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Abstract

The aim of this paper is to investigate the propagation of fronts for a class of first-
order Hamilton-Jacobi equations, where certain properties of the Hamiltonian imply that
the level set {u(.,t) < 0} of the solution u is growing with respect to time. Besides
monotonicity of this level set, we show that the number of its connected components is
nonincreasing with respect to time and derive lower and upper bounds for these sets.

By using lower bound gradient estimates for the solutions of first-order Hamilton-
Jacobi equations, recently obtained by Ley [17], we prove a regularity result for the growth
front, which holds for almost all times ¢. Finally, we derive an estimate of the Hausdorff
measure of the front interpreted as an evolving hypersurface.
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1 Introduction

The theory of first- and second-order Hamilton-Jacobi equations has been developed during
the last decades, since the concept of wviscosity solutions was introduced (cf. e.g. [19, 2]).
The first motivation to study this type of solutions arises from the dynamic programming
principle in optimal control, which states that the value function solves a Hamilton-Jacobi
equation, whose Hamiltonian is related to the Lagrangian of the control problem via the
Legendre transform.

In the present paper we shall be concerned in particular with another class of applications
for Hamilton-Jacobi equations, namely front propagation problems, modeled by the level set
method. A well-known example in this class is the mean curvature motion, whose mathemat-
ical analysis via the level set approach has led to important results (cf. [3, 8, 11, 12, 13, 14]).
Our analysis is concerned with first-order equations of the form

%—I—H(w,t,Vu) =0 inRY xRy, (1.1)
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9 1 INTRODUCTION

where Vu denotes the gradient of u(.,t) with respect to the space variable, and in particular
with the evolution of their level sets

T(t):={zeR" |u(z,t)=0}, (1.2)

respectively,
Ot) = {2 € RY |u(z,t) <0 }. (1.3)

Under standard assumptions on the Hamiltonian (given below), equation (1.1) with initial
value
u(.t) = ug € O (RY) (1.4)

has a unique viscosity solution u € C(R*; Cl? "1(RM)). Moreover, if the Hamiltonian H satisfies
H(z,t,p) is convex in the p — variable, VY (z,t) € RY x R (1.5)

and is homogeneous of degree one, i.e.,
H(z,t,\p) = \H(z,t,p), VY (z,t,p) eRY xR xR¥ VA eR", (1.6)

then due to the results by Ley [17], the norm of the generalized gradient Vu (in the sense
of gradients for Lipschitz continuous functions) is uniformly bounded below by a positive
constant in a neighborhood of the zero level set I'(¢) for each finite time interval. This lower
bound estimate implies that fattening cannot occur, i.e, the set I'(¢) does not create any
interior in finite time, i.e., ['(#) has zero Lebesgue measure in RV provided the initial curve

DO0)=Ty={zeRY |uy(z) <0} (1.7)

has zero Lebesgue measure. To the author’s knowledge, this is the first result on non-fattening
for a general class of equations, while in the previous literature only examples of fattening or
non-fattening, such as for the mean curvature equation (cf. e.g. [11, 5]), were known.

Moreover, the lower bound gradient estimate can be used to show that (for semiconcave
solutions, cf. [17] for details) the Clarke subgradient of does not contain 0 almost everywhere,
which is the basis for a nonsmooth inversion theorem. We note that if the solution was smooth
(i.e., at least in the class C') and the norm of its gradient is bounded away from zero, then
the implicit function theorem would directly imply that I'(¢) is a smooth curve. However,
solutions of (1.1) are in general only of Lipschitz type, and the analogue of the implicit
function theorem for Lipschitz-continuous functions gives results only almost everywhere,
which prevents to conclude any regularity property for the front by this technique. Ley [17]
could at least obtain partial regularity for I'* for almost every « in the neighborhood of 0
and recover a positive result by Barles et al. [3] on the so-called non-empty interior difficulty,
which means the question if the front I'(¢) has zero Lebesgue measure.

In this paper we improve the results of Ley [17] for a specific class of Hamiltonians, namely
those satisfying in addition

A1+A2 |p|ZH(:L‘,t,p)Za1+a2 |p|7 V(J)’,t,p) ERN XREi)— XRN’ (18)

for given nonnegative constants a;, A;, ¢ = 1,2 with A; + A3 > a1 + a2 > 0. Under this
assumption on the Hamiltonian, it turns out that sets Q(¢) are increasing with respect to
time, i.e., the front propagation describes a growth model. We will show that the number of
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connected components of £2(¢) and of I'(¢) are nonincreasing during the evolution and establish
a comparison with the level sets obtained from (1.1), with the Hamiltonians

