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Abstract. A minimal and complete unification procedure for a theory
with individual and sequence variables, free constants and free fixed and
flexible arity function symbols is described. The theory is extended in two
ways: with patterns-terms and with sequence variables as arguments of
terms with fixed arity head. A minimal and complete unification proce-
dure for the pattern-term extension is given.

1 Introduction

We design a unification procedure for a theory with individual and sequence
variables, fixed and flexible arity function symbols. The subject of this research
was proposed by B. Buchberger in [7] and in a couple of personal discussions.
The research described in this paper is a part of the author’s PhD thesis.

We refer to unification in a theory with individual and sequence variables, free
constants and free fixed and flexible arity function symbols shortly as unification
with sequence variables and flexible arity symbols, underlining the importance of
these two constructs. Sequence variables are variables which can be instantiated
by an arbitrary finite sequence of terms. Flexible arity function symbols can
take arbitrary finite number of arguments. In the literature the symbols with
similar property are also referred as “variable arity”, “variadic” or “multiple
arity” symbols.

Languages with sequence variables and variable arity symbols have been used
in different areas. Here we enumerate some of them:

— Knowledge management - Knowledge Interchange Format KIF ([13]) and
its version SKIF ([24]) are extensions of first order language with (among
the other constructs) sequence variables and variable arity function symbols.
KIF is used to interchange knowledge among disparate computer systems.
Another example of using sequence variables and variable arity symbols in
knowledge systems is Ontolingua ([11]) - a tool which provides a distributed
collaborative environment to browse, create, edit, modify, and use ontologies.
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— Databases - sequences and sequence variables provide flexibility in data rep-
resentation and manipulation for genome or text databases, where much of
the data has an inherently sequential structure. Numerous formalisms involv-
ing sequences and sequence variables, like Sequence Logic ([14]), Alignment
Logic ([15]), Sequence Datalog (]22]), String Calculus ([16],[6]), have been
developed for this field.

— Rewriting - variable arity symbols used in rewriting usually come from flat-
tening terms with associative top function symbol. Sequences and sequence
variables (sometimes called also patterns), which are used together with
variable arity symbols, make the syntax more flexible and expressive, and
increase the performance of a rewriting system (see [30], [17]).

— Programming languages - variable arity symbols are supported by many
programming languages. The programming language of Mathematica ([31])
is one of such examples, which uses the full expressive power of sequence
variables as well. A relation of Mathematica programming language and
rewrite rule languages, and the role of sequence variables in this relation is
discussed in [7].

— Theorem proving - a package Epilog ([12]) can be used in programs that
manipulate information encoded in Standard Information Format (SIF) - a
subset of KIF ([13]) language, containing sequence variables and variable
arity symbols. Among the other routines, Epilog includes pattern matchers
of various sorts, and an inference procedure based on model elimination.

These applications involve (and in some cases, essentially depend on) solving
equations with sequence variables and variable arity symbols. The mostly used
solving technique is matching. However, for some applications, like theorem prov-
ing or completion/rewriting, more powerful solving techniques (unification, for
instance) are needed.

The problem whether Knuth-Bendix completion procedure ([20]) can be ex-
tended to handle term rewriting systems with function symbols of variable arity,
sequences and sequence variables (patterns) is stated as an open problem in [30].
The primary reason why it is an open problem is the absence of a corresponding
unification algorithm.

In this paper, we make the first step towards solving this problem, provid-
ing a unification procedure with individual and sequence variables, fixed and
flexible arity function symbols and its extension with patterns. Sequence vari-
ables and patterns can be seen as particular examples of the pattern construct
of [30]. The term “flexible arity” was suggested by Buchberger ([8]) instead
of “variable arity” or “variadic”, mainly because of the following reason: vari-
able arity symbols, as they are understood in theorem proving or rewriting, are
flattened associative symbols, i.e. flat symbols which take at least two argu-
ments, while we allow flexible arity symbols to have zero or one argument as
well and not to be necessarily flat, i.e. to have more “flexibility”. Non-flatness
of flexible arity symbols makes one of main differences between unification with
sequence variables and flexible arity symbols and associative unification: the

unification problem f(z, f(y, z));f(f(a, b), ¢), with the variables z, y, z and con-



stants a, b, ¢, has no unifier, if f is a flexible arity symbol, but admits a unifier
{ « a,y <« b,z <« ¢} for an associative f. Even in the case of a flat flexible
arity f the problem would not be equivalent to A-unification: the substitution
{z « f(a),y «— f(b,c),z — f()} is a unifier for a flat f, but not for an associa-
tive f.

Unification with sequence variables and flexible arity symbols is a quite hard
problem: its Siekmann hierarchy ([29]) type is infinitary.

Designing a unification procedure with sequence variables and variable arity
symbols is a part of studying equational theories (like, for instance, free, flat, or-
derless, flat-orderless theories) with sequence variables and flexible arity symbols.
This problem was posed by Buchberger [8] and was inspired by Mathematica’s
usage of sequence variables and flexible arity symbols.

It should be mentioned that in the theorem proving context quantification
over sequence variables naturally introduces flexible arity symbols and patterns.
For instance, skolemizing the expression VZ3y®[Z, y|, where T is a sequence vari-
able, y is an individual variable and @[Z,y] is a formula which depends on T
and y, introduces a flexible arity Skolem function f: VZ®[z, f(Z)]. On the other
hand, skolemizing the expression Vx3g®[z,7] introduces a pattern hy () (),
which can be seen as an abbreviation of a sequence of terms hy(x), ..., hy(q)(2)
of unknown length, where hy,...,hy,(,) are (unary) Skolem functions.

The procedure can be used in theorem proving purpose in the similar way
as Plotkin showed in [25]: building in equational theories. Although unification
with sequence variables and flexible arity symbols is infinitary, special cases can
be identified when the procedure terminates.

We show that unification with sequence variables and flexible arity symbols is
decidable. Based on the decision procedure, a constraint-based approach to theo-
rem proving with sequence variables and flexible arity symbols can be developed
(compare [26]).

Particular instances of unification with sequence variables and flexible arity
symbols are word equations ([1],[18], [28]), equations over free semigroups ([21]),
equations over lists of atoms with concatenation ([10]), pattern matching.

We have implemented the unification procedure (without decision algorithm)
and its extension (where sequence variables are allowed in terms with fixed arity
heads, described in the Section 7 of this report) as a Mathematica package and
incorporated it into the Theorema system [9], which aims at extending computer
algebra systems by facilities for supporting mathematical proving. Currently the
package is used in the Theorema Equational Prover. It makes Theorema prob-
ably the only system being able to handle solving and proving equations which
involve sequence variables and flexible arity symbols. The package also enhances
Mathematica solving capabilities, considering unification as a solving method.
We used the package, for instance, to find matches for S-polynomials in non-
commutative Grobner basis algorithm [23]. The extension where sequence vari-
ables are allowed in terms with fixed arity heads depends on solving systems
of linear Diophantine equations over non-negative integers. We use a Mathe-



matica package called Omega ([3]), developed by G. E. Andrews and the RISC
combinatorics group, to solve such systems.

The paper is organized as follows. In the Section 2 preliminaries and defini-
tions are given. In the Section 3 definitions and examples related to equational
theories with sequence variables and flexible arity symbols are given. Decidabil-
ity of the free unification is considered in Section 4. Unification procedure for
the free theory is described in Section 5. Extension with patterns and the corre-
sponding unification procedure are considered in Section 6. Another extension of
FE-unification - by allowing sequence variables in arguments of terms with fixed
arity heads - is given in Section 7. Section 8 is about implementation. Section 9
is the conclusion.

2 Preliminaries

The set of individual variables I'V is a denumerable set of words consisting of an
English letter and subsequent letters or digits, starting with x, y or z. The set
of sequence variables SV is a denumerable set of words with overline, consisting
of an English letter and subsequent letters or digits, starting with x, y or z.

Definition 1 (Constants). (CONST,FFIX,FFLEX,=, AR) is domain of
constants iff

— CONST is a set of symbols (“the set of object constants”),

— FFIX is a set of symbols (“the set of function constants of fized arity”),

— FFLEX is a set of symbols (“the set of function constants of flexible arity”),

— = is the “equality relation constant”,

— AR : (FFIX U{=}) — N (“the arity function”),

— CONST,FFIX,FFLEX, {=} are pairwise disjoint and disjoint from IV
and SV .

Let now V stand for (IV,SV) (variables), C for (CONST,FFIX,FFLEX, =
,AR) (a domain of constants) and P - for a set {(,),,} (“parentheses and
comma”). We define terms and equations over (V,C, P).

Definition 2 (Term). The set of terms (over (V,C, P)) is the smallest set of
strings over (V,C, P) that satisfies the following conditions:

— Ifve IVUSV then v is a term.

— Ifce CONST then c is a term.

— If f e FFIX, AR(f)=n,n >0 and t,...,t, are terms such that for all
1 <i<m, t;¢ SV, then f(t1,...,tn) is a term. f is called the head of
ft, .. tn).

— If f € FFLEX and ty,...,t, (n > 0) are terms, then f(t1,...,tn) 8 a
term. f is called the head of f(t1,...,t,).

Definition 3 (Equation). The set of equations (over the alphabet (V,C,P))
is the smallest set of strings over (V,C, P) that satisfies the following condition:



— Ift1 and ty are terms over (V,C, P) such that t1 ¢ SV and ty ¢ SV, then
= (t1,t2) is an equation over (V,C, P). = is called the head of the equation
= (t1, ta).

For equation we will use infix notation and write ¢; = ty for = (t1,t2).
If not otherwise stated, we will use z, y and z as metavariables ranging over
individual variables, Z, ¥ and Z - metavariables over sequence variables, v and u
- over (individual or sequence) variables, ¢ - over object constants, ffiz, gfix
and hfix - over function symbols of fixed arity, fflex, gflexr and hflex - over
function symbols of flexible arity, f, g and h - over (fixed or flexible arity)
function symbols, s and t - over terms, eq - over equations. We might use indices
with these symbols as well.

Definition 4 (Substitution). A substitution is a finite set
{21« 81,. .., Tp — Sn, T1 Ht%,...,t,lcl,...,fm — .t}
where

—n>0,m>0and foralll <i<m, k; >0,

— T1,...,Ty are distinct individual variables,

— T1,...,Ty, are distinct sequence variables,

— for all1 <i<mn, s; is a term, s; ¢ SV and s; # x;,

= foralll1 <i<m,t,...,t, is a sequence of terms and if k;=1 then t} # T;.
Each x; < s; (Ti — t},...,t}.) is called a binding for z; (T3).
The substitution is called ground iff all sy,...,s,,t],..., 8 17", ... ;" are

variable-free terms. The substitution is called empty iff n = 0 and m = 0.
Greek letters are used to denote substitutions. The letter € denotes the empty
substitution.

Definition 5 (Instance). Given a substitution 6, we define an instance of a
term or equation with respect to 6 recursively as follows:

_xoz{sifoseﬁ,

x otherwise

0 — S1y- s Smifx—81,...,8, €0, m>0
W=z otherwise

— f(s1,.--,8n)0 = f(s10,...,,0)

(81 = 82)9 = 819 = 829

Definition 6 (Domain). The domain of a substitution o is defined as
Dom(o) ={v e IVUSV |vo # v}.
Definition 7 (Codomain). The codomain of a substitution o is defined as

Cod(c) = {vo | v € Dom(o)}.



Let VarSet(ty,...,t,), n > 0, be the set of variables occurring in a sequence of
terms t1,...,0n.

Definition 8 (Range). The range of a substitution o is defined as
Ran(o) = Uyepom(s)VarSet(va).

We extend the notion of instance of a term to the notion of instance of a
sequence in a straightforward way: given a sequence of terms ¢1,...,t,, n > 0
and a substitution @, the instance of ti,...,t, with respect to 0, denoted as
(t1,...,t,)0, is the sequence €10, ...,t,0.

Definition 9 (Composition of Substitutions). Let

— 1 1 — m m
0= {21 ¢ 81,00, Tp = S, T1 sy thyee Ty 170 10 )
and
o — 1 1 —_ r r
)‘_{yl‘_dlv'--vyTL{_dlaylFela"'aeqla"'ayr<_ela"'aeqr}

be two substitutions. Then the composition of @ and X is the substitution, denoted
by 0 o A\, obtained from the set

{o1 s o @ = ST = At A T AL
y1<—d1,...,yl<—dl,ﬁ<—6%,...,631,...,E<—ei,...,err
by deleting
— all the elements x; — s;\ (1 <i<n) for which x; = s;\,
— all the elements T; « t{A,...,tp A (1 < i < m) for which k; = 1 and

T; = tli>\,
— all the elements y; < d; (1< i < ) such that y; € {x1,...,z,},
— all the elements 7; + €}, ..., ey, (1 <i <71) such that §; € {T1,...,Tm}-

FEzxample 1. Let

and
A={y —g(e,e), z— f(c),T—c, Z}.

Then
0o ={x — f(g(c;c)), y —glc,c), 2= f(0), T —T,c, 7 —}.
Theorem 1. For a term t and substitutions 6 and A
tho X\ =t

Proof. We prove the theorem by induction on the structure of ¢.

1. telV.



(a) t < s € fo A, for some s. Then td o A = s. We show that tOX = s. We

have the following two cases:
i. There exists an r such that t < r € 6 and s = r\. Then

tON =1\ = s.
ii. £« s € A and 6 does not contain a binding for ¢t. Then
tON =t = s.

(b) € o X does not contain a binding for ¢t. Then ¢t o A = t. We show that
tOX = t. We have the following two cases:
i. Neither 6 nor A contain a binding for . Then

tON =t =t.

ii. There exists an r such t «+ r € 6 and r\ = ¢t. Then

tON =1\ =1.
2. teSV.
(a) t < $1,...,8p € 0@oforsome sy,..., Sy, n>0.Thentbo = s1,...,5,.
We show that tO\ = sq,...,s,. We have the following two cases:
i. There exist ry,...,7m, m > 0, such that ¢ « rq,...,r, € 0 and
1Ay ooy ' = S1,...,5,. Then
OXN = (11, ooy P ) A =T1A o TR A = 81, .., Spe
ii. £« s1,...,8, € X and 6 does not contain a binding for ¢. Then

tOX =tA = 51....,5m.

(b) 6 o A does not contain a binding for ¢. The t0 o A = ¢. We show that

td\ = t. We have the following two cases:
i. Neither # nor A contain a binding for ¢t. Then

O =t\ =t.

ii. There exist ry,...,ry,, m > 0, such that ¢t « rqy,...,7, € 6 and
(r1y...,7m)X = t. Then

tON = (r1,...,Tm)A =t.
3. t is a compound term f(s1,...,8,), f € FFIX UFFLEX. Then

f(s1y.euy80)00 A = (by Definition 5)
f(s100 A, ..., 8,0 0X) = (byinduction hypothesis)
f(510, ..., 5,0).

and

f(s1,...,8,)0A = (by Definition 5)
f(s10,...,s,0)A = (by Definition 5)
F(s10X, ..., 8,0).



