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Abstract— In this paper we revisit the constitutive equa-
tions for coefficients of orthonormal wavelets. We construct
wavelets that satisfy alternatives to the vanishing moments
conditions giving orthonormal basis functions with scale de-
pendent properties.

I. INTRODUCTION

In this paper we construct filter coefficients of real, com-
pactly supported, orthonormal wavelets with scale depen-
dent properties.

Daubechies’ construction of wavelets is based on the ex-
istence a scaling function ¢, such that for m € Z the func-
tions ¢,k = 2-m/24(2=™mx — k), k € Z, are orthonormal
with respect to L2(R). Moreover, ¢ is chosen in such a way
that

Vi :=span{ ¢mr, k € Z}

form a multiresolution analysis on L?(R), i.e.,
Vin C Vi1, form e Z,

with
(] Ve = {0} and | J Vi = L*(R).

meZ meZ

The wavelet spaces W,,, are the orthogonal complements of
Vi in Vi, 4, ie.,

W := VN Vs

For the mother wavelet 1 a function 1 is chosen such that
Ymg = 2"™/2p(2=™x — k), k € Z, form an orthonormal
basis of Wp,. Since ¢ = ¢oo € Vo C V_i, the scaling
function ¢ must satisfy the dilation equation

d(x) = hrd(2 — k),

keZ

(1)

where the sequence {hy} is known as the filter sequence of
the wavelet 1. The filter coefficients have to satisfy certain

conditions in order to guarantee that the scaling function ¢
and ¢ satisfy various desired properties. These properties
of wavelets and scaling functions will be reviewed in Section
II. Daubechies’ construction principle guarantees that the
properties imposed on the mother wavelet ¢ carry over to
any wm,kr

However, in practical applications (like in digital signal
and image processing) one actually utilizes only a finite
number of scales m. In data compression with wavelets
of medical image data we experienced that five scales are
sufficient to achieve high compression ratios.

This experience stimulated our work to design wavelets
that have additional properties on an a—priori prescribed
number of scales. As we show in Section III, Daubechies’
construction principle leaves enough freedom to design such
wavelets. In Section IV we present some examples of scale
dependent wavelets. Finally we put our work in relation to
recent work on rational spline wavelets.

II. A REVIEW ON DAUBECHIES’ WAVELETS

Following Daubechies (see [1], [2]) the construction of
orthonormal wavelet functions is reduced to the design of
the corresponding filter sequence {hy} in (1). Moreover,
one assumes that the mother wavelet ¢ satisfies

P(@) =) (=1 h_rp(20 — k) .

keZ

(2)

In particular this choice guarantees that the wavelet ¥ and
the scaling function ¢ are orthogonal.

In orthogonal wavelet theory due to Daubechies (see e.g.
[1], [2]) the desired properties on the scaling function and
wavelets are:

1. For fixed integer N > 1 the scaling function ¢ has sup-
port in the interval [1 — N, N]. This in particular holds
when the filter coefficients satisfy

hk = 07

(k<1—Nork>N). (3)



2. The existence of a scaling function ¢ satisfying (1) re-
quires that
> hp=2. (4)
kEZ

3. In order that the integer translates of the scaling func-
tion ¢ are orthonormal, i.e., [¢(z — I)¢p(x)dx = o, the
R

filter coefficients {hy} have to satisfy

Z hihi—21 = 200,

keZ

(1=0,....N—-1). (5

4. The wavelet ¢ is postulated to have N vanishing mo-
ments, i.e.,

/a:%b(x)da:zO, for/=0,...,N—1 (6)
R
which requires the filter sequence to satisfy

> (=1)Fhy_ykt =0,

kEZ

(1=0,....N=1). (7

III. WAVELETS WITH SCALE DEPENDENT PROPERTIES

In this section we are particularity interested in con-
structing wavelets that satisfy alternatives to the vanishing
moments condition (7). Our motivation is to have more
flexibility in adapting wavelets to practical needs.

All along this paper we restrict our attention to filter
coefficients that satisfy the following general conditions:

1. the wavelet and the scaling function are compactly sup-
ported,

2. the scaling function is orthogonal to its integer trans-
lates on every scale.

To satisfy these properties we assume that the filter coeffi-
cients satisfy (3)-(5).

To derive alternatives to the vanishing moments condi-
tion (7) we redirect our attention to the connection between
(6) and (7).

To this end we consider families {s; : j € I'} of functions
on R, T being a suitable set of indices which are othogonal
with all wavelets on a fixed scale m. In other words, we
want that for all y in I and all integers k,

/ 55(@) by pd = 0. (8)

R

In order to achieve this goal we assume for all j in I the
existence of functions {¢; : k € I} on R such that

> il 9)

kel

x+y

The following computation will show that property (9) to-
gether with the conditions

Z(_l)khl—k 5;(2™1k) =0,

kEZ

(for all j €I) (10)

are sufficient to guarantee the orthogonality (8).