H*t(z,t,p) = A1+ Az|p|,  H (z,t,p) =a1 +azp|. (1.9)

Finally, we establish a regularity result for the growth front I'(¢) yielding local Lipschitz
regularity almost everywhere, which holds for almost all ¢ € R, and therefore improves the
results by Ley [17], who showed local Lipschitz regularity of the level sets

ro@) = {z € RY |u(z,t) = a ), (1.10)

for almost all a € (—ayp, ap), with some ag > 0, from which one cannot deduce any result on
the growth front I'(¢) itself. The basic idea of our proof is to characterize the growth front
equivalently as

Ft)={zeR" |r(z)=t}, (1.11)

where 7(z) is the arrival time of the front defined by
7(z) ;= inf{ t e R | u(x,t) =0} =inf{ t € R" | $(z,t) <0 }. (1.12)

Using the lower bound gradient estimate for u we can show 7 is well-defined and locally
Lipschitz-continuous, which serves as a basis for our regularity result, since the evolution of
the growth front is determined by the level sets of 7.

The remainder of the paper is organized as follows: in Section 1.1 we introduce some
notations and basic assumptions needed below. In Section 1.2 we present the main class of
applications we have in mind, namely level set methods for normal growth of multiple objects,
and discuss the validity of our assumptions for the specific type of Hamiltonian appearing
in such models. Section 2 reviews some concepts of generalized solutions of Hamilton-Jacobi
equations and some results on their existence, uniqueness, and regularity. These results are
applied to the solutions of (1.1) in Section 3, and subsequently to the propagating front in
Section 4, which includes the main results of this paper.

1.1 Notation and Assumptions

In the following we introduce the basic notations and assumptions used throughout the paper.
We start with some definitions and then formulate assumptions on the initial value ug and
on the Hamiltonian H needed in the remainder of the paper.

Unless further noticed, we always work in the spatial domain RY (N € N being arbitrary),
the Lebesgue measure of subsets will be denoted by A", and the d-dimensional Hausdorff-
measure by H? (with d = N —1 being of particular importance), referring to [15, 20] definitions
and properties of these measures. By the letter 2 (combined with indices) we will in general
denote sets of positive Lebesgue measure in RY, while the letter T' is used for sets (hyper-
surfaces) with zero Lebesgue-measure A\ and possibly positive Hausdorff-measure HV~1.
Moreover, we use the notation

di (z) = nf lz =y
for the distance of a point z from a compact set K, and define the signed distance function
for the boundary of a compact set via

sor () = { ‘f"df; Ef()x) e i? . (1.13)
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For open or closed sets K C R? we will use the standard notions of continuity and
differentiability, denoting the total derivative of order j of a function f by D) f, and partial
derivatives with respect to a variable = by the standard symbol %, if z € RY is the spatial
variable also by Vf. The space of bounded continuous functions on K will be denoted
by C(K), if K is compact and Cy(K) else. In general, the space of k-times continuously
differentiable functions on K shall be denoted by C*(K) (respectively by CF(K) for non-

compact K, k € N), with norm defined by

£ 1l

— ()
k (K) = JDaX sup ‘D f(:v)‘ (1.14)

0<j<k zck

We also introduce the Holder spaces C*?(K) for k € NU {0} and 3 € (0, 1] with norm

~ |D(’“)u(x) - D(k)u(y)‘
||f||cg°,;)ﬂ(K) = max { | fllcr (k) ’wsglle%( z— g .

(1.15)

For functions f mapping into a general Banach space X instead of R? for some d € N we will
use the specific notations C(K; X), C*(K; X) and C*#(K; X). The norms in these spaces are
the same as above with the Euclidean norm |.| in R? replaced by the norm in X (cf. [26] for
details). Finally, we use the notation L*°(K) for the space of bounded measurable functions
on K, equipped with the norm

[ll o ) = €58 sup [u(a)],
reK

and the notation W1*(K) for the space of bounded measurable functions, whose distribu-
tional derivative is again bounded and measurable. The norm in this space is given by

[[ull .00 (1) = max{[[ull oo gy 5 DUl oo (1) }-

We assume in the following without further notice that the initial value satisfies ug €
Cg '(RY). For the Hamiltonian H € C(RY x Rt x RY) we will use the standard regularity
assumptions

OH

)| < a5+ 1o, (116
with nonnegative constants C, 3, and

OH

| <o+ (117)

with nonnegative Cs, Cs, for almost all (z,¢,p) € RN x Rt x RV . If needed, we shall also use
the assumptions (1.5), (1.6) and (1.8).