Corollary 1. Iftq,...,t, is a sequence of terms and 6 and \ are substitutions,
then
(t1...,tn)0od=((t1...,t,)0)\.

Theorem 2. For any substitutions 0, A and o,
(BoX)oog=0o(Noo).

Proof. (C) Let v «+— T € (0 o X) oo, where T is a sequence of terms, if v € SV
and is a single term, if v € IV. We show that

v—T €fo(Noo). (1)

To prove 1, by Definition 5 it suffices to show

vho(Aoo)=T. (2)

We prove 2 as follows:

v o (Ao o) = (by Definition 5)

v@(Aoo) = (by Definition 5)

v\ = (by Theorem1)

v(@oN)o = (by Theoreml)

vho(Aoo) =

T.

(D) Similarly to (C).

3 Equational Theory with Sequence Variables and
Flexible Arity Symbols

A set of equations E (called representation) defines an equational theory, i.e. the
equality of terms induced by F. We use the term FE-theory for the equational
theory defined by E. We will write s =g ¢ for s =t modulo E.

Solving equations in an E-theory is called E-unification. The fact that the

. . . ? . .
equation s =g t has to be solved is written as s=gt. A finite system of equations

? 2
(s1=gt1,...,8n=gty) is called an E-unification problem.

Some examples of equational theories with sequence variables and flexible
arity symbols are:

1. Free theory: E = ();
2. Flat theory (a theory with flexible arity flat symbol(s)):

E={fflex(z, [ flex(y),Z) = [ flex(z,7,2)}.

3. Restricted flat theory (a restricted theory with flexible arity flat symbol(s)):

E = {f flex(x, { flex (i, v.7),7) = f flex(®, 71, 7,72, 7)}.



4. Orderless theory (a theory with orderless flexible arity flat symbol(s)):
E = {fflex(f7 I’ y’ y7 z) i fflez(f7 y7 y’ I’ E)}'
5. Flat-orderless theory (a theory with flat-orderless flexible arity flat sym-
bol(s)):
E={ fflex(Z, [ flex(y),Z) = fflex(Z,7,%),
fflex(z, 2.7, y.2) = fflex(Z,y.7,2,2)}.

6. Restricted flat-orderless theory (a restricted theory with flat-orderless flexi-
ble arity flat symbol(s)):

E= { fflem(f,ffler(ﬁ,r%),?) = ffle‘r(famaxamaz)a
ffle:v(f,:r,y,y,z) = ffle:v(f,y,y,m,i)}.

Free, flat, restricted flat, orderless and restricted flat-orderless theories are re-
ferred respectively as (- F-, RF-, O-, FO- and ROF-theory.

Definition 10 (Unifier). A substitution 6 is called an E-unifier (or E-solu-
tion) of an E-unification problem <51;Et1,...,5n;Etn> iff 50 =g t;0 for all
1 < i < n. An E-unification problem I' is called E-unifiable (or E-solvable) iff
there exists an E-unifier of I.

By solving an E-unification problem I" we mean finding an FE-unifier of I".

Definition 11 (More General Substitution). 4 substitution 6 is more gen-
eral than a substitution o on a finite set of variables Var modulo a theory E
(denoted 0 <597 o ) iff there exists a substitution X such that

— for allT € Var,

e T — &\
e there exist terms t1,...,tn,S1,-..,8n, n > 0 such that To = t1,...,ty,
TOo A =s1,...,8, and for each 1 < i < n, eithert; and s; are the same

sequence variables or t; =g S;;
— forallx € Var, xo =g x6 o \.

Note that for the substitutions without sequence variables this definition coin-
cides with the standard definition of more general substitution. We will write
o>V giff 0 <50 o

Ezample 2. Let 0 = {Z «— y}. Then ¢ <<®i’y} o, where 0 = {T « a,z, J « a,z},
but not ¢ <<éf’y} n, where n = {7 «—,7 «}.

Definition 12 (Minimal Set of Substitutions). A set of substitutions X is
called E-minimal with respect to a set of variables Var iff for all 0,0 € X,
0 <% o implies § = o.



Definition 13 (The Minimal Complete Set of Unifiers). The minimal
complete set of E-unifiers of I', denoted MCUg(I'"), is an E-minimal set of
substitutions with respect to the set of variables Var of I', satisfying the following
conditions:

E-Correctness - for all @ € MCUg(I"), 0 is an E-unifier of I
E-Completeness - for any E-unifier o of I there exists 6 € MCUg(I") such
that 0 <35 o

Ezample 3. Compute the minimal complete set of unifiers in the free, flat and
restricted flat theories (f and g are free flexible arity function symbols, h is a
flat flexible arity function symbol, rh - restricted flat flexible arity symbols):

1. MCU((f(z, y)% Fla,b,0)) = {{T = a,b, y — c}}.
2. MCU((f@ )20 f(a,h) = {{T — T — a,b}, {T — a,5 — b}, {7 «

by

3. MOU((f(@ @20/ (0.7) = {7 ). {F—a}. (7= aa}....}.

4. MCUy((f(g(a, 9(7.¢).2) 20 f (@ 9(0.9))) = ({7 — 9(0,). 7 — b, T —
¢}, (T =@ — g(a).F — b7 — ¢}, {T — g(@F)F — b T —
T.ch, {7 — T g(a). T — b7, T —F.c}}.

5. MCUF((arph(@)) = {{z — h(x)}}.

6. MCUp((h(Z)=rh(a))) = {{Z < a}, {T < h(a)}, {ZT < a,h(}, {ZT <
h(a), h()}, {T H?h(),a}, {z < h(),h(a)}, {7 < h(),a,h()}, ...}.

7. MCURF(<rh(T)i%Frh(a))) ={{ZT — a}, T — rh(a)}.

8. MCURrp({rh(Z,y)=grrrh(a, b, c))) = {{Z <, y « rh(a, b, )}, {T «
a,y < rh(b, )}, {T < rh(a),y «— rh(b, o)}, {T « a,b, y — ¢}, {T «—
rh(a), b, y < c}, {T — a,rh(b), y < ¢}, {T < rh(a),rh(db), y < ¢}, {T «—
rh(a,b), y «— c}, {T <« a,b, y — rh(c)}, {T < rh(a),b, y < rh(c)}, {T «
a,rh(b), y < rh(c)}, {T < rh(a),rh(b),y «— rh(c)}, {T < rh(a,b), y <
rh(c)}}.

Below in this paper we consider only the (-theory, although the results
valid for arbitrary FE-theories with sequence variables and flexible arity sym-
bols are formulated in a general setting. Note that in the case of (-theory it
is enough to consider single equations instead of systems of equations in unifi-

? ?
cation problems, because (s1=¢t1,...,S,=pt,) has the same set of unifiers as

?
f(s1,. o 8n)=¢f(t1,...,tn), where f is a free flexible arity symbol.
We answer the following two questions about @-unification:

Decidability: Is it decidable whether a unification problem is solvable?
Unification procedure: How can we obtain a (preferably minimal) unification
procedure?



4 General Unification in the Free Theory with Sequence
Variables and Flexible Arity Symbols - Decidability

In this section we consider decidability of general unification problem in the free
theory with sequence variables and flexible arity symbols. The problem has a

form ¢, ;@tg, built over the alphabet which consists of sequence and individual
variables, free flexible arity function symbols, free constants and free fixed arity
function symbols. We denote it as GU Py.

The problem is to prove that GUPF, is decidable. To do so, first we try
to reduce GUPy to a “simpler” unification problem RUP (reduced unification
problem) such that GU Py is solvable if and only if RUP is solvable, and then
try to prove that solvability of RU P is decidable.

4.1 Reduction

We reduce the problem of solvability of GU P, to the problem of solvability of a
reduced unification problem RUP.

Let fflexy,..., fflex, (n > 1) be all flexible arity function symbols occur-
ring in GU Py. First we reduce GU Py to an intermediate F-unification problem

o
IUPpr = t{UP = FtéUP by performing the following steps:

1. Introduce
— a new flat flexible arity symbol Segq,
— a new unary function symbol nfix; for each fflex; (1 <i < n).
2. Replace each term fflex;(t1,...,tm) in GUPy by nfiz;(Seq(t1,...,tm))
(m >0).

Note that in IU Pr sequence variables occur only as arguments of terms with
the head Seq. We impose individual variable restrictions on terms on IU Prg
demanding that, for a solution § of IU Pr and for any individual variable z, z6
must not have Seq as a head.

Theorem 3. GU Py is solvable iff IU Pp with individual variable restrictions on
terms is solvable.

Proof. (=) Let 6 be a unifier of GUPy. Then from 6 we can get a unifier of
1U Pr with individual variable restrictions on terms by repeating the step 2 of
the reduction procedure above on each term with flexible arity head from Cod(6).
(<) Let IU Pr with individual variable restrictions on terms have a solution
¢. Show that GU Py is solvable.
Let 0 be a substitution obtained from ¢ by

— replacing each unary function symbol n fix introduced at the first step of the
reduction procedure above by the corresponding flexible arity symbol f flez,

— replacing each term of the form Seq(ty,...,t,) (m > 0) by the sequence of
terms t1,...,tm.-



Then 0 is a unifier of GU P.

Remark. Note that solvability of U Pr (without individual variable restric-
tions on terms) does not imply solvability of GU Py. For instance, let GUPy =
fflex(m);@fflex(a, b), then IU Pp = nfiac(Seq(x))lpnfix(Seq(a, b)). It is cle-
ar that GUPFy does not have a solution, while {z « Seq(a,b)} is a solution of
IU Pr because the flatness of Seq implies Seq(Seq(a,b)) = Seq(a,b).

Next, our goal is to reduce IU Pr with individual variable restrictions on
terms to a finite set SRU P of reduced F-unification problems with the property
that U P with individual variable restrictions on terms is solvable iff there exists
a RUP € SRUP which is solvable.

First, we define two new sets:

1. Let CONSTp be the set of constants of IUPr and const be a new con-
stant. Then
Ciyp =CONSTyp U {CO’ILSt}.

2. Let FFIX;yp = {ffix1,..., ffiz,m}, m > 1 be the set of all fixed arity
function symbols in IU Pr and y1,. .. 7y414R(ffi$1).’ RO T ,yTR(fﬁzm) be
new distinct individual variables. Then

TIUP = {fl(yia s ay,léXR(fl))a .. -7fm(y;na g ':yZLR(fm))}'

Let IVigp = {x1,...,2,} be the set of all individual variables of IU Pp.
Then SRUP is defined as:

SRUP = {gfix (t{UP,atl,...,xn);pgfix(téUP,sl,...,sn) \
gfix € FFIX, AR(gfiz) =n+1,
foralll <i<n,s; € Ciyp UT]UP}.

Theorem 4. IU Pr with individual variable restrictions on terms is solvable iff
there exists a RUP € SRUP which is solvable.

Proof. (=) Let 6 be a unifier of JTUPr with individual variable restrictions
on terms. Then for each x € IViyp, 0 does not have Seq as a head, i.e.
x60 is either a individual variable, a constant from CONST;yp or has a form
ffiz(s1,...,54R(ffix)) for some function symbol ffiz € FFIXyp and terms
S1y.++y SAR(f fiz)-

Let 0 = {z « ¢|a € IV;yp U (IV N Ran(#))}. Then 0 o o is a solution of
IU Pr such that for each x € IViyp, either 2 o 0 € Cryp or there exists a
substitution A such that x6 o o = t\ for some t € Tryp.

Let

X¢o = {ZE|$ € IViypand 20 o0 € C[Up},

Xp={z| z€IViypand 20 0 0 = tA
forsome ¢ € Ty7p and substitution A}.

Then Xc U Xp = IViyp.
Let



— for each z € X¢, ¢; be the constant ¢ € Cryp such that ¢ = 26 o o;
— for each z € Xp, t, be the term ¢ € Tjyp such that tA = 20 o o for some
substitution \;
— for each z € X, A\, be the substitution A\ such that
o ift, = ffiz(y1,...,Yar(sfiz)) then Dom(0) = {y1,...,Yar(sfiz)}
o zhoo =t )\

We choose RUP € SRUP such that

RUP =
. ?
gfiz(t{"F 2y, w i, 2) =R
gflm(téUP’CIM"'7cIi7tri+17"'7t1’n)
where {z1,...,2;} = Xc and {x;11,...,2,} = XF.
Let n = UgzexpAz. Then
gfiz(VF 2y, .. xi w41, ..., mp)0 000 =
gfiz(tV 00, cpyy. . CoyyTina00,. .. 2,00)
and
gfim(téUP,czl,...,cxi,tIiJrl,...,trn)Ooaon:
gfiz(tiVr o, CarsennsCaprlag i Ayeeeyto, A).

Since t1VP 0o = tIVPho and for all i +1 < j < n, te; A = xj00, we get that
0 o on is a solution of RUP. Thus, solvability of IU Pr with individual variable
restrictions on terms implies solvability of some RUP from SRU P.

(<) Let ¢ be a solution of some RUP € SRUP. Then, obviously, ¢ is a
solution of IU Pr. Moreover, ¢ binds every individual variable of IU Pr either
with a constant or a term with fixed arity head. Hence, ¢ is a solution of IUP
with individual variable restrictions on terms.

Thus, the problem of decidability of the unification problem GU Py is reduced
to the problem of decidability of a reduced F-unification problem RU P.

4.2 Decidability of the Reduced Problem

We prove decidability of the reduced F-unification problem RU P using Baader-
Schulz combination method [5]:

Theorem 5 (Baader and Schulz).

Let Fn, ..., E, be equational theories over disjoint signatures such that solv-
ability of E;-unification problems with linear constant restriction is decidable for
i1 =1,...,n. Then unifiability is decidable for the combined theory E1U...UE,.

Linear constant restrictions are induced by a linear order < on the set of
variables and constants, demanding that, for a unifier 6, a constant ¢ and a
variable x, ¢ must not occur in zf if ¢ > x.

Let £21 be the set {Seq} and 25 be the set of fixed arity function symbols and
object constants which occur in RUP. Let E; be an equational theory over the



signature {2; where terms are built from individual variables, sequence variables
and the symbol Seq from (2. Since Seq is a flat symbol every non-variable term
of Ey has a form Seq(t1,...,t,) (n > 0) where each ¢; is either a sequence
variable or an individual variable. Let E5 be a free theory over (25, where terms
are built from individual variables and symbols from {25. Then we can consider
RUP as a unification problem in the combined theory E1UE,. Since ;N2 = 0,
by Theorem 5, in order to show that solvability of RUP in E; U E5 is decidable
we need to show that solvability of F1- and Es-unification problems with linear
constant restrictions is decidable.