Namely, the left side of (8) equals

9=m/2 / (@Y™

x D (-1

I€EZ

— k)dz = 2(m=2/2
Y l/qﬁ 5 (271 (¢ + 2k + 1)) dt,

where we applied (2) and then substituted z — 2™~1(t +
2k + ). Next, invoking (9) with z = 2™ 1] and y =
2m=1(t + 2k) results in

M P

i€l \IEZ

hl 1S4 (2m 1l)>
/¢(t) tii (27 (t + 2K)) dt,
R

which is 0 according to (10).

We conclude this section by making some obvious choices
for {s;} and {t;x}; corresponding examples for computa-
tions of filter coefficients {hy} are presented in the next
section. Alternative choices that guarantee (9) will be dis-
cussed in a forthcoming paper.

1. Sheffer Relations. If we restrict ourselves to poly-
nomial sequences, there is the classical theory of Sheffer
sequences {s; : j > 0} satisfying the Sheffer identity

= i (;) sk(@)pj—k(y),

k=0

sj(z +y) =0 (1)

where {p; : j > 0} is called an associated sequence. For fur-
ther information see, for instance, Roman’s book [3] which
is devoted to Rota’s view of umbral calculus.

In our context (11) is obtained from (9) by choosing
tjk(®) = (})pj—r(z). It is important to note that in or-
der to be able to compute the filter coefficients {hy}, it is
necesssary to restrict the index set I to a finite subset of
N, for instance, to {0,1,...,N —1}.

For the particular choice

() =l and t340) = (1) s5-4(0)

the relations (9) and (11) are nothing but the binomial
theorem. Additionally, taking I = {0,1,..., N — 1} the
conditions (10) turn into the Daubechies situation of (7),
i.e., orthogonality holds on any scale m.

Finally we remark that special types of Sheffer sequences,
namely Appell sequences, appear in other recent work
[4, Remark 7] on wavelets, but in a different context of
analysing orthonormal systems of multiwavelets.

2. Ezponential Relations. The corresponding setting in
full generality is as follows. Let {w; : j € I} be a sequence
of complex parameters. For all j, k in I define
® and tj,k(.%) =

s;(x) = ¢ ik S5 (@),



with §; x being the Kronecker function and g being a fixed
nonzero complex number. Then (9) turns into

q(‘)j (w+y) — qwj mqwj y;
additionally, (10) becomes

S (1) g Tk = 0

kEZ

(forall j€I). (12)

In the following examples section we examine two special
cases over the reals: g-wavelets where for all 5 in I we set
wj = 1 and ¢ to a fixed positive real number; and sin-
wavelets where we set ¢ = exp(7), the complex exponential,
and where we split (12) into two groups of equations over
the reals by taking the real and the imaginery part of

exp(i 2™ tw; k) = cos(2™ " w; k) + 4 sin(2™ " w; k).

IV. EXAMPLES

In this section we present several examples of wavelets
with scale dependent properties. The resulting systems
for {hy} are considered as algebraic equations which can
be solved by the combined symbolic/numerical approach
described in [5].

A. gq-wavelets

Here we derive wavelet filter coefficients of orthonormal,
compactly supported wavelet functions ¢, , that are or-
thogonal to s;(z) = ¢* on scalesm =0,—1,...,—(N —2).
Since the s; are independent of j this means, we can set
I = {0}. For N > 1 the equations for the wavelet filter
coefficients are

> hp=2

keZ
> hghgoo =260,  (1=0,...,N—1)
kEZ
Z(_l)kh’l—k)q2_(m+1]k = 07 (m = 07 s 7N - 2) .

kEZ
(13)

For N = 2 the solution h = (h_1, hg, h1, h2) of this system
is

(h—17h07h17h2) =
(q3/2qu\/EQ -1-Q *—*+/aQ Q )

q(=1+q) * —l+q¢’ gq(—14+q) ’ —1+¢
(14)
where
0=0Q. = @ +a-a**—\/7
= s = 2(g+1)
4 V0 5P 4207/2 44052 =542 +24%/2 44
2(q+1) )

In Figures 1 and 2 we have plotted the scaling functions
and the wavelets according to the filter coefficients (14).
From such plottings one can see that for ¢ — 1 the scaling

function and the wavelet converge to the Daubechies scal-
ing function and to the wavelet, respectively. The proof of
this observation is immediate since applying ¢ D,, where
D, is derivation with respect to ¢, N — 1 times to the last
equation in (13) and then setting ¢ = 1 results in (7).