1.2 Level Set Methods for Normal Growth

The general results on the class of Hamilton-Jacobi equations under investigation can be

applied directly to an important type of equations frequently used in the modeling of front-

propagation problems with prescribed normal speed, namely level set equations of the form
Ou

E+U|Vu| =0 inRY xR, (1.18)



where v is an extension of the normal velocity of the evolving front T'(t) to RY x (0,7).
Level set methods have been used with great success as a computational tool for propagation
of fronts since they were introduced by Osher and Sethian [22], with a variety of practical
applications such as flame propagation, fluid dynamics, materials science, or image processing
(cf. [21, 23] for an overview).

While the analysis of the level set equation (1.18) itself is well-established, there are
still unsatisfactory gaps in the analysis of the propagating front I'(¢) defined by (1.2) and
its geometric properties. The existence and uniqueness of solutions of (1.18) follows from
standard results on Hamilton-Jacobi equations provided v satisfies some standard smoothness
assumptions. The properties of the front I'(¢) could not be analyzed under such general
conditions so far.

In order to satisfy the above assumptions on the Hamiltonian, we assume that v is bounded
Lipschitz in RY and that there exist constants Ay > ap > 0 such that (1.19) holds. Under
these assumptions on v, one easily verifies that the Hamiltonian H(z,t,p) := v(z,t) |p| satisfies
the assumptions (1.5), (1.6),(1.8), (1.16), and (1.17).

The results of this paper are directly applicable to level set methods, if the velocity v is
Lipschitz continuous with respect to  uniformly in ¢ and, if

As > v(z,t) > ap, V (x,t) eRY x RT. (1.19)

Under these assumptions on v, one easily verifies that the Hamiltonian H(z,t,p) := v(z,t) |p|
satisfies the assumption (1.8). Due to the nonnegativity of v, we obtain that the convexity
assumption (1.5) is satisfied, and (1.8) holds with a; = A; = 0. The positive homogeneity
(1.6) always holds for the special Hamiltonian in (1.18). Finally, the smoothness conditions
(1.16) with 8 =0 and (1.17) follow from the Lipschitz continuity and boundedness of v. We
want to mention that the upper bound on v is reasonable for most practical applications,
since v represents the normal speed of a propagating front (respectively its extension to RY),
which usually remains finite. The lower bound means that the front will grow in a monotone
way during the evolution, which is a strong restriction. However, this class of growth models
still includes important applications such as the growth of polymer crystals (cf. [6, 7, 16]),
where the velocity is determined by v(z,t) = G(0(z,t)) with 0 being the temperature and G
a given positve material function (cf. [7] for details). So far, this growth model, coupled to
a diffusion equation for temperature, has been analyzed only in the case of a single crystal
(cf. [16]) using strong regularity or in the spatially one-dimensional case for multiple crystals
(cf. [6]). Other interesting application are photolitography development (cf. [24, 25], where
the speed function depends on the spatial variable only. Besides these specific applications,
we hope that the results of this paper also stimulate the analysis of the front under different
conditions on the velocity.

2 Generalized Solutions of Hamilton-Jacobi Equations

In general, classical solutions of Hamilton-Jacobi equations need not exist even if the initial
value and the Hamiltonian are smooth, so that concepts of generalized solutions are needed.
The definition of such generalized solutions is not unique and the usefulness of specific notions
depends on several factors such as the smoothness of the initial value or the structure of the
Hamiltonian. In most parts of the paper, we restrict our attention to the most important
notion of generalized solutions, namely the one of viscosity solutions (noticing that most
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standard notions are equivalent if the initial value is Lipschitz continuous and H satisfies (1.5),
(1.16) and (1.17)); for some proofs we will also use the notion of Barron-Jensen solutions (see
below). Viscosity solutions are defined as follows:

Definition 2.1. A function u € C(RY x (0,T)) is called wviscosity subsolution of (1.1) if for
every function ¢ € CH(RY x (0,T)), the inequality
0b ,_ - - -
E(xat) +H(I7ta VQS(J,‘,t)) <0 (21)
holds for each local maximum (Z,%) € RY x (0,7) of u — ¢.
A function u € C(RY x (0,T)) is called viscosity supersolution of (1.1) if for every function
¢ € CL(RN x (0,T)), the inequality
0p,_ - - -
E(x,t) + H(Z,t,V¢(T,t)) >0 (2.2)
holds for each local minimum (z,7) € RY x (0,T) of u — ¢.
A function v € C(RY x (0,7)) is called wviscosity solution of (1.1) if it is both a viscosity
sub- and supersolution.

Sometimes we shall also use the notion wiscosity solution of (1.1), (1.4), by which we
mean a viscosity solution of (1.1) that satisfies in addition the initial condition (1.4).