Decidability of E;-unification problem with linear constant restric-
tions The decidability problem for E;-unification is equivalent to the decidabil-
ity problem for word equations with an additional restriction on certain variables
in the equation. The restriction demands that for each of those variables and a
unifier 6 of the equation, the length of an instance of the variable with respect
to 6 must be 1. We call these additional restrictions individual variable restric-
tions on length. Thus, The decidability problem for FEj-unification with linear
constant restrictions is equivalent to the decidability problem for word equations
with linear constant restrictions and individual variable restrictions on length.
Therefore, we will show that solvability of word equations with linear constant
restrictions and individual variable restrictions on length is decidable.

Note that we can consider ground unifiability case only. Let V' be a set of
(sequence or individual) variables, C' be a set of constants and C* be the set
C'U{c}, where ¢ is a constant not occurring in C. Suppose that a word equation
W E is given with variables in V', constants in C', with linear constant restrictions
induced by a linear ordering < on V U C and for each individual variable from
V', with individual variable restrictions on length. W E has a unifier 6 over VUC'
which satisfies the linear constant restrictions induced by < and the individual
variable restrictions on length iff WFE has a ground unifier §° over C* which
satisfies the linear constant restrictions induced by < and the individual variable
restrictions on length.

We need the following general result of [27]:

Theorem 6 (Schulz). If WE is a word equation with variables vy, ...,v, and
constants in the alphabet C, and if L1, ..., L, are regular languages over C*, then
it is decidable whether W E has a solution 6 such that v;0 € L; fori=1,...,n.

Using this result we can prove a theorem which solves of word equations
with linear constant restrictions and individual variable restrictions on length
and thus, solves the decidability problem for F;-unification with linear constant
restrictions:

Theorem 7. Solvability of a word equation with linear constant restrictions and
individual variable restrictions on length is decidable.

Proof. Let WE be a word equation with variables x1,..., 2. Y1,...,7; and
constants in the alphabet C‘, where the variables z1,...,z,, are subjects of



individual variable restrictions on length. Let L1, ..., L,,+x be regular languages
over C* such that

—forall1<i<m, L, ={a€Cla<uz;}U{c},
—forall 1 <i<k, Lyyi={aeCla<y;}U{cH".

A solution 6 of W E satisfies the linear constant restrictions and the individual
variable restrictions on length iff §(z;) € L; for all 1 < i < m and 0(7;) € L+
for all 1 < ¢ < k. Thus, Theorem 6 implies that solvability of a word equation
with linear constant restrictions and individual variable restrictions on length is
decidable.

Decidability of Es-unification problem with linear constant restric-
tions Obviously, the Es-unification problem is a Robinson unification problem.
Solvability of Robinson unification problems with linear constant restrictions is
decidable (see [4]).

Thus, solvability of unification problem in the }-theory with sequence vari-
ables and flexible arity symbols is decidable.

5 General Unification in the Free Theory with Sequence
Variables and Flexible Arity Symbols - Unification
Procedure

In this section we design a unification procedure to solve general unification
problem in the free theory with sequence variables and flexible arity symbols.

Recall that the problem has a form ¢; ;@tg, built over the alphabet which consists
of sequence and individual variables, free flexible arity function symbols, free
constants and free fixed arity function symbols. We denote it as GU Py.

We design the unification procedure as a tree generation process based on
two basic steps: projection and transformation. Below we describe these steps in
details.

For a unification problem U Py, we denote by SUC(U Py) the successors of U P
under projection or transformation. SUC(U Py) can be SUCCESS, FAILURE
or a tuple of unification problems. SUB(U Py) denotes the tuple of substitutions
which were applied on U Py to get the successors of UPF.

5.1 Projection

The idea of projection is to eliminate some sequence variables from the given
unification problem ([1]). Let Si,...,S, be all subsets of the set of all sequence
variables of GUPy and © be the set of substitutions {6y,...,0,} such that for
all1<i<mn,0;={T — | T€S;}. Then under projection

SUB(GUPy) = (01....,01)

and
SUC(GUPy) = (GU Pybs,...,GU Pyby).



5.2 Transformation

To find SUC(GU Py) and SUB(GU Py) under transformation we distinguish the
following three cases:

1. t; and t are identical. Then
SUB(GUPy) = (¢)

and
SUC(GUPy) = SUCCESS.

2. t1 and to are neither identical terms nor non-variable terms with the same
head. Then SUB(GU Py) and SUC(GU Fy) are defined in Table 1.

3. t; and t9 are non-identical non-variable terms with the same head g, where
g is a function symbol with either fixed or flexible arity. Then we have the
following two cases:

(a) Ounly one from #; and ¢2 has the form g(). Then

SUB(GUPy) = ()

and
SUC(GUPy) = FAILURE.

(b) None of ¢; and ¢, is a term of the form g(). Let ¢; be g(r1,7) and t3 be
9(s1,3), where T and s are (possibly empty) sequences of terms. Then
we have the following cases:

i. r1 and s; are identical. Then

SUB(GUPy) = (&)

and

SUC(GUPy) = (f(F)20f(5),

where f is a new flexible arity function symbol, if g has a fixed arity.
Otherwise f is g.

ii. 1 and s; are not identical. Then SUB(GU Py) and SUC(GU Py) are
defined in Table 2.

5.3 Unification Procedure - Tree Generation

Projection and transformation can be seen as single steps in a tree generation
process. Each node of the tree is labeled either with a unification problem,
SUCCESS or FAILURE. The edges of the tree are labeled by substitutions.
The nodes labeled with SUCCESS or FAILURE are terminal nodes. The
nodes labeled with unification problems are non-terminal nodes. The children of
a non-terminal node are constructed in the following way:

Given a nonterminal node, let UP be a unification problem attached to it.
First, we decide whether UP is unifiable. If the answer is negative, we replace
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Table 1. Transformation table for GU Py of the form t1=yt2 where t; and t2 are neither
identical nor non-variable terms with the same head.

t1 ta |SUB(GUP@) |SUC(GUP@)
Ind. variable |Ind. variable|({t; < t2}) SUCCESS
Ind. variable|Non-variable|(), FAILURE

term

if t1 occurs in to

({t1 « t2}),

otherwise

if t1 occurs in to

SUCCESS
otherwise

Non-variable
term

Ind.variable

Symmetric to the case
t1 - ind. variable,
ty - non-variable term

Symmetric to the case
t1 - ind. variable,
ty - non-variable term

Non-variable
term

Non-variable
term

FAILURE

UP with the new label FAILURE. If UP is unifiable, we apply projection
or transformation on UP and get SUB(UP) and SUC(UP). If SUC(UP) is
SUCCESS, the node has a single child with the label SUCCFESS and the
edge to that node is labeled with SUB(UP). If SUC(UP) = (P4,...,P,) and
SUB(UP) = (01,...,04), the node UP has n children, labeled respectively with
Py, ..., P, and the edge to the P; node is labeled with o; (1 <1i < n).

We design the general unification procedure as a breadth first (level by level)
tree generation process. Let GU Py be a unification problem. We label the root
of the tree with GUPy (zero level). First level nodes (the children of the root)
of the tree are obtained from the original problem by projection. Starting from
the second level, we apply only a transformation step to a unification problem
of each node, thus getting new successor nodes. The branch which ends with
a node labeled by SUCCESS is called a successful branch. The branch which
ends with a node labeled by FAILURE is a failed branch. For each node in
the tree, we compose substitutions (top-down) displayed on the edges of the
branch which leads to this node and attach the obtained substitution to the
node together with the unification problem the node was labeled with. The empty
substitution is attached to the root. For a node N, the substitution attached to
N in such a way is called the associated substitution of N. Let X(GU Py) be the
set of all substitutions associated with the SUCCESS nodes. We call the tree
a unification tree for GU Py and denote it UT(GU Fy).
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Table 2. Transformation table for GU Py of the form g(r1,7)=gg(s1,5) where 7, and
S are possibly empty sequences of terms. The function symbol f in the table is a new
flexible arity function symbol, if g has a fixed arity. Otherwise f is g.

1 |31 |SUB(GUP@) |SUC’(GUP@)
Ind. var.|Ind. var.|oc = SUB(rllgsl) (f(?a);@f(Ea»
Ind. var.|Seq. var.|{o1, 02), where (f(FJl);@f(Eal),
?
o1 ={s1 <}, f(Fo2)=¢f(s1,502))
o2 = {s1 < ri,s1},
Ind. var. | Non-var.|(}, FAILURE
term  |if SUB(r=Zgs1) = () |if SUC(r124s1) = FAILURE
? Ny
(o) = SUB(r1=¢s1), |(f(To)=of(50))
otherwise otherwise
Seq. var.|Ind. var.|Symmetric to the case|Symmetric to the case
r1 - ind. variable r1 - ind. variable
s1 - seq. variable s1 - seq. variable
Seq. var.|Seq. var.|{(o1, 02, 03), where (f(FUl);@f(Em),
?
o1 ={r1 < s1}, f(r1,702)=¢f(302),
?
o2 = {r1 < si,m}, |f(Fo3)=gf(s1,502))
o3 ={s1 < 11,51}
Seq. var.|Non-var.|(), FAILURE
term if 71 occurs in s if 71 occurs in s1
?
<Ula U2>7 where < f(FUl)iﬂf(go-l)v
?
o1 = {r1 < si1}, Jf(r1,7o2)=¢ f(302),
oy ={r1 < s1,m1}, otherwise
otherwise
Non-var.|Ind.var. |Symmetric to the case|Symmetric to the case
term r1 - ind. variable r1 - ind. variable
s1 - non-variable term|s; - non-variable term
Non-var.|Seq. var.|Symmetric to the case|Symmetric to the case
term r1 - seq. variable r1 - seq. variable
s1 - non-variable term|s; - non-variable term
Non-var.[Non-var.|SUB(r~¢s1) FAILURE
term  [term if SUC(r124s1) = FAILURE
_ \7 _
(f(TU)=0f§SO)>,
if SUC(ri=¢s1) = SUCCESS
and SUB(m;@sl) = (o)
_ ? _
<f(q117 ral)imf(q127 801)7 R
_ ? _
f(qk17 T‘O'k)?i@f(quy SUk))a
if SUC(T‘li@Sl) =
? ?
(q11=0q12, ..., qk1=0qx2)
and SUB(M;@sl) =(o1,...,0%)




Ezxample 4. Figure 1 shows development of successful branches in the unification
tree for GUPy = f(2,0,7. f(@)~0f (@, Zf(b.7)). D(QUPy) = {{o — a7 —
b,T,y — T}, {r—a,T—0b7—}}

F(a,b,7, F@) 2 f (a7, £(b,7))

15 {7 <}
Fa 0.5, f@)Ef @ f(0,7)  flab, f@)2f (a7 f(b))
(o — a} {o —a}
£0,79, @) 2@, £(0,7) £, F@) 21 (@, 1))
7 — b,7} {7 — b}
£@, Fb,7) 2 £ (=, £(0. 7)) FUFB)ZF(F ()
{7 — 7} l €
) ) SUCCESS
l )
SUCCESS

Fig. 1. Successful branches of UT(f(z,b,7, f(f));@f(a,f,f(b,y))).

Our goal is to prove that X(GU Py) is a minimal complete set of free unifiers
for GUPy. In fact, we will prove a stronger statement: X(GUPp) is a disjoint
complete set of free unifiers for GU Py, where disjointness is defined as follows:

Definition 14 (Disjoint Set of Substitutions). A set of substitutions X is
called disjoint modulo E with respect to a set of variables Var iff for all 0, o € X,
if there exist substitutions A1, Ao such that

— for all sequence variables T € Var,

e T — ¢\,

° f(—ﬁ)\%

o there exist termsty, ..., tn,S1,...,8n, 0 > 0 such that Tho; =t1,...,t,,
To oAy = S1,.--,8, and for all 1 < i <mn, eithert; and s; are the same

sequence variables or t; =g s; and
— for all individual variables x € Var,
e ro )\ =g xo 0 Ao,

then 0 = o.



First we need to establish some preliminary results.

Lemma 1. If a set of substitutions X is E-disjoint with respect to a set of
variables Var, then X is E-minimal with respect to Var.

Proof. Let X' be disjoint with respect to a set of variables Var and 6 and o be
two substitutions from X such that § <% o. We will show that 6 = o.

By Definition 11, from 6 <% o we have that there exists a substitution A
such that

— for all 7 € Var,

° T — &N
e there exist terms tq,...,t,,S1,...,8n, n > 0 such that To = tq,...,t,,
Tho X =5sq,...,8, and for each 1 < i < n, either t; and s; are the same

sequence variables or t; =g s;;
— for all x € Var, zo =g x6 o .

On the other hand, for the empty substitution € we have for all T € Var,

— T ¢e;
— To =T0OE.

Therefore, for the substitutions € and A we have that

— for all sequence variables T € Var,

e T ge

o T «— §é A,

e there exist terms tq,...,t,,81,...,8n, n > 0 such that Thoe = t1,...,t,,
Too\=S81,...,8, and for all 1 < i < n, either t; and s; are the same

sequence variables or t; =g s; and
— for all individual variables = € Var,
e x0oe =g xoo0),

which, by Definition 14, implies 6 = o.
First, we prove completeness.

Lemma 2. For every free unifier ¢ of a general unification problem GU Py there
exists a branch (3 in UT(GU Py) with the following property: if P is a unification
problem occurring in (3 with the associated substitution 0, then 0 <<g‘" ¢, where
Var is the set of variables of GU Fy.

Proof. Let ¢ be an arbitrary free unifier of GU Py and Var be the set of variables
of GU Py. We should find a branch 8 in UT(GU Pp) such that if P is a unification
problem occurring in 3 and @ is the substitution associated with P in UT (GU Py),
then 6 <<X‘” ¢.

We define ( recursively.

First, let the root of the tree, labeled with GU Py, be in . The substitution
associated with GU Py is €. Obviously, <<(§)/‘” ¢.

Next, let the first level node of 3 be that successor P of GU Py, for which
the associated substitution § = {Z «— |T «— € ¢ and T € Var}. We show that
0 <<X‘" ¢. Let A = ¢\0. Then we have that ¢ = 0 o A. Therefore



— for all T € Var,

° T — X
e there exist terms t1,...,tn,S1,...,85, N > 0 such that T¢ = t1,...,%,,
TOo )\ =sy1,...,8, and for each 1 < ¢ < n, either ¢; and s; are the same

sequence variables or t; =g S;;
— for all x € Var, ¢ =p 200 A,

which implies that 6 <<(})/ ar ¢,

Let now a node in UT(GU Py), labeled with P,, be in 3. It means that for
the substitution 6,, associated with P,,, it is true that 6,, <<(‘D/‘“" ¢. It implies that
there exists a substitution A such that

— for all 7 € Var,
e the binding

T— ¢&X (3)
e there exist terms t1,...,t,,81,...,8p, n > 0 such that Tp = t1,...,t,,
Thp o)\ = s1,...,8, and for each 1 <14 < n, either ¢; and s; are the same
sequence variables or
ti i@ S35 (4)
— for all x € Var,
xp =y 26, o \. (5)

If there exists a successor P,yq of P, in UT(GUPy) with the associated sub-
stitution 6,,41 such that 6,4 <<(})/‘" ¢, we can include P, into § and, thus,
we will have that for all P € (3, if § is a substitution associated with P, then
0 < .