Moreover, from (14) it follows that for ¢ — 0 and ¢ — o
the coefficients of the ¢-wavelets according to () approach
the coefficients of the Haar wavelet, which confirms the
plots in Figure 1 and Figure 2.

In [7, Section 3] all cofficients hy, k € Z satisfying (3)
- (5) (with N = 2) are calculated. It can be shown that
the family of solutions can be parametrized by a single real
parameter. Thus the g-wavelets for N = 2 form a subset
of the coefficients obtained by Daubechies.

B. Variations of Daubechies’ wavelets

In this subsection we investigate wavelet filter coeffi-
cients of orthonormal, compactly supported wavelet func-
tions ., that have K > 1 vanishing moments and
which, in addition, are orthogonal to s;(x) = ¢” on scales
m=0,-1,...,—(N — K —1). As in the previous section
we can again set I = {0} since s; is independent of j. Thus
the equations for the filter coefficients are

> =2,

kEZ
> hghg_o =260,  (1=0,...,N-1),
k€EZ
_1\k PG — _K —
> (-1)Fhixg =0, (m=0,...,N—K-—1),

kEZ
S (=DFfm_ykt =0, (=0,...
kEZ
(15)

In Figure 3 we have plotted the associated scaling func-
tion and wavelet for ¢ € {2,4,16,32}, K =2, and N = 3.

C. sin-wavelets

Wavelet filter coefficients of orthonormal, compactly sup-
ported wavelet functions 1)y, ; that are orthogonal on scale
m = 0 to sin(2™ 'w,z) and cos(2™'w,z) for j € I =
{0,..., K — 1}; here w; # 0 is a sequence of real numbers.

Setting N = 2K + 1 the equations for such filter coeffi-

cients are
> hp=2,
kEZ
Z hk:hk—Ql = 260,17 (l = 07 - 7N - 1) )
kEZ
> (=1)Fhy_gsin(w;k/2),  (=0,...,K 1),
kEZ
Z(_l)khl—k COS(LL)]‘k/2), (.7 =0, -7K - 1)
kEZ
(16)

Note that the last two sets of equations correspond to tak-
ing real and imaginary parts as explained in Section III.
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Fig. 1. g-scaling function for different values of ¢: ¢ € (1, 00) (rows
1 and 2), ¢ € (0,1) (rows 3 and 4); the two solutions for Q: Q4

(rows 1 and 3), Q— (rows 2 and 4).

A

g—wavelet for different values of ¢: ¢ € (1,00) (rows 1 and
2), ¢ € (0,1) (rows 3 and 4); the two solutions for Q: Q4+ (rows
1 and 3), Q— (rows 2 and 4).
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Fig. 3. Variation of Daubechies’ Wavelets for ¢ € {2,4, 16,32},
K = 2, and N = 3. Scaling functions (rows 1,3) and wavelets
(rows 2,4) for the two different solutions (rows 1,2 and 3,4).

In Figure 4 we have plotted the scaling function and
wavelet for N =3, K =1, and wg € {7/2,7/4,7/16}.

V. DISCUSSION AND RELATED WORK

We have constructed orthogonal families of wavelet-
functions with scale dependent properties. The constructed
wavelet families and functions involve additional parame-
ters: the parameter ¢ for g-wavelets, the sequence of fre-
quencies in the sin wavelets.

Striking is the obvious visual relationship between g-
wavelets and fractional splines [8], [9], [10]: one may think
of fractional splines of degree a as functions of the form

s%(z) = Y ar(z — )5,

kEZ

where xj, are the knots of the spline and (-)§ denotes
the one—sided power function. As becomes evident from
the impressive graphics and the mathematical analysis
in [10] (even more impressive graphics can be found at
http://bigwww.epfl.ch/art) rational splines “interpo-
late " the common B-spline of integer order. In particular
it interpolates between the Haar scaling function and B-
splines of any order. The ¢-Wavelets in our paper reveal
a similar interpolation behavior, where of course due to
our construction we can only expect “interpolation”’ be-
tween the wavelets. A comparison with the work of Blu
and Unser [8], [9], [10] immediately gives rise to the fol-
lowing open question. Smoothness of the fractional splines
is equivalent by the (fractional) power a. We expect that
also for g-wavelets smoothness can be directly linked to the
parameter g. This question is also related to the existence
of the scaling and wavelet functions.
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Fig. 4. sin-scaling functions (rows 1,3) and wavelets (rows 2,4) for
N =3, K =1, and wo € {n/2,7/4,7/16}; here the two different
solutions (rows 1,2 and 3,4) are just mirrored versions.