The theory of continuous viscosity solutions is well-developed, we refer to [10, 19, 2] and
the references therein for details and restrict our attention to some particular results needed
in the subsequent analysis. The first one, concerned with the existence and uniqueness of
viscosity solutions, could be obtained in fact under weaker assumptions on the Hamiltonian
H as used in this paper, but for simplicity we use the above conditions in the formulation:

Theorem 2.2 (Existence and Uniqueness). Let ug be a bounded uniformly continuous
function and let H € C(RYN x [0,T] x RY) satisfy (1.16), (1.17). Then there exists a unique
continuous wviscosity solution of (1.1), (1.4), which is bounded uniformly continuous with
respect to = uniformly in t.

A second result on viscosity solutions is concerned with their regularity in the class of
Lipschitz continuous functions, for which the Lipschitz continuity of the Hamiltonian is es-
sential:

Theorem 2.3 (Regularity). [17, Theorem 4.1] Let uy be Lipschitz continuous and let H €
C(RN x [0,7] x RN) satisfy (1.16), (1.17). Then the unique continuous viscosity solution u
is Lipschitz continuous with respect to x uniformly in t, and

50,7 pCT
IV ety < 25 (I V0l + 25

1
3
) ) Vtelo,T). (2.3)
Finally, we recall a standard comparison result for viscosity sub- and supersolutions (which
could be deduced under weaker assumptions on H as Theorem 2.2):

Theorem 2.4 (Comparison). Let H be as in Theorem 2.2, let v be a continuous viscosity
subsolution and w a continuous viscosity supersolution of (1.1) with w(z,0) > v(z,0). Then

w(z,t) > v(z,t) V (z,t) € RN x [0,T]. (2.4)



An alternative notion of generalized solutions of first-order Hamilton-Jacobi equations
(with Hamiltonian convex with respect to p) are Barron-Jensen solutions, which were intro-
duced to study semicontinuous solutions (cf. [4]). For our purpose, however, it is sufficient
to restrict the definition to continuous solutions:

Definition 2.5. A function u € C(RY x (0,T)) is called Barron-Jensen solution of (1.1) if
for every function ¢ € CH(RN x (0,7T)), the equality

¢ - o
5 @0 + H(ET,L, V(7)) = 0 (2.5)

holds for each local minimum (z,7) € RY x (0,T) of u — ¢.

The equivalence of viscosity solutions and Barron-Jensen solutions is provided by the
following result:

Theorem 2.6. [17, Theorem 38.1] Let (1.5) and (1.16) hold, and let w € C(RYN x (0,T)).
Then u is a viscosity solution of (1.1) if and only if u is a Barron-Jensen solution of (1.1).

3 Properties of the Viscosity Solution

In the following we derive some preliminary results on the viscosity solutions of the Hamilton-
Jacobi equation (1.1) subject to (1.4), which we denote by u. Having a comparison of the
growth front with fronts propagating with slower or faster speed in mind, we introduce the
functions u_ and w4, being the unique viscosity solutions of

8;‘—; +(a1+az|Vu_|) = 0  inRY x(0,7) (3.1)
2%t+(Ay+Aﬂqu) — 0 R x(0,7) (3.2)

with
u_(.,0) =uy(.,0) =up,  inRV. (3.3)

The zero level sets of these functions will serve as lower and upper bounds on the sets covered
by the growth front obtained (1.1) in the subsequent analysis.
We start with an interpretation of u_ and u. as viscosity super- and subsolutions of (1.1):

Lemma 3.1. Let the functions u_ and uy be the viscosity solutions defined by (3.1),(3.3)
and (3.2), (3.3), respectively. Then u_ is a viscosity supersolution and uy 1is a viscosity
subsolution of (1.1).

Proof. Let ¢ € CY(RY x (0,7T)) and suppose u_ — ¢ attains a local maximum at some point
(z,t) € RN x (0,T). Then, since u_ is a viscosity solution of (3.1), we obtain with (1.8) that

0 0

D ot) + H (w1, V(2,1)) > 0 (2,1) + o0 + 02 [V(a, 1) > 0,
and hence, u_ is a viscosity supersolution of (1.1). The reasoning for uy is analogous, using
the second estimate in (1.8). O

As a direct consequence of Lemma, 3.1 and the comparison in Theorem 2.4 we obtain the
following comparison result:
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Corollary 3.2. Let u be the unique viscosity solution of (1.1), (1.4) and let u— and uy be
as in Lemma 3.1. Then, for all t € (0,T), the relation

ut(z,t) <ulz,t) <u_(z,t), VzeRY (3.4)

holds.