Thus, the problem of constructing 3 is reduced to finding the successor
P, 1 of P, such that for the substitution 6,, 1, associated with P, 1, we have
011 <<é/‘" ¢. We show how to find such a P, ;.

The unification problem P, can have one of the following four forms:

P, is a pair of identical terms.

P, is a pair of individual variables.

is a pair of an individual variable and non-variable term.
P, is a pair of non-variable terms.

SR
9

We consider each of them separately:

1. There is only one possible choice: P, is SUCCESS with the associated
substitution 6,41 = 0, oc. Then 0,11 = 6, <<X‘" o.

2-3. Let P, be m;@t, t being either an individual variable or a non-variable
term. The substitution 6,, o A is a unifier of GU Py. The unification problems
GU Pyf,, and P, have exactly the same set of unifiers, because P,, can be
obtained from GU FPyf,, by iterated deletion of identical first arguments in
both sides of GU Pyf,,. Therefore, we have that A\ is a unifier of P,. To
obtain P,y from P, we choose the substitution g = {x « ¢}. Let 6,41 be
the substitution 6,, o 4. Then from 3, 4, 5 and the fact that oA = X we get



— for all T € Var,

o T — &\
e thereexist termsty,...,t,, 81,...,8p, n > 0suchthat Tg = t4,...,%,,
T oA =70 oo =20y 10\ = S1,...,8, and for each 1 <i < n,

either ¢; and s; are the same sequence variables or t; =y s;;
— for all z € Var, z¢ =¢ 0, o X =¢ 20, o o X =y 20,11 0 \.
Thus, 0,41 :<<(‘0/‘”’ 0.

4. Let P, have the form g(tl,f);@g(slj), where t and 3 are (possibly empty)
sequences of terms. We can have the following 6 cases with respect to t; and
S1:

4.1. t; and s; are identical.

4.2. t; and s; are individual variables.

4.3. One of t; and s; is an individual variable, the other is a non-variable
term.

4.4. t; and sy are sequence variables.

4.5. One of t; and s; is a sequence variable, the other is not.

4.6. t1 and s; are non-variable terms.

We consider each of these cases.

4.1-4.3. In these cases P, 1 can be chosen analogously to the cases 1-3 above.

4.4. Suppose t; is a sequence variable T and s; is a sequence variable 7. Let
us define substitutions p and v as follows:

—pu={zZ — 7}, v={v—vA|lveVar,v #7T, v # v}, if f(T)\ =
TN

—pu=A{7 — 3,7}, v={T «— T} o{v «— vA|v € Var,v # T,v # v},
if there exists a non-empty sequence of terms 7 such that f(Z)\ =
f(y7 F))‘;

—u={F <2y v={7 < Tlo{v— vAlv € Varv#7v#vA}
if there exists a non-empty sequence of terms 7 such that f(y)A =y
@A

with f being a new flexible arity function symbol, if g has a fixed arity.
Otherwise f is g.

We obtain P,;; from P, by the substitution u (since X is a unifier of
P,,, these three cases for p are the only possibilities to get P41 from
P,). Therefore, 0,1 = 0,, o p.

On the other hand, for all 7 € Var,

T — ¢ p. (6)
From 6, 3 and definitions of p and v, by Definition 9 we get for all
T € Var

T ¢v. (7)
From 4 and definitions of p and v we get that for all T € Var there exist
terms t1,...,tn,S1,...,8n, n > 0 such that T¢ = t1,...,t,, T, 0o A =
TO,opov =T0p 10V = S1,...,5, and for each 1 < i < n, either ¢; and

s; are the same sequence variables or

ti i@ S35 (8)



From 5 and definitions of 1 and v we get that for all x € Var
zp =g x0p 0 X =¢ 20, 0o pov =gy 20,41 0 V. (9)

From 7, 8 and 9, by Definition 11 we get 6,11 <} " ¢.

4.5. This case can be proved similarly to the case 4.4, considering only two
cases for p.

4.6. This case recursively can be reduced to one of the cases 4.1-4.4 above.

Thus, for all possible forms of P,, we found its successor P, ; such that for the
substitution 6,41, associated with P,11, we have 0,41 <<(§)/‘" ¢. It finishes the
proof.

Theorem 8. X(GUPy) is a complete set of free unifiers for GU Py.
Proof. The theorem follows from Lemma 2 by the definition of X.

Next, we want to show that X(GUPFy) is a disjoint set of free unifiers for
GUPy. First, we prove that for any general (-unification problem P, the set
SUB(P) is disjoint with respect to the set of variables of UP. After that we show
that the substitutions associated with distinct successful leaves in UT(GU Fy)
are disjoint with respect to the set of variables of GU P.

Lemma 3. Let P be a general Q-unification problem. Then SUB(P) is disjoint
with respect to the set of variables of P.

Proof. Let Var be the set of variables of P. We show that SUB(P) is disjoint
with respect to Var.

Let SUB(P) be the set of projecting substitutions. Assume by contradic-
tion that SUB(P) is not disjoint with respect to Var. Then there exist two
substitutions 6 and o from SUB(P) and two substitutions A; and Ay such that

— for all sequence variables T € Var,

o T — ¢ )\,

T — &\,

e there exist terms ty,...,t,, S1,...,8n, N > 0such that Tho\; = t1,...,tn,
To oMy = S1,...,8, and for all 1 < i < n, either #; and s; are the same

sequence variables or t; =y s; and
— for all individual variables = € Var,
e o)\ =pxoo .

Since 6 # o, without loss of generality we can assume that there exists a sequence
variable T € Var such that T «+ € 0 and T «+ ¢ o. Then T o )\; is the empty
sequence, while To = Z. The only way to make To o A2 the empty sequence is to
have T « € Ag, but it contradicts the assumption that T « ¢ \y. The obtained
contradiction proves that the set SUB(P) of projecting substitutions of P is
disjoint with respect to Var.

Now let SUB(P) be the set of transformation substitutions. Since, by Def-
inition 14, the empty set and a singleton are trivially disjoint modulo any F



with respect to any set of variables, we consider only the cases when SUB(P)

‘7
is neither empty set nor a singleton. Let P have a form g(r1,7)=¢g(s1,5) where
7, and § are possibly empty sequences of terms and g € FFIX UFFLEX. The
we have the following three cases with respect to the form of r; and s;:

1. r; and sy are sequence variables.
2. One of r; and s; is a sequence variable, the other is not.
3. r1 and s; are non-variable terms.

We prove in each case that SUB(P) is disjoint with respect to Var.

1. Let 71 be T and s; be 5. Then SUB(P) = {n1,n2, n3}, where n; = {T «—
yh, n2 = {T <« y,7} and 53 = {y < T,y}. Assume by contradiction that
SUB(P) is not disjoint. Then for some ¢ and o from SUB(P) there exist
substitutions A1, Ao such that

— for all sequence variables T € Var,

° feg)\l,

° f<—§§)\27

e there exist terms t1,...,t,,81,...,8,, n > 0 such that T o \; =
t1y.e.ytn, TOO Ay = 81,...,8, and for all 1 < i < n, either t; and s;

are the same sequence variables or t; =g s; and
— for all individual variables z € Var,
o 200\ =5 x0 0 \s.

Let 6 be 1; and o be 72. Then

— for T € Var we have 6 o A\ = y\; and To o Ay = YAz, TAo;

— for 7 € Var we have 56 o \; = gA; and 5o o Ay = o,
which implies that TAs must be the empty sequence, but it is impossible
because T «— ¢ Aa.
Now let 8 be n; and o be n3. Then

— for T € Var we have T o A\ = y\1 and To o Ay = TAs;

— for 7 € Var we have 56 o A\ = y\1 and 5o o Ay = Yo, T2,
which implies that 7\ must be the empty sequence, but it is impossible
because § < ¢ Aa.
Now let 6 be 12 and o be n3. Then

— for T € Var we have T o A\ =y\1,TA; and To o Ay = TAg;

— for y € Var we have g6 o \; = yA; and yo o Ay = YA, Thg,
which implies that TA; and yA; must be the empty sequences, but it is
impossible because T < ¢ Ay and § «— ¢ As.
Thus, in all possible cases we got contradiction, which proves that SUB(P)
is disjoint with respect to Var.

2. This case can be proved similarly to the case 1.
3. This case can be reduced recursively to one of the previous cases.

Now we show that the substitutions associated with distinct successful leaves
in UT(GU Py) are disjoint with respect to the set of variables of GU Py. For this,
first we introduce the notion of D-preserving (disjointness-preserving) substitu-
tion due to Schulz [28].



Definition 15 (D-preserving substitution). A substitution 0 is D-preser-
ving modulo E with respect to a set Var of variables iff for any two substitutions
orand o2, if the set {01,032} is disjoint modulo E with respect to the set of
variables UyeyarVarSet(vl), then the set of substitutions {0 o 01, 6 o 02} is
disjoint modulo E with respect to Var.

Lemma 4. For a general unification problem GUPy any of the projecting or
transformation substitutions from SUB(GU Py) is D-preserving modulo )-theory
with respect to the set of variables of GU Py.

Proof. Let Var be the set of variables of GU P.

First we show that any projecting substitution preserves disjointness modulo
(-theory with respect to Var. Let m be a projecting substitution for GU Py.
If 7 = &, then, by Definition 15, 7 is trivially D-preserving modulo @-theory.
Assume 7 # e. Let 07 and o3 be two substitutions such that the set {o1,02}
is disjoint modulo FE with respect to the set of variables U,cvq,VarSet(vd) =
Var\{Z|ZT < € w}. We have to show that {m o o1, 7 0 02} is disjoint modulo
(-theory with respect to Var. To prove this, by Definition 14, we assume that
there exist substitutions A, Ay such that

— for all sequence variables T € Var,

hd f<_¢)\17

4 f<_¢>\2a

e there exist terms t1,...,%,,51,...,8n, N > 0 such that Tmr oo 0 A\; =
t1y.eeytn, TWO020 Ao = S§1,...,5, and for all 1 < ¢ < n, either ¢; and s;

are the same sequence variables or ¢; =¢ s; and
— for all individual variables = € Var,
® LT 0010\ =) XT 00O Ay,

and prove m o gp = 70 0a.

Since Var\{Z|T « € 7} C Var, we have for all (sequence or individual)
variables v € Var\{Z |T <« € w} that vm = v. Then from the assumption we
have that

— for all sequence variables T € Var\{Z |T « € 7}

4 f<_¢>\1a

L4 T‘_¢)\25

e there exist terms ti,...,t,,81,...,8n, n > 0 such that To; o Ay =
t1,...,tn, Tog 0 Ao = S1,...,8, and for all 1 < i < n, either ¢t; and

s; are the same sequence variables or t; =y s;,
— for all individual variables x € Var,
® 1010\ =p X0 O Ay,

which, by disjointness of the set {o7, 03}, implies that o3 = 03. Therefore, moo; =
mo ;.

Now we prove the lemma for the transformation substitutions. There are the
following 4 possible forms of the unification problem GU Py the transformation
step of the unification procedure deals with:



. GUPy is a pair of identical terms.

. GUPy is a pair of individual variables.

. GUPy is a pair of an individual variable and non-variable term.
. GU Py is a pair of non-variable terms.

=W N

We will prove in each case that transformation substitution is a D-preserving
substitution with respect to the set of variables of GU P.

1. In this case the transformation substitution is €. The fact that it preserves
disjointness, directly follows from the definition of D-preserving substitution.

2. Let GU Py have a form x;@y and the corresponding transformation substitu-
tion be § = {z « y}. Then Var = {z,y} and U,cvq,VarSet(vd) = {y}. Let
o1 and o2 be two substitutions such that {o1, o2} is disjoint with respect to
{y}. We have to show that {6 o 01, 8 0 02} is disjoint with respect to {z, y}.
Assume by contradiction that it is not disjoint. Then there exist substitutions
A1 and Ay such that for all v € {z,y}, v0ooi0A; =g v8ooy0),, in particular,
yh o o1 0 A1 =y yb o o2 0 A\y. But since yf = y, we get yo1 o Ay =¢ yoz 0 Ag,
which contradicts to disjointness of {01, o2} with respect to {y}. Thus,
{0 o 01, 0 0 09} is disjoint with respect to Var, which implies that 6 pre-
serves disjointness on the set of variables of GU Fy.

3. Let GUPFy have a form x;@t and the corresponding transformation sub-
stitution be # = {x « t}. Then we have that Var = {a} U VarSet(t)
and UyevarVarSet(vd) = VarSet(t). Let o1 and o2 be two substitutions
such that {01, o2} is disjoint with respect to Var. We have to show that
{8001, ooy} is disjoint with respect to Var. Assume by contradiction that
it is not disjoint. Then there exist substitutions A\; and Ay such that

— for all sequence variables = € Var,

b T<—¢>‘17

b T<—¢>‘27

e there exist terms tq,...,t,,51,...,8n, n > 0 such that Too; 0\ =
ti,...,tn, TO 0030 Xy = 81,...,8, and for all 1 < i < n, either ¢;

and s; are the same sequence variables or t; =y s; and
— for all individual variables = € Var,
e zlooy ol =g xzfooyo .
Then we have
— for all sequence variables T € VarSet(t),

* T ¢>‘17

® T — ¢)\27

e there exist terms tq,...,t,,S1,...,5,, n > 0 such that To; o Ay =
t1,...,tn, TO2 09 = S1,...,8, and for all 1 <7 <mn, t; =¢ s; and

— for all individual variables x € VarSet(t),
® 1010\ =p TO2 0 .
It implies that {o1, 02} is not disjoint with respect to VarSet(t), which is
a contradiction. Thus, {# o 01, 6§ 0 02} is disjoint with respect Var, which
implies that 6 preserves disjointness on Var.



4. Let GU Py have the form f(t1, f)ig)f(sl, 5), where £ and 5 are (possibly empty)
sequences of terms. We have the following 6 cases with respect to ¢; and s;:
4.1. t1 and s; are identical.
4.2. t; and s; are individual variables.
4.3. One of t; and s; is an individual variable, the other is a non-variable

term.

4.4. t; and sy are sequence variables.
4.5. One of t; and s7 is a sequence variable, the other is not.
4.6. t1 and s; are non-variable terms.
We show in each subcase separately that the corresponding transformation
substitution is D-preserving with respect to the set of variables of U P.

4.1-4.3. These cases can be proved analogously to the cases 1-3 above.

