffices to do this check assuming that the
II(u,v) has empty intersection with the border, and this is easy: take a single element and
check whether it s contained in 3.

For n = 3, it is easier to do the full completeness check, because in this way we can
omit testing possible pairs that are also possible pairs of a subset of pairs of indices.

3.2 Cases where the objective function is not differentiable

If there is no optimum C' with largest and smallest eigenvalue being simple, then Lemma 3.3
does not help in finding the optimum. Our strategy is to restrict the objective function
so that it becomes differentiable again. We could give a complete symbolic solution in the
case n = 3.

Let D be the set of all SPD 3 x 3 matrices with at most two different eigenvalues.
Naive dimension counting would suggest that dim(D) = 5, because we have one algebraic
condition, namely the discriminant of the characteristic polynomial has to vanish. But
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we have two degrees of freedom to choose the eigenvalues, and two degrees of freedom to
choose the eigenvector for the simple eigenvalue — the two-dimensional eigenspace for the
double eigenvalue is uniquely determined as the plane orthogonal to the simple eigenvector.
Thus, we get dim(D) = 4.

Let C be a matrix in D. Let A\ be the unique eigenvalue which is at least double. Then
C — M has rank at most 1. Therefore we can write C' as A\ & zaz! with € R®*. This
representation is unique and gives a parametrization of D by 4 parameters. As we check
local minima on linear subspaces, we get additional restrictions on the parameters, which
are linear in A and quadratic in the three coordinates of x. The objective function is given
by ”—ftx or ﬁ, depending on the sign of the rank 1 summand.

By Lemma 3.3, we only need to compute local minima in the cases where there is no
local minimum on U with distinct eigenvalues (in other words, if U has a local minimum
that can be found by guards then we can cross out this case even if this local minimum
does not lie in ). Especially, we do not need to consider pairs and 3-chains. It remains
to compute the local minima in the cases of double pairs, triangles, and 4-chains. Here is

a case by case analysis.

Double pairs: The search space is given by two equations in A, z1,x2,z3. The linear
variable A can be eliminated, so that the search space is actually a conic in the projective
plane (factoring out scalar multiplication as usual). Using well-known algorithms for curve
parametrization, see e.g. [9], we can parametrize the conic, thereby reducing the search
space to a projective line. The objective function transforms to a rational function of
degree 4. There are 6 (maybe complex) stationary points, which are candidates for being
local minima.

Triangles and 4-chains: The three equations in A\, 1, x5, £3 can be solved symbolically
by standard methods. There are four solutions, all of them real; three of them are singular
because the \-component vanishes. So, the search space restricts to a single point.

4 Comparison

In this section the efficiency and robustness of the symbolic approach to the element pre-
conditioning technique is shown, by comparing with the numerical approach used in [5].
All numerical studies are done on an SGI Octane 300MHz.

First of all we calculate the best possible M-matrices of Example 2.3 and compare it to
the numerical solution. For these cases the matrices which depend on a single parameter
0 < ¢ < 1 can be calculated once in a Maple implementation, and this leads to the following
results:

Example 4.1. Now we give the results of Example 2.5. Only the transformed matriz is
presented.
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¢ w((B) "PK(B)) %) k(B VPKL(B)) V)

1.0 1.00 1.00
0.9 2.35 1.23
0.5 6.50 4.00
0.1 150.5 100

Table 1: Different initial guess for the numerical case.

1. First of all the anisotropic rectangle with o = 0 is considered. The best possible
M-matriz is given by

) 1+ 4q? 0 —1—¢2
B = 0 1+ 4q? —q?
_1 _ q2 _q2 1 + 4q2

with a condition number of k = 3/(1 + 4¢) for 0 < g < /1/2.

2. Next the anisotropic triangle with o = 0 was already explicitly solved in Remark 3.2

and leads to the matriz
B _ 1 -+ (]2 0
- 0 1+4¢°

with condition number k = 1/q>.

3. Finally the anisotropic triangle with o = 1 yields

@?+2 0 -2
B = 0 ¢+2 =2
-2 -2 ¢#+4
_ 2

and the condition number behaves like k =

3q2 °

For such types of elements where the element stiffness matrix depends only on one
parameter the solution can be done in advanced. However, for more general matrices the
number of parameters is too large to be efficiently solved with the Maple implementation.
Therefore we make a C++ implementation in order to get a fast solution of the optimization
problem. Note that no initial guess is necessary for the calculation and we always get the
optimal solution. This is in contrast to a numerical approach where a different initial guess
might lead to a different result, see Table 1.

Finally we compare the CPU-time of the numerical approach and the symbolic ap-
proach. These studies are done on the triangle with ¢ = 1 and on the rectangle with
o = 0 (see Example 2.3). In Table 2 the results are presented. The C++ implementation
is much faster than the numerical approach (by the factor 10) and has the advantage that
no initial guess has to be used. We emphasize that in general the optimization problem
must be solved for each finite element separately. In such cases, our symbolic approach
can obviously save a lot of computer time on fine meshes with several hundred thousands
or millions of elements.
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name numerical (sec) symbolic (sec)
triangle 0.0052 0.00047
rectangle 0.0060 0.00048

Table 2: Comparison of numerical and symbolic approaches.
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