4.4 Let GU Py have a form T;@y. Then we have the following cases for the
transformation substitution 6:
(a) 0 ={7 —7};
(b) 0 ={z — 7.7}
(©) 0= {7 — 7.7} _
Then Var = {Z,7}UVarSet(t)UVarSet(s). Let o1 and 02 be two substi-
tutions such that {oy, o2} is disjoint with respect to Uyevqr VarSet(v0).
We have to show that {6 o o1, € 0 02} is disjoint with respect to Var.
Assume by contradiction that it is not disjoint. Then there exist substi-
tutions A\; and Ay such that

— for all sequence variables T € Var,

b T<—¢)‘17

b T<—¢)‘27

e there exist terms t¢1,...,t,,S1,...,8,, n > 0 such that T6 o o1 o
A =t1,...,tn, Tl 00303 = S1,...,8, and for all 1 < i < n,

either ¢; and s; are the same sequence variables or t; =j s; and
— for all individual variables z € Var,
e 20000 =y xbhooso0 .
Let us consider each case separately:
(a) In this case Uyeva,VarSet(vl) = Var\{Z} and for all z € Var\{T}
we have z6 = Z. Then for A\ and Ay we have
— for all sequence variables Z € Var\{Z},

° E<—§é)\13

° E<—§é)\23

e there exist terms ¢1,...,%n,S1,...,5n, n > 0 such that Zo; o
A =ty,...,tp, Zog 0 A3 = S1,...,8, and for all 1 < i < n,

either ¢; and s; are the same sequence variables or t; =¢ s; and
— for all individual variables z € Var,
® 1010\ =p TO2 0 Ag,
which implies that {o1, o2} is disjoint with respect to Var. But this
is a contradiction. Thus, {#ocq, foos} is disjoint with respect to Var,
which implies that € preserves disjointness on the set of variables of
GU Py.



(b) In this case UyevqrVarSet(vd) = Var. For T € Var there exist terms
t1,e s tnyS1y.- 8, n > 0 such that T ooy 0 Ay = (7, T)o1 0 A1 =
t1,...,tn, TO0o20Ny = (§,T)020Ag = $1,...,8, and forall 1 <i <n,
either t; and s; are the same sequence variables or t; =p s;. On the
other hand for ¥ € Var, we have that for some m < n, ylooio); =
Yo10A 1 =1t1,...,tm, Yloo30 Ay =Yoa0 Ao = S1,...,Sm. Therefore,
To1 0 =ty ytn, TO20 X3 = Sy, ..., Sy. As for the individual
variables, for all x € Var we have z0 = x. Thus, we got that there
exist substitutions A\; and Ay such that

— for all sequence variables T € Var,

o T — ¢\,

o T — ¢ )y,

e there exist terms tq,...,tn,S1,..-,8n, n > 0 such that To; o
A1 = t1,...,tp, TO2 0 X9 = S1,...,8, and for all 1 < i < n,

either ¢; and s; are the same sequence variables or t; =y s; and
— for all individual variables = € Var,
® 1010\ =¢ X020 Aa,
which implies that {o1, o2} is disjoint with respect to Var. But this
is a contradiction. Thus, {#ocy, foo} is disjoint with respect to Var,
which implies that 6 preserves disjointness on the set of variables of
GU Py.
(¢) Proof in this case is symmetric to the case b).
4.5. This case can be proved similarly to the case 4.4.
4.6. This case recursively can be reduced to one of the cases 4.1-4.4 above.

Lemma 5. Let 61 and 02 be two substitutions such that {0y, 02} is disjoint mod-
ulo E with respect to a set of variables Var. Let o1 and o3 be two substitutions
such that for allT € Var, T «— ¢ o1 and T < ¢ o2. Then {01 0 01, 03 0 02} is
disjoint modulo E with respect to Var.

Proof. Assume by contradiction that {61 o o1, 02 0 02} is not disjoint modulo F
with respect to Var. Then there exist substitutions A1, Ay such that

— for all sequence variables = € Var,

° f<—§é)\1,

° f(—gé)\Q,

e there exist terms ¢1,...,%y,51,...,5,, 7 > 0 such that 76; o g1 0o A} =
t1yeeeytn, Thy 0090 Ay = S1,...,8, and for all 1 < ¢ < n, either ¢; and

s; are the same sequence variables or t; =g s; and
— for all individual variables = € Var,
e 201001 0X = 2620020 Ag,

Let p1 be 01 0 A1 and us be 03 0 Ay. Then we have

— for all sequence variables T € Var,
T ¢,
T — ¢ o,



e there exist terms t1,...,%n,S1,...,80, 7 > 0 such that Tf; o uy =
t1,...yty, T2 0 o = S1,...,8, and for all 1 < i < n, either ¢; and
s; are the same sequence variables or t; =g s; and
— for all individual variables x € Var,
o 2010y =g 263 0 iy,

which, by Definition 14 implies that {0, 6>} is not disjoint modulo E with
respect to Var. This is a contradiction which proves that {#; o o1, 3 0 52} is
disjoint modulo E with respect to Var.

Theorem 9. X (GUPy) is a disjoint set of B-unifiers for GU Py with respect to
the set of variables of GUP.

Proof. Let Var be the set of variables of GU Py. Suppose o1 and oy are two
substitutions associated with distinct successful leaves of UT(GU Fy). We prove
that o1 and o2 are disjoint with respect to Var.

Let p be the common part (edges) of branches leading to the respective
leaves o1 and o9 are associated with. Then the substitutions o1 and o5 can be
represented respectively as yo 6y 0-.-06; and yo Ay o---0 \,, where y is the
substitution associated with the last node in p.

First, we show that « is D-preserving modulo (-theory with respect to Var.

Let P, denote the unification problem at the n-th node of p, Var,, be the set
of variables of P, and 7, be the substitution associated with P,. We show that
for any n, the substitution +,, in p is D-preserving modulo }-theory with respect
to Var. We use induction on n.

Induction base. n = 0. Then v, = ¢ which, by Definition 15, is D-preserving
modulo @-theory with respect to Var.

Induction hypothesis. We assume that ~,, is D-preserving modulo @-theory
with respect to Var for n > 0.

Induction step. We show that ~,y1 is D-preserving modulo @-theory with
respect to Var. By Definition 15, it suffices to show that for any two substitutions
n1 and na, if the set {71, 72} is disjoint modulo @-theory with respect to the set of
variables UyevarVarSet(vyn+1), then the set of substitutions {,+1 011, Ynt10
N2} is disjoint modulo () with respect to Var.

Let 11 and 72 be two substitutions such that the set {1, 72} is disjoint modulo
(-theory with respect to the set of variables U, cvq,VarSet(vy,1). We have to
show that {7vn+10m1, Yni10n2} is disjoint modulo @-theory with respect to Var.

Let u be a substitution such that v,,41 = v, o . Since, By Lemma 4 y is D-
preserving modulo (-theory with respect to Vary,, {on, pons} is disjoint mod-
ulo (-theory with respect to the set of variables Var, = Uycyq,VarSet(vyy,).
By induction hypothesis, ~, is D-preserving modulo @-theory with respect to
Var. Then, by Definition 15, {yn 0 o1, yn 0 pron2} = {¥nt1 001, Ynt1 0 72}
is disjoint modulo (-theory with respect to Var.

Thus, any substitution v, in p is D-preserving modulo @-theory with respect
to Var. In particular, v preserves disjointness modulo (-theory with respect to
Var.



Now, we show that the set {61 o --- 00, Ay 0--- 0 A\,} is disjoint modulo
(-theory with respect to the set of variables Var, of the last node of p.

By Lemma 3, the set {61, A1} is disjoint modulo (-theory with respect to
Var,. The substitutions 03, ...,0k, A2, ..., A, are transformations, therefore, for
all T from Var,, T« ¢ 030--- 06, and T < ¢ Xy 0---0\,. Then, by Lemma 5,
the set {#1 000k, A\; o---0A\,} is disjoint modulo @-theory with respect to
Var,.

Note that Var, = UycvarVarSet(vy). Therefore, from the fact that v is
D-preserving with respect to Var and {#y0---06, A\jo---0)\,} is disjoint with
respect to Var,, by Definition 15 we get that {yo6f;0---06, yoAjo---0\,} =
{01, 02} is disjoint modulo @-theory with respect to Var.

Theorem 10. Let GUPy be a general O-unification problem. Then
Y(GUPy) = MCUy(GU Fy).
Proof. By Theorem 8, Theorem 9 and Lemma 1.

The last results in this section give sufficient conditions for termination of
the procedure.

Theorem 11. The unification procedure for GU Py terminates if GU Py contains
no sequence variables.

Proof. Assume GU Py contains no sequence variables. Then for each term with
a flexible arity head fflex and the number of arguments n, we replace each
occurrence of f flex with a new n-ary function symbols f fiz. Then termination
of the unification procedure for GU P, follows from termination of Robinson
unification algorithm.

Another terminating case is when one of the terms to be unified is ground.
It yields to the following result:

Theorem 12. Matching in the free theory with individual and sequence vari-
ables, free constants, free fized and flexible arity function symbols is finitary.

2
Proof. Let GU Py = t;=t5 be a unification problem such that t; is ground. Then
each transformation step in the unification procedure strictly reduces the size of
to, which eventually leads to termination of the procedure.

We can add a loop-checking method to the procedure: stop with failure if
a unification problem attached to a node of unification tree coincides with a
unification problem in the same branch of the tree. Then the following theorem
holds:

Theorem 13. The unification procedure with loop-checking for GU Py termi-
nates if no variable occurs more than twice in GU Fy.



Proof. If no variable occurs more than twice in GU Py, then no transformation
rule increases the size of unification problems. Then we can have only finitely
many unification problems in the tree.

?
If GUPy = t1=ts has the property that sequence variables occur only as
arguments of £; or t5, then we can weaken the previous theorem:

0
Theorem 14. The unification procedure with loop-checking for GU Py = t1=t3,
where sequence variables occur only as arguments of t1 or ta, terminates if no
sequence variable occurs more than twice in GU Py.

Proof. Using the same argument as in the proof of previous theorem.

The following termination condition does not require loop-checking and does
not depend on the number of occurrences of sequence variables. Instead, it re-

quires for a unification problem of the form f(f);@f(tl, .oy tyn), m > 1, to check
whether T occurs in f(t1,...,t,). We call it the sequence variable occurrence
checking. We can tailor this checking into the unification tree generation pro-
cess as follows: if in the tree a successor of the unification problem of the form

o
F@)=pf(t1,...,tn), n > 1, has to be generated, perform the sequence variable
occurrence checking. If Z occurs in f(ty,...,t,), label the node with FAILURE,
otherwise proceed in the usual way (projection or transformation).

Theorem 15. If GUPy is a unification problem such that all sequence variables
occurring in GU Py are only the last arguments of the term they occur, then the
unification procedure with the sequence variable occurrence checking terminates.

Proof. In this case, every transformation step involving a sequence variable either
immediately generates a terminal node in the tree, or produces a new unification
problem with the size strictly smaller then the size of the unification problem
in the predecessor node. Then we can have only a finite number of nodes in the
tree.

The fact that in most of the applications sequence variables occur precisely
only at the last position in terms, underlines the importance of Theorem 15.
The theorem provides an efficient method to terminate unification procedure in
many practical applications.

6 First Extension: Pattern @-Unification

In this section we discuss extension of unification with sequence variables and
flexible arity symbols with patterns. First we extend the language by introducing
a new set of variables XV - called index variables - and the set LP of linear
polynomials with integer coefficients, whose variables are in XV.

Definition 16 (Patterns). A set of patterns PAT (over (V,C, P,LP)) is the
smallest set satisfying the following conditions:



— Ifce CONST, m,k € LP, then cy 1 is a pattern.

— Iff e FFIX, AR(f) =n,n >0 and t1,...,t, are terms such that for all
1<i<n,t; ¢SV, m.keLP, then fn,k(t1,...,t,) is a pattern.

— If f € FFLEX, each of t1,...,t, (n > 0) is a term or pattern, m,k € LP,
then fu k(t1,...,t,) is a pattern.

f is called the head of fm i (t1, ..., tn). We say that a pattern cpm i o7 fm k(t1, ..., tn)
is explicit iff m and k are positive integers.

If not otherwise stated, the following symbols, with or without indices, are
used as metavariables: vm, vn, vk - over index variables, cm, cn, ck - over integer
constants, vem, ven, vek - over index variables and integer constants.

Definition 17 (Quasi Pattern-Term). A set of quasi pattern-terms (over
(V.,C,P,LP)), or, shortly, QP-terms, is the smallest set satisfying the following
conditions:

— Ifve IV USV then v is a quasi pattern-term.

— Ifce CONST then c is a quasi pattern-term.

— Ifp e PAT then p is a quasi pattern-term.

— If f € FFIX, AR(f) = n, n > 0 and ty,...,t, are quasi pattern-terms
such that for all 1 < i < n, t; ¢ SV UPAT, then f(t1,...,t,) is a quasi
pattern-term.

— If f€e FFLEX and ty,...,t, are quasi pattern-terms, then f(ty,...,t,) is
a quasi pattern-term (n > 0).

f is called the head of f(t1,...,tn).

Definition 18 (Quasi Pattern-Equation). A set of quasi pattern-equations
(over (V,C, P,LP)), or, shortly, QP-equations, is the smallest set satisfying the
following property: If t1 and ty are QP-terms over (V,C, P, LP) such that t; ¢
SV UPAT and ty ¢ SV U PAT, then = (t1, t2) is a quasi pattern-equation
over (V,C, P, LP). The symbol = is called the head of the quasi pattern-equation
= (ty, t3).

We write QP-equations in infix notation.

Definition 19 (Quasi Pattern-Substitution). A quasi pattern-substitution,
or, shortly, QP-substitution, is a finite set

{lesla"'axTL(_STw
= 1 1 7 m m
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UNy < P1y..., VN < DI

where

—n>0,m>0and foralll <i<m, k; >0,
— X1,...,Zy are distinct individual variables,
— T1,-..,Ty, are distinct sequence variables,



— nvy,...,n; are distinct index variables,

— for all1 <i<n, s; is a QP-term, s; ¢ SV UPAT and s; # x;,

— forall1 <i < m, t3,...,1;. is a sequence of QP-terms and if k;=1 then
— forall1 <i<I, p; € LP and p; # vn,.

Each x; « s;, T; «— ti,... ’tki and vn; < p; s called a QP-binding respectively
for x;, @ and vn;.

A QP-substitution is called ground iff all si,...,s,,t1,... ,t}cl, Tty are
variable-free terms and all pi1,...,p; are integers. A QP-substitution is called
empty iff n = 0, m = 0 and [ = 0. Greek letters are used to denote QP-
substitutions. The letter ¢ denotes the empty substitution.
For a QP-substitution 6, we denote by 6= the following system of linear
Diophantine equations:
{vn =p|vn «— p € 0}.

We define a notion of instance for index variables and polynomials from LP:

Definition 20. Let 0 be a QP-substitution. Then:

— An instance of a index variable vn with respect to 0, denoted as vnf, is
defined as
ong— 1P 1fvn<—.p€9,
vn otherwise
— An instance of a polynomial p = cnjvni+- -« -+cngong, € LP with respect to 0,
denoted as p@, is a polynomial from LP obtained from cnivni0+- - -+cngongd
by arithmetic simplification.

On the basis of this definition, we extend the notion of instance on QP-terms
and QP-equations with respect to QP-substitutions. The notions of domain,
codomain, range and composition are extended to QP-substitutions in a straight-
forward way.

Ezample 5. Let 0 = {& «— f(y), T « U,T, § <« Y,Z,von «— 3vn + vm, vk —
vm — 2} and A = {y < g(¢), T ¢, Z—, vn < 2vm+ 1, vm < vk + 2}. Then
Ood ={z — f(g(c), y < g(c), T T, ¢, Z+,vn « 6vm+vk+5,vm «— vk+2}.

Definition 21 (Quasi Pattern E-unification Problem). A general quasi
pattern E-unification, or, shortly, QP-E-unification problem with sequence vari-
ables, flexible arity symbols and QP-terms is a finite system of QP-equations

(s1=EBt1,...,5p=Etn).

Definition 22 (Explicit Pattern Expansion). Let Q be one of the follow-
ing: QP-term, QP-equation, QP-substitution or QP-E-unification problem. The
explicit pattern expansion in ), denoted as EPFE(Q), is respectively a QP-term,
QP-equation, QP-substitution or QP-E-unification problem obtained from Q) by
replacing each occurrence of an explicit pattern in Q) with the sequence of QP-
terms as long as possible in the following way:



— each occurrence of an explicit pattern cem cm s replaced by the single QP-
term Cepn;
— each occurrence of an explicit pattern cem.cr, cm < ck, is replaced by the

SEqUENCE Comyy Comtls - - -y Cokes

— each occurrence of an explicit pattern femem(ti,-.-.tn) is replaced by the
single QP-term fem(t1,... tn).

— each occurrence of an explicit pattern fem ck(t1, ..., tn), cm < ck, is replaced

by the sequence fem(t1y...ytn), fem+1(Cayeestn),eeey fer(tiy ooty tn).

Example 6. Let gpt be a QP-term f(a, g1,3(¢1,2,7), h1,on(2)). Then

EPE(qpt) = f(x,g1(c1,c2.7), 92(c1, €2, 7). g3(c1, €2.7), haon ().

Below by QP-expression we mean either QP-term, QP-equation, QP-substi-
tution or QPE-~unification problem.

Definition 23 (Pattern-Term, Pattern-Equation, Pattern-Substitution,
Pattern-E-Unification Problem). Let Q be a QP-expression. Q is called

— a pattern-term or, shortly, P-term;

— a pattern-equation or, shortly, P-equation;

— a pattern-substitution or, shortly, P-substitution or

a pattern-E-unification problem or, shortly, P-E-unification problem

over (V,C, P, LP) iff there exist a substitution o such that Dom(c) C XV and
EPE(Qo) is respectively

— a term;

— an equation;

— a substitution or

— an E-unification problem

over (V,C, P).

In order to decide whether a QP-expression is a corresponding P-expression,
we associate a system of linear Diophantine constraints to a QP-expression and
show that if the system has a positive integer solution, then the QP-expression
is the corresponding P-expression.

Definition 24 (Linear Diophantine Constraints Associated with a QP-
Expression). For a QP-expression Q, the associated system of linear Diophan-
tine constraints LDC(Q) is defined in the following way:

— Q is a QP-term. Then
e IfQ e IVUSVUCONST then LDC(Q) is empty.
L4 [fQ 18 Cvcm,uck or fvcm,vck(tla e atn); then LDC(Q) i8

1 < wvem & vem < wvck.



e IfQ is f(t1,...,tn), where f € FFIX UFFLEX, then LDC(Q) is
LDC(t1)& ... &LDC(ty,),

— Q is either QP-equation, QP-substitution or a QP-E-unification problem.
Then LDC(Q) is
LDC/(qpt1)& ... &LDC(qpt,,),

where qpty, ..., qpty, are all QP-terms occurring in Q).

Theorem 16. A QP-expression Q is the corresponding P-expression if LDC(Q)
has a positive integer solution.

Proof. We prove the theorem for a QP-term. For the other QP-expressions the
proof is analogous. Let vmy,...,vms be all index variables occurring in ) and
vmy = cnq,...,vmg = cng be a positive integer solution of LDC(Q). Then we
assemble substitution o as follows: o = {vmy « cny,...,vms «— cny}. By the
construction of the system LDC(Q), all the patterns occurring in Qo are explicit
with the following property: for each pattern c.p ck O fem,ck(t1,- -, t,) we have
1 < em and em < ck. Therefore, EPE(Qo) contains no patterns and thus, is a
term over (V,C, P). Hence, by Definition 23, ) is a P-term. O

Definition 25 (Unifier of a P-E-unification problem). Let

2 2
I' = (s1=gt1,...,Sy=gln)

be a P-E-unification problem. A P-substitution 6 is called a unifier of I' iff

— Dom(0) contains all the index variables which occur in I';
— for each vn € Dom/(8), vnb is a positive integer;

— each pattern which occurs in P-terms in Cod(0) is explicit;
— for each 1 < i < n, the P-equality s;0 =g t;0 holds.

Ezample 7. Let I' = f(T, @);@f(hvmyvk(z)). Then
0 ={Z — h12(2),7 — hse(2),vm — 1,vk — 6}
is one of (-unifiers of I'.

We have the following proposition:

Proposition 1. If a P-substitution 0 is a unifier of a P-E-unification problem
I, then 0= gives a (unique) positive integer solution to the system LDC(I")&LDC(0).

Definition 26 (More General P-Substitution). A P-substitution 6 is more
general than a P-substitution o on a finite set of variables Var modulo a theory
E (denoted § <% o ) iff there exists a P-substitution X such that

— for allT € Var,
o T «— gﬁ As



e there exist P-termsty,...,tn,81,...,8n, n > 0 such that To = tq,...,t,,
Tho A =s1,...,8, and for each 1 < i < n, either t; and s; are the same
sequence variables or the P-equality t; =g s; holds;

— for all x € Var, the P-equality xo =g xf o X\ holds;
— for all vn € Var, vno = vnf o \.

Notions of minimal set of substitutions and minimal complete set of unifiers
are extended for P-substitutions and P-E-unification problems in a straightfor-
ward way.

We represent a minimal complete set of unifiers of I' - MCUg/(I") as a set of P-
substitution/constraint pairs. The constraints are linear Diophantine equations
and/or inequalities. The representation must satisfy the following properties:

— for each pair {6,ldc} in the representation and for each positive integer
solution p of lde, the P-substitution (6 o p)|v 4yger(ry must be in MCUg(1");

— for each substitution 0 € MCUg(I") there must be a pair {6,ldc} in the
representation such that o = (0 o p1)|varser(ry for a positive integer solution
w of lde.

The following two example give a demonstration of a representation of a
minimal complete set of unifiers as a set of P-substitution/constraint pairs:

Ezample 8. Let I' = f(T, y)l@f(hummk(z)). Then we can represent MCUy(I)
as a finite set of P-substitution/constraint pairs:

S={{{Z —,7— homw(2)},1 <vm&vm < vk},
{{f - ahvm,vk(z)ay <*}a 1 <wvm&vm < Uk}a
{{f — hvm,vn('z)ay — hvn+1,vk(z)}a
1<vm&vm <wvn&wvn+1<vk} }.

In fact,

MCUg(I') = {o| thereexists {6, ldc} € Sand psuch that
1 is a positive integer solution of ldc

and o = (0 o i) |varses(r) }-

For instance, a solution {vm « 1, vn < 3, vk < 4} of the constraint 1 <
vm&vm < vn&wvn+1 < vk, applied on the substitution {Z « hym yn(2),7
hon+1,06(2)} gives {ZT «— h1,3(2), 7 < haa(z),vm — 1,vn < 3,vk < 4}. The re-
striction of the latter to VarSet(I") is {Z < h13(2),7 < haa(z),vm — 1,0k —
4}, which belongs to MCUE(I"). In the expanded form the substitution looks
like {Z «— h1(2), ha(2), h3(2), T < ha(z), vm — 1,vk « 4}.

Ezample 9. Let I' = f(T, hvm’vk(z));@f(hvmyvk(z),T). Then the following set
gives an infinite representation of MCUy(I") as a set of substitution/constraint
pairs:
S={{{z «},1 <vm&vm < vk},
{7 — homoe(2)}, 1 <vm&ovm < vk},
H{Z — hom,ok(2), homok(2)}, 1 < vm&ovm < vk}

.



Again,

MCUg(I") = {o| thereexists {6, ldc} € Sand prsuch that
1 is a positive integer solution of ldc

ando = (Ao ,u)|varset(l“)}-

Pattern-terms naturally appear in the proving context, when one wants to
skolemize, for instance, the expression Vz3y (g(z) = ¢(7)). Here 7 should be
replaced with a sequence of terms fi(x),..., fo@) (2), where fi,..., foq) are
Skolem functions. The problem is that we can not know in advance the length
of such a sequence.

Note that we consider vn instead of n(x). This is because, given an unification
problem U P in which n(x) occurs, we can do a variable abstraction on n(z) with
a fresh index variable vn and instead of UP consider UP’ with the constraint
vn = n(z), where UP’ is obtained from U P by replacing each occurrence of n(x)
with vn. One of the tasks for unification with patterns is to find a proper value
for vn, if possible.

In the next subsection we design a unification procedure for a P-P-unification
problem. Note that analogously to the case of (-unification, it is enough to
consider single P-equations instead of systems of P-equations in P-@-unification
problems.

6.1 Pattern @-Unification Procedure

The problem has a form of P-equation ;@tg. We denote it as GPU Py and refer
to it as a general P-(-unification problem.

We design the unification procedure as a tree generation process based on
two basic steps: projection and transformation. We describe them in terms of
”quasi-patterns” instead of ”patterns”.

For a QP-{-unification problem QPU Py, we denote by SUC(QPU Py) the
successors of QPU Py under projection or transformation. SUC(QPU Py) can be
SUCCESS, FAILURE or a tuple of QP-@-unification problems. SU B(QPU Py)
denotes the tuple of QP-substitutions which are applied on QPUPy to get
SUC(QPUPy). CON(QPUPy) denotes the tuple of linear Diophantine con-
straints which have to be satisfied to make a step from Q PU Py to SUC(QPU Fy).

Projection. Projection for QP-@-unification problems is defined similarly to
projection for P-unification problems: Let S1,..., S, be all subsets of the set of all
sequence variables of a general QP-{-unification problem GQPU Py and © be the
set of substitutions {61, ...,0,} such that forall1 <i<n,0;, ={Z — | T € S;}.
Then under projection

— SUB(GQPUPy) = (b1,...,0),
( LDC(GQPUPy),...,LDC(GQPUP;) )

— CON(GQPUPy) = ——

— SUC(GQPUPy) = (GQPUP:,...,GQPUPyby).



Transformation. To find SUB(GQPUPFy), CON(GQPU Py) and SUC(GQPU Fy)
under transformation we distinguish the following three cases:

1. t; and t are identical. Then
— SUB(GQPUPy) = (),
— CON(GQPUPy) = (TRUE)
— SUC(GQPUPy) = SUCCESS.

2. t; and ty are neither identical QP-terms nor non-variable QP-terms with
the same head. Then SUB(GQPU Py) and SUC(GQPU Py) are defined in
Table 1. As for the constraints, CON(GQPUPy) = (TRUE) in the cases
when SUC(GQPUPy) = SUCCESS and CON(GQPUPy) = (FALSE) in
the cases when SUC(GQPUPy) = FAILURE.

3. t1 and t2 are non-identical non-variable QP-terms with the same head g,
where ¢ is a function symbol with either fixed or flexible arity. Then we have
the following two cases:

(a) Only one from ¢; and ¢z has the form g(). Then
— SUB(GQPURy) = (),
— CON(GQPUP,) = (FALSE)
— SUC(GQPUPy) = FAILURE.

(b) None of t; and t5 is a QP-term of the form g¢(). Let t; be g(r1,7) and 9
be g(s1,3), where 7 and s are (possibly empty) sequences of QP-terms.
Then we have the following cases:

i. r1 and s; are identical. Then
— SUB(GQPUPy) = (),
— CON(GQPUPy) = (TRUE)
~ SUC(GQPUPy) = (f(P)%0f(5)),
where f is a new flexible arity function symbol, if g has a fixed arity.
Otherwise f is g.
ii. 71 and s; are not identical. Then
— none of r; and s; is a pattern. Then we define SUB(GQPU Fy)
and SUC(GQPU Py) in Table 2. As for the constraints, we have
CON(GQPUPy) = (FALSE) when SUC(GQPUPy) = FAILURE

(TRUE,...,TRUE )
and CON(GQPUPFy) = otherwise, where
k times

k is a length of SUB(GQPU Py).

— Only one of r; and s; is a pattern. We can assume without loss of
generality that r; is a pattern. Then we define SUB(GQPU Py),
CON(GQPU Py) and SUC(GQPU Py) in Table 3.

— Both r; and s; are patterns. If the heads of 1 and s; are differ-
ent, then SUB(GQPUP,) = (), CON(GQPUPy) = (FALSE)
and SUC(GQPUPy) = FAILURE. Otherwise we define the tu-
ples SUB(GQPUPFy), CON(GQPU Py) and SUC(GQPU Py) in
Table 4.




Table 3. Transformation table for GQPU Py of the form g(rl,F);@g(sl,E) where 71
is a pattern of the form hp, x(t), m,k € LP, the sequences 7, 3 and t are possibly
empty sequences of QP-terms. The function symbol f in the table is a new flexible
arity function symbol, if g has a fixed arity. Otherwise f is g. The index variable vn is
a new variable, [ € LP, § is a possible empty sequence of QP-terms.

s1 |SUB(GQPUP@) |C’ON(GQPUP@) |SUC(GQPUP@)
Ind. var. (), (FALSE), FAILURE
if s1 occurs in ry if s1 occurs in ry if s; occurs in rp
(o1, 02), where (C1,C2), where
_ ?
o1 = {s1 — h(D)}, Cyism=k, (f(M)or=¢f(3)on,
_ . - ? _
o2 = {s1 — hm()}, Cyism+1<k, f(hms1,6(2), T)o2=0 f (3)02),
otherwise otherwise otherwise
Seq. var. (), (FALSE), FAILURE
if s1 occurs in 1 if s1 occurs in 71 if s1 occurs in r1
(01,02, 03), where (Ch, Cs, Cs), where
_ . .9
o1 ={s1 < hmun()}, |C1is (f(hon+1,k(2),T)o1=0
m<wvn&wvn+1<k|f(S)o1,
_ ?
o2 = {81 — hm,k(t),sl}, Cyis TRUE, f(?)agi@f(sl,g)ag,
_ ?
o3 ={s1 < hmx(t)}, |C3is TRUE, f(F)os=of(3)03),
otherwise otherwise otherwise
Non-var.|(¢), if s1 = h(q) m=1&m+1<k, |(f(hm(@),hmeip@), )=
term if 51 = hi(q) f(hn(q),3)), if s1 = hu(q)
(), otherwise (FALSE), otherwise |FAILURE, otherwise

Table 4. Transformation table for GQPU Py of the form g(rl,F)l@g(sl,E) where 71

Rong by (B1)y 81 = Nung iy (T1), ma, k1, ma, ko € LP and %1, T and 5 are possibly empty

sequences of QP-terms.

SUB(GQPUP@)|CON(GQPUP@) |SUC(GQPUP@)
(e,€,€) (C1, Co, C3), where
Crismi =ma2& k1 +1 < ko, (g(hkl(__l)’r);@ B
(i, (t2), hiey 41,k (E2), 5),
Cais mi = ma &z + 1 < ku,|g(hny (1), hkg 41,0 (E),F)l@
g(hiy (t2),3),
Czismi =ma& ks =ko g(hi, (E)’f);@g(hkz (£),3))




Unification Procedure - Tree Generation. Projection and transformation
can be seen as single steps in a tree generation process. Each node of the tree
is labeled either with a QP-@-unification problem, SUCCESS or FAILURE.
The edges of the tree are labeled by substitutions and linear Diophantine con-
straints. The nodes labeled with SUCCESS or FAILURE are terminal nodes.
The nodes labeled with QP-{-unification problems are non-terminal nodes. The
children of a non-terminal node are constructed in the following way:

Let QPUP be a QP-f-unification problem attached to a non-terminal node
and LDC be a conjunction of linear Diophantine constraints attached to the
edges in the branch, from the root of the tree till the current node. First, we check
whether LDC is satisfiable. If it is not, we replace QPUP with the new label
FAILURE. Otherwise we proceed as follows: If we can decide whether QPU P
is not unifiable, then we replace QPU P with the new label FAILURE. Other-
wise we apply projection or transformation on QPUP and get SUB(QPUP),
CON(QPUP) and SUC(QPUP). If SUC(QPUP) is SUCCESS, then the
node has a single child with the label SUCCESS and the edge to that node is
labeled with SUB(QPUP) and CON(QPUP).1f SUC(QPUP) = (Py,..., P,),
then SUB(QPUP) = (o1,...,0,) and CON(QPUP) = (C4,...,Cy), the node
QPUP has n children, labeled respectively with Py,..., P, and the edge to the
P, node is labeled with o; and C; (1 <i < n).

Satisfiability of LDC' can be checked by an algorithm for solving linear Dio-
phantine equational and inequational systems [2].

We design the general P-@-unification procedure as a breadth first (level
by level) tree generation process. Let GPU Py be a P-@-unification problem. We
label the root of the tree with GPU Py (zero level). First level nodes (the children
of the root) of the tree are obtained from the original problem by projection®.
Starting from the second level, we apply only a transformation step to a QP-{-
unification problem of each node, thus getting new successor nodes. The branch
which ends with a node labeled by SUCCESS is called a successful branch. The
branch which ends with a node labeled by FAILURE is a failed branch. All
QP-P-unification problems attached to the nodes of a successful branch are in
fact P-@-unification problems.

For each node in the tree, we compose substitutions (top-down) displayed
on the edges of the branch which leads to this node and attach the obtained
substitution to the node. The empty substitution is attached to the root. For a
node N, the substitution attached to IV in such a way is called the associated
substitution of N.

Similarly, for each node in the tree, we take a conjunction of the linear Dio-
phantine constraints displayed on the edges of the branch which leads to this
node and attach the obtained constraint to the node. The linear Diophantine
constraint LDC(GPU Py) is attached to the root. For a node N, the constraint
attached to N in such a way is called the associated constraint of V.

! Starting from the first level, the unification problems attached to the nodes in the
tree might not be P-@-unification problems, but they are, of course, QP-{-unification
problems.



We call the tree a P-@-unification tree for the problem GPUPy and denote
it PUT(GPU Py).

Let A(GPU Py) be the set of all P-substitution/constraint pairs associated
with the SUCCESS nodes. Then we define the set X(GPUPFy) as follows:

Y(GPUPy) = {o] thereexists {0, ldc} € A(GPUPy) and p such that
14 is apositive integer solution of ldc
ando = (6 o IU/)|VarSet(F)}-

Next, our goal is to show that X (GPUPy) is the minimal complete set of
unifiers of GPU Py.
First, we show correctness.

Lemma 6. X(GPUPy) is a set of unifiers of GPU Py.

Proof. Let o € X(GPU Py). Then there exists {0, ldc} € A(GPU Py) and p such
that u is a positive integer solution of ldc and o = (0 o p)|varser(r)- We show
that o is a unifier of GPUPFy. Recall that GPUF, has a form of P-equation
tlimtg.

Since p is a positive integer solution of ldc and the variables in ldc are all
the index variables from GPU Py and Cod(), we have:

— Dom(o) contains all the index variables which occur in GPU Py;
— for each vm € Dom(o), vm is a positive integer;
— each pattern which occurs in Cod(o) is explicit.

Moreover, since t10 =y t20, we have t10 o u =y t260 o u and, thus, t10 =y ta0.
Now, by Definition 25 we get that o is a unifier of GPU P. O

Second, we prove completeness.

Lemma 7. For every unifier ¢ of a general P-j-unification problem GPU Py
there exists a branch B in PUT(GPU Py) with the following property: if 6 and
ldc are respectively a substitution and a constraint attached to the same node in
(3, then there exists a positive integer solution T of ldc such that 6 o T <<(})/‘” o,
where Var is the set of variables of GPU Py.

Proof. Let ¢ be an arbitrary unifier of GPU Py and Var be the set of variables
of GPU Py. We should find a branch 8 in PUT(GPU Py) such that if § and Idec
are respectively a substitution and a constraint attached to the same node in 3,
then for some positive solution 7 of lde, § o T <<(§)/‘“" ¢.

We define [ recursively. We search for 4 among successful branches of the tree
PUT(GPU Py), therefore all the nodes in § will have P-()-unification problems
attached.

First, let the root of the tree, labeled with GPU Py, be in 8. The P-substi-
tution associated with the node GPUPFy is €. The constraint associated with
GPUPy is LDC(GPU Pp). By Proposition 1, ¢~ contains a positive integer so-
lution of LDC(GPU Py). Let 7 be the positive integer solution of LDC(GPU Py)



contained in ¢~. Let A = ¢\7. Then ¢ = 7oA = o070 A, from which we can
easily derive that e o 7 <<},/‘”" o.

Next, let the first level node of 3 be that successor UP of GPU Py, for which
the associated P-substitution § = {Z «— |Z <« € ¢ and T € Var}. The
constraint associated with UP is Idc = LDC(GPU Py). Let T be the positive
integer solution of LDC(GPU Fy) contained in ¢—. Let A = ¢\# and ¢ = A\7.
Then A =701 and ¢ =60 o\ =0 o7 o). Therefore

— for all 7 € Var,

* T — &
e there exist terms t1,...,t,,S1,...,85, n > 0 such that T¢ = t1,...,t,,
TOoTo® =s1,...,8, and for each 1 < i < n, either ¢; and s; are the

same sequence variables or a P-equality ¢; =y s; holds;
— for all x € Var, the P-equality z¢ =y z6 o 7 0 ¢ holds,
— for all vn € Var, vng =wvnf o1 o1,

which implies that 6 o T <<é/‘” ¢.

Let now a node in PUT(GPU Py), labeled with a P-@-unification problem
UP,, be in §. It means that for a P-substitution 6, and a constraint ldc,,
associated with U P, there exists a positive integer solution 7, of ldc,, such that
0, o1y, <<(§)/‘" ¢. Then we have that there exists a P-substitution A\ such that

— for all ¥ € Var,
e the binding

T— ¢&X (10)
e there exist terms t1,...,t,,81,...,8p, n > 0 such that Tp = t1,...,t,,
T0p 0Tp 0o N = S1,...,8, and for each 1 < i < n, either ¢; and s; are the

same sequence variables or the P-equality

i =p Si (11)
holds;
— for all x € Var, the P-equality
xp =g x0p 0 Ty 0 A (12)
holds;
— for all vn € Var,
vng = vnby, o T, o \. (13)

We can assume without loss of generality that
Dom(7,) N Dom(\) = 0. (14)

If there exists a successor UP, 11 of UP, in PUT(GPU Py) with the asso-
ciated P-substitution 6,1 and the associated constraint ldc,; such that for a
positive integer solution 7,41 of ldc,4+1 we have 6,411 0 Ty11 <<(§)/‘" ¢, then we
can include UP, ;1 into 8 and, thus, we will have that for all UP € 3, if 0 is a



P-substitution and ldc is a constraint associated with U P, then there exists a
positive integer solution 7 of ldc such that 8 o 7 <<é/‘" 0.

Thus, the problem of constructing 3 is reduced to the problem of finding
the successor UP,,;1 of UP, with the property that for the P-substitution 6,11
and the constraint Ipc, 41 associated with UP,, 11, there exists a positive integer
solution 7,1 of ldc,+1 such that 6,41 07,11 <<(})/‘" ¢. We show how to find such
a UPnJrl .

The P-@-unification problem U P, can have one of the following four forms:

UP, is a pair of identical P-terms.

UP, is a pair of individual variables.

UP, is a pair of an individual variable and non-variable term.
UP, is a pair of non-variable terms.

LN

We consider each of them separately:

1. There is only one possible choice: P, is SUCCESS with the associated
substitution 0,, 1 = 6, 0¢ = 6,, and associated linear Diophantine constraint
ldep11 = lde, &KTRUE = ldc,. Let 1,41 be 7,,. Then 0,1 0 7,11 = 6, ©
T <<Var ¢

2-3. Let P, be x;@t, t being either an individual variable or a non-variable non-
pattern term. The substitution 6,, o A is a unifier of GU Py. The unification
problems GU Py#,, and P,, have exactly the same set of unifiers, because P,
can be obtained from GU Py#,, by iterated deletion of identical first argu-
ments in both sides of GU Py#,,. Therefore, we have that X\ is a unifier of
P,. To obtain P41 from P, we choose the substitution y = {z « t} and
the constraint TRUE. Let 0,,+1 be the substitution 6, o u, ldcy+1 be the
constraint lde,, & TRUE = ldc,, and 7,11 be 7,,. Then from (10), (11), (12),
(13) and the facts that po A =X and 7, 0 A = Ao 7, we get

— for all T € Var,

o T — &

e thereexist terms y,...,ty, S1,...,8p, n > 0such that T =t4,...,t,,
T, ot oA =T0p0oAloT, =T, opodlor, =Tl,p10Nom, =
TO,410Tpt1 0 A = S1,...,8, and for each 1 < i < n, either ¢; and s;

are the same sequence variables or the P-equality ¢; =y s; holds;
— for all x € Var, the P-equality x¢ =y 26, o7, 0 X =p 20,, 0o Ao, =g
xl,0opoAoT, =y xly11 00T, =g 2041 0 Tpy1 © A holds;
— for all vn € Var, we have vng = vnb, o, oA = vnf, o Ao 71, =
vnby oppoXor, =vnbyi1 0AoT, =vnbyp1 0 Thy1 0 A holds;
Thus, 0410 Tni1 <<(§)/ar .

4. Let UP, have the form g(tl,f);@g(sl, 5), where t and s are (possibly empty)
sequences of terms. We can have the following 9 cases with respect to t; and
S1:
4.1. t1 and sy are identical.
4.2. t1 and s1 are individual variables.
4.3. One of t; and s; is an individual variable, the other is a non-variable
non-pattern P-term.



4.4.
4.5.

4.6.
4.7.
4.8.
4.9.
4.10.

4.1-4.6.

4.7.

t1 and s; are sequence variables.

One of t; and s; is a sequence variable, the other is neither a sequence
variable nor a pattern.

t1 and s; are non-variable non-pattern P-terms.

One of ¢; and s; is an individual variable, the other is a pattern.

One of t; and s7 is a sequence variable, the other is a pattern.

One of t; and s is a non-variable non-pattern P-term, the other is a
pattern.

t1 and s; are patterns.

consider each of these cases.

These cases can be proved in the same way as the corresponding cases
from the proof of Lemma 2, taking into account the fact that ldc,+; =
lde, &TRUE = ldc,.

Suppose t; is an individual variable x and s; is a pattern hmyk(f). Let
us define P-substitutions u, 7 and v and a constraint CON as follows:

— p={z < hg(t)}, n is a positive integer solution of m =k, v = {v «
vA|v #z, v ¢ Dom(n),v # v} and CON is m = k, if X is a unifier
of a P-Q-unification problem f(z) =y f(hi(¢)) and A~ contains a
positive integer solution of m = k;

—pu = {x « h,()}, nis a positive integer solution of m + 1 < k,
v={v—ovX|lv#uz,ve¢ Dom(n),v#vA} and CON is m+1 <k,
if X is a unifier of a P-(-unification problem f(x)\ =y f(h,,(f))\ and
A~ contains a positive integer solution of m + 1 < k;

with f being a new flexible arity function symbol, if ¢ has a fixed arity.
Otherwise f is g.

We obtain UP,, ;1 from UP, by the P-substitution x (since A is a unifier
of UP,, these two cases for p are the only possibilities to get UP, 41
from U P,). Therefore, 8,11 = 0y, 0 uu. Since ldep11 = lde, & CON, 1,01
is a positive solution of ldcy 1. Let 7,11 be 7, on. Then, using the facts
ponov=>Xand poT, =T,0u we get

OpoTnoN=0,07,0ponov="=0,0opuor,onov="=0,,107,110v. (15)
On the other hand, for all € Var,
T &pon. (16)

From (16) and (10), by Definition 9 we get for all T € Var

T— ¢ (17)
From (11) and (15) we get that for all T € Var there exist terms
t1,.veytny S1y.0., 8, 0 > 0such that Top =11, ..., 8y, TOpi10Tpp10v =
S1,...,8, and for each 1 < i < n, either t; and s; are the same sequence

variables or the P-equality
ti i@ S35 (18)

holds.



4.8.

4.9.

4.10.

From 12 and 15 we get that for all x € Var the P-equality
X =g 20, 0T 0N =p 20110 Tpa1OV. (19)

holds.
From 13 and 15 we get that for all vn € Var

vng = vnbp 0 T 0 A = vNbpy1 © Tyy1 O V. (20)

From 17, 18, 19 and 20, by Definition 26 we get 0,1 0 7,11 <j " 6.
Suppose t; is a sequence variable T and sy is a pattern h, (t). Let us
define P-substitutions p, n and v and a constraint CON as follows:

— = A{T « hpm(t)}, n is a positive integer solution of m < i&i +
1<k v=~{v—ovXlv#Tv¢ Dom(n),v # vA} and CON
ism < i&i+1 <k, if \is a unifier of P-f-unification problem
f(@) =p f(hm,i(t)) and A= contains a positive integer solution of
m<i&i+1<k;

—p={T « hpi()}, n =&, v ={v — vX|v # T, v # vA} and
CON is TRUE, if X is a unifier of P-(-unification problem f(Z) =g
@)

= {7 fmp @7} =2 v = {7 Tho fv— vA [0 £ 7, 0 £
vA} and CON is TRUE, if there exists a non-empty sequence of
P-terms 7 such that ) is a unifier of P-@-unification problem f(Z) =¢
f(hm,k(i); F)a

with f being a new flexible arity function symbol, if g has a fixed arity.
Otherwise f is g.

We obtain P, from P, by the P-substitution x (since A is a unifier of
P, these three cases for y are the only possibilities to get P,41 from
P,). Therefore, 0,41 = 6, o pu. Since ldcp,11 = lde,, & CON, 1, 01 is
a positive solution of ldc, 1. Let 7,41 be 7, o n. Then, with the same
reasoning as in the case 4.7., we conclude that 6,11 o 7,41 <<(‘D/“’" ¢.
Suppose t1 is a P-term h;(t1) and s; is a pattern hy, ,(t2). Let us define
P-substitutions u, n and v and a constraint CON as follows:

— = &, n is a positive integer solution of m = l&m +1 < k, v =
{v —vX|v ¢ Dom(n), v# v} and CON ism =1&m+1 <k, if A
is a unifier of P-@-unification problem f(h,(t1)) =¢ f(hm(t2)) and
A~ contains a positive integer solution of m =1l&m + 1 < k,

with f being a new flexible arity function symbol, if g has a fixed arity.
Otherwise f is g.

We obtain P,y from P, by the P-substitution x (since X is a unifier of
P,, this is the only possibility to get P,+1 from P,). Therefore, 6,11 =
Opn o 1 = 0,. Since ldcp1 = ldey, & CON, 1, o 1 is a positive solution of
ldcpy1. Let 1,41 be 7, on. Then, with the same reasoning as in the case
4.7., we conclude that 6,1 o 7,1 <<(‘b/‘" o.

Suppose t1 is a pattern Ay, , (t1) and s; is a pattern by, , (£2). Let us
define P-substitutions u, n and v and a constraint CON as follows:



— i = g, n is a positive integer solution of m; = mo &k, +1 < ks,
v =An, CON is m; = ma& k1 +1 < ko, if X\ is a unifier of P-
(-unification problem f(hg, (t1)) =¢ f(hg, (t2)) and A= contains a
positive integer solution of my = ma & k1 + 1 < ko;

— i = g, n is a positive integer solution of m; = ma & ks + 1 < kyq,
v =A\n, CON is m; = ma& ks + 1 < ky, if X is a unifier of P-
(-unification problem f(hy,(t1)) =g f(hi,(t2)) and A= contains a
positive integer solution of m; = mo & ky + 1 < ky;

— u = g, nis a positive integer solution of my = ma & k1 = ka, v = A\,
CON is m1 = mo&ky = ko, if X is a unifier of P-(-unification
problem f(hg, (t1)) =¢ f(hi, (t2)) and A= contains a positive integer
solution of m1 = mo & k1 = ko;

with f being a new flexible arity function symbol, if ¢ has a fixed arity.
Otherwise f is g.

We obtain UP, 41 from UP, by the P-substitution p and constraint
CON (since A is a unifier of UP,, these three cases are the only possi-
bilities to get UP,, 11 from UP,). Since ldcy, 1 = ldc,, & CON, 7, 01 is
a positive solution of ldcy 1. Let 7,41 be 7, o n. Then, with the same

reasoning as in the case 4.7., we conclude that 0,11 0 7,41 < "

Thus, for all possible forms of U P,, we found its successor U P,, ;1 such that for
the P-substitution 6,1 and the constraint ldc, 1 associated with U P, 41, there
exists a positive integer solution 7,41 of ldc,11 such that 6,11 o 7,11 <<(§)/‘" o.
It finishes the proof. O

Theorem 17. Y (GPUPy) is a complete set of unifiers for GPU Py.

Proof. The theorem follows from Lemma 7 and Lemma 6 by the definition of
2. O

Now, we prove minimality. As in the case of P-unification, we prove a stronger
statement: X(GPU Fy) is a disjoint set of unifiers of GPU Py, where disjointness
for a set of P-substitutions is defined as follows:

Definition 27 (Disjoint Set of P-Substitutions). A set of P-substitutions
X is called disjoint modulo E with respect to a set of variables Var iff for all 0,
o € X, if there exist P-substitutions A1, Ao such that

— for all sequence variables T € Var,

.E<_¢>\1?

.f<—¢)‘2’

e there exist P-terms ti,...,tn,81,...,8,, n > 0 such that T o A\ =
t1yeeeytn, TOO Xy = S1,...,8, and for all 1 < @ < n, either t; and

s; are the same sequence variables or the P-equality t; =g s; holds;
— for all individual variables x € Var, the P-equality
e 200\ =g xo o Ay holds,
— for all index variables vn € Var,
e vnb o \{ =g vno o \g.



then 0 = o.

The result analogous to Lemma 1 holds for P-substitutions: disjointness im-
plies minimality.

Theorem 18. X (GPUP,y) is a disjoint set of unifiers for GPU Py with respect
to the set of variables of GPU Py.

Proof. Let Var be the set of variables of GPU Py and o7 and o3 be two substi-
tutions from X(GPU Py). We consider the following cases:

1. 01 and o9 are attached to the same SUCCESS node and differ from each
other by a positive integer solution of the constraint attached to the same
node. Clearly, in this case the set {01, 02} is disjoint with respect to Var.

2. 01 and o9 are obtained from two different SUCCESS nodes to which the
same constraint is attached. If o; and o9 contain different positive integer
solutions of the constraint, then disjointness is clear. Otherwise, let o1 be
0, o and o9 be 05 0 i, where 0, and 65 are substitutions associated with the
SUCCESS nodes o1 and o5 are obtained from, and p is a positive integer
solution of the constraint. Then disjointness of {01, 02} follows from disjoint-
ness {01, 02} with respect to Var, which itself follows from Theorem 9.

3. 01 and oy are obtained from two different SUCCFESS nodes to which dif-
ferent constraints are attached. Then by the construction of the unification
tree, these two constraints do not have a common solution, which implies
disjointness of {01, 02} with respect to Var.

The fact that every pair of P-substitutions from X(GPUPFy) is disjoint with
respect to Vaar implies disjointness of X(GPU Py) with respect to Var. ad

7 Second Extension - Sequence Variables in Expressions
with Fixed Arity Heads

The results of this section are valid for arbitrary FE-unification, therefore for-
mulations are in general form, not restricted to the @-unification. We consider
FE-unification problems written in extended syntax - allowing sequence variables
to appear as arguments in expressions with fixed arity heads. Expressions writ-
ten in such an extended syntax can be considered as abbreviations for terms
or equations written in the standard syntax (defined in Section ??) and can
be used to have more compact representation. For instance, for a ternary func-
tion symbols f fiz, instead of referring to three terms f fixz(a,z,y), ffiz(x,a,y)
and f fix(z,y,a) explicitly, we could use an expression in the extended syntax
ffix(Z,a,7). But note that not all the expressions in the extended syntax ab-
breviate terms or equations written in the standard syntax. For instance, the
expression ffiz(Z,T) for a ternary ffiz has no counterparts written in the
standard syntax.

Intuitively, an E-unification problem written in the extended syntax repre-
sents a set of F-unification problems written in the standard syntax. Therefore,



to solve an extended E-unification problem, first we need to reduce them to
the corresponding set E-unification problems in standard syntax and then apply
known unification procedures on each element of the set.

We discuss these issues more formally. We defined the alphabet (V, C, P) in
Section ??. Now we introduce two new notions?:

Definition 28 (Quasi-Term). The set of quasi-terms (over (V,C,P)) is the
smallest set of strings over (V,C, P) that satisfies the following conditions:

— IfveIVUSV then v is a quasi-term.

— Ifce CONST then c is a quasi-term.

—If f € FFIXUFFLEX and t1,...,t, (n > 0) are quasi-terms, then
ft1,...,ty) is a quasi-term.

Definition 29 (Quasi-Equation). The set of quasi-equations (over the alpha-
bet (V,C, P)) is the smallest set of strings over (V,C, P) that satisfies the fol-
lowing condition:

— Ift1,...,t, (n > 0) are quasi-terms over (V,C, P), then = (t1,...,t,) is a
quasi-equation over (V,C, P).

We extend the notion of instance on quasi-terms and quasi-equation. We are
interested in quasi-terms and quasi-equation which have a counterpart written
in the standard syntax in the sense that at least one instance of the quasi-term
(quasi-equation) is a term (equation) over (V, C, P).

Definition 30 (Extended Terms and Equations). A quasi-term gt (resp.
a quasi-equation ge) is called an extended term (extended equation) over the
alphabet (V,C, P) iff there exist a substitution o such that gto is a term over
(V,C, P) (qeo is an equation over (V,C, P)).

In order to decide whether a quasi-term (quasi-equation) is an extended term
(extended equation), we associate a system of linear Diophantine equations to
them and show that if the system has a natural solution, then quasi-term (quasi-
equation) is an extended term (extended equation).

Definition 31 (System of Linear Diophantine Equations Associated
with a Quasi-Term). For a quasi-term qt, the associated system of linear
Diophantine equations DS(qt) is defined in the following way:

— Ifqt € IVUSV UCONST then DS(qt) is empty.
— Ifqtis f(t1,...,1;), where f € FFIX and AR(f) = n, then DS(qt) is

kiXy 4.+ kX =n—(1— (ks + ...+ ko))&DS(t1)& . .. &DS(t7)

where ki, ..., ks (s > 0) are numbers of occurrences of all distinct sequence
variables among t1,...,t;, the variables x1,...,xs are metavariables corre-
sponding to the sequence variables and & denotes conjunction on the meta
level.

2 The results below are valid for unification with patterns as well.



— Ifqt is f(t1,...,t;), where f € FFLEX, then DS(qt) is
DS(t1)& ... &DS(t).

Definition 32 (System of Linear Diophantine Equations Associated
with a Quasi-Equation). For a quasi-equation ge, the associated system of
linear Diophantine equations DS(qe) is defined in the following way:

— Ifge is = (t1,...,1;), then DS(qe) is
kMiXi+...+kXs=2— (l — (kl +...+ ks))&DS(tl)&DS(tg)

where k1, ..., ks (s > 0) are numbers of occurrences of all distinct sequence
variables among ty, ..., t;, the variables X1, ..., Xs are metavariables corre-
sponding to the sequence variables and & denotes conjunction on the meta
level.

Theorem 19. A quasi-term qt (quasi-equation qe) is an extended term (ex-
tended equation) if DS(qt) (DS(qge)) has a natural solution.

Proof. We prove the theorem for a quasi-term ¢t. For a quasi-equation the
proof is the same. Let Z71,...,T, be all sequence variables of gt, occurring as
arguments of subterms with fixed arity head and X; = nq,...,Xs = ns be
a natural solution of DS(gt). Then we assemble the substitution o as follows:
o={T1—2...,2) ..., Ty — 2 ..., 25 }, where all z-s are new distinct indi-
vidual variables. Then by the construction of the system DS(qt), for all subterm
no sequence variable occurs as an argument of a subterm of gto with fixed arity
head and for all such subterms, number of arguments coincide with the arity of

its head. Therefore, by Definition30, ¢t is an extended term. a

It is clear that an extended F-unification problem is decidable iff F-unification
problem is decidable.

We design a unification procedure for extended FE-unification problem as a
tree generation process with three basic steps: arity completion, projection and
transformation. Projection and transformation are those of E-unification. As for
the arity completion, we define it as follows:

Let Z1,...,@; be all sequence variables occurring in the unification problem
U P as arguments of terms with fixed arity head and let D.S(U P) be the system of
linear Diophantine equations associated with U P, with the variables X1, ..., Xk,
corresponding to Z1,...,%. Then:

— if DS(UP) has no solution in natural numbers, then SUB(UP) = () and
SUC(UP) = FAILURE:
— otherwise, let
X1 :ni,...,Xk :nllc,



be all natural solutions of DS(UP), then SUB(UP) = (o31,...,05) and
SUC(UP) = < t10'1 = t201, . ,tlUs = t205>, where

[ 1 1 —_— k k
01—{:U1<—z1,...,zn%,...,mk<—zl,...,zn}c}
[ 1 1 — k k
05—{1’1Hzl,...,zni,...,xk<—z1,...,zni ,

with all z-s being new distinct individual variables.

o-s are called arity completing substitutions for U P. Now we define the extended
FE-unification procedure as a tree generation process. The root of the tree is
labeled with U P, first level nodes of are successors of U P with arity completion,
and the corresponding edges are labeled with arity completing substitutions.
After completing arity, we proceed exactly as constructing the unification tree
for E-unification.

8 Implementation

We have implemented the extended (-unification procedure in Mathematica. As
a decision procedure for being a term and on the arity completion phase of the
procedure we use the Omega package [3] to solve linear Diophantine equations
over naturals. In the tree generation process for the efficiency reasons we did
not implement the decision procedure for unifiability but put the bound on the
depth of the tree which can be changed by the user - the idea which was used in
the system for combining equational unification algorithms UNIMOK [19]. We
added a loop-checking as an option, which makes the procedure terminate in case
of infinite cyclic success. Another termination condition, based on Theorem 15,
is also implemented.

The package is incorporated into the Theorema system [9] as a part of the
Theorema Equational Prover. It makes Theorema probably the only system be-
ing able to handle solving and proving equations which involve sequence variables
and flexible arity symbols. The package also enhances Mathematica solving ca-
pabilities, considering unification as a solving method. We used the package, for
instance, to find matches for S-polynomials in non-commutative Grébner basis
algorithm [23].

9 Conclusion

We considered a unification problem for the equational theory with sequence
and individual variables, free fixed arity function symbols and free flexible arity
function symbols, showed that the problem is decidable and gave a unification
procedure which enumerates the minimal complete set of unifiers for the given
unification problem. Sufficient conditions for termination are established.

We extended the theory in two ways. First extension is with constructs called
pattern-terms, used to abbreviate sequences with unknown length of terms that



match certain pattern. We proved that the unification procedure for the ex-
tension enumerates substitution/constraint pairs which constitute the minimal
complete set of solutions of the problem.

The question which remains open is decidability of unification problem for the
theory extended with pattern-terms. Semi-decidability of the problem is obvious.

Second extension allows sequence variables to occur in terms with fixed arity
heads. We showed how a unification problem in this extension can be reduced to
a finite set of standard unification problems sequence and individual variables,
free fixed and flexible arity function symbols (where sequence variables occur
only in terms with flexible arity heads).

As a future work, we intend to study unification in various non-free (for
instance, flat, restricted flat, orderless, flat-orderless, restricted flat-orderless)
equational theories with sequence variables and flexible arity symbols. Exten-
sions with pattern-terms which abbreviate more general forms of sequences of
unknown length is another interesting topic.
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