3.1 Lower Bound Gradient Estimates

Now we turn our attention to lower bound gradient estimates for viscosity solutions, a re-
markable and unusal result in the theory of partial differential equations:

Theorem 3.3. [17, Theorem 4.2] Let in addition to the assumptions of Theorem 2.3 the
condition (1.5) be satisfied.

(i) Let zg € RN and r > 0. If [Vuo| > n in B(zo,r) in the viscosity sense for some n > 0,
then there ezxist some positive constants 7, v and to € (0,T] such that
Vu| > e~ 57 in D(zo,r) N (RY x (0, )) (3.5)
holds in the viscosity sense, where

D(wo,r) = { (2,t) € B(zo,7) x (0,T) | < PFEHCRDYL 4|z —g|)r + 1 }

(i) Let (1.6) and (1.16) be satisfied with § = 0. If
|uo ()| + [Vuo(z)| = n, (3.6)
for some constant n € RT, then there exist positive constants C and v such that
lu(, )] + e’ |Vul,t))>*>C  inR¥,Vte(0,T)
in the viscosity sense.

This lower bound gradient estimate cannot be applied to u only, but also in a particular
way to the functions u_ and u4, which are viscosity solutions of an equation with Hamiltonian
independent of the spatial variable z. Since an inspection of the proof of Theorem 3.3 shows
that one may chose v = 0, 7 = n, and tp = min{7, %} in this case, we obtain the following
result:

Lemma 3.4. Let zop € RY and r > €37 — 1. Then, if the unique viscosity solution u of
(1.1), (1.4) satisfies |Vug| > n in B(xg,r) in the viscosity sense, then the functions u_ and
uy defined as in Lemma 3.1 satisfy

Du_|>n,  |Dus| >y (3.7)

in the viscosity sense in B(xo,p) x (0,T) for p < (1+r)e ¢T — 1.

Finally, we note that if |[Vug| = 1 in a sufficiently large ball, then an application of Lemma
3.4 and Theorem 2.3 (whose assumptions are satisfied by H; and H~ with C; = 0) shows
that |Vui| =1 in the viscosity sense in U x (0,T), for some neigbourhood U of the zero level
set Mie(o,7)['(t). This property is of particular interest in applications to level set methods,
where the the signed distance function op(g) for the curve I'(0) = 9€2(0) is frequently used as
an initial value for w.
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3.2 Decay of Solutions

In the preceding part we have obtained a lower bound gradient estimate for the unique
viscosity solution of (1.1), (1.4), which we apply now to estimate the decay of the solution. If
u was a classical solution and |Vu| >k in U x (s, ) in the viscosity sense for some U C RV
and 0 < s < § < T, then from (1.8) we would obtain that

%(x,t) = —H(z,t,Vu(z,t)) < —(a1 + a2k), V (z,t) €U x (s,85),

and consequently the decay of u would be at least
u(z,t) < wu(z,s) — (a1 + a2k)(t — ), V (z,t) €U x (s,9). (3.8)

In the following we will generalize these inequalities to viscosity solutions, i.e., we show that
a variant of the first one holds in the viscosity sense, and the second one follows from a
comparison result.

Lemma 3.5. Let u € C(RN x (0,T) be a viscosity solution of (1.1) with |Vu| >k > 0 in
U x (s,S) in the viscosity sense, and let the Hamiltonian H satisfy (1.5), (1.8), (1.16) and
(1.17). Then u is a viscosity subsolution of

0

S+ (@ +asf) =0, (3.9)
in RV x (s,8) for any continuous function f : RY — R satisfying f = 0 in RY — U and
0< f(z) <k forzeU.

Proof. First of all, a direct calculation shows that |Vu| > f in the viscosity sense in RY x
(0,T). Let ¢ € C*(RN x (0,7T)) and let (z,%) be a local minimum of u — ¢ in U x (s, S).
Then, we have that |V¢(E, f)| > f, and since u is also a Barron-Jensen solution of (1.1),

o¢

E(E, t)+ H(z,t,Vo(T,t)) = 0.

By combining these estimates and (1.8) we further obtain that
— 5 @ 1) — (a1 +azf) 20,

and thus, v is a viscosity supersolution of

0
—8—1: — (a1 + agf) = 0.

In an analogous way to the proof of Lemma 3.1 in [17] we now obtain that u is also a viscosity
subsolution of (3.9) . O

This result can be used to estimate the decay of viscosity solutions:

Theorem 3.6. Let u € C(RY x (0,T)) be a viscosity solution of (1.1) with |Vu| > k > 0
in U x (s,8) in the viscosity sense for some open set U, and let the Hamiltonian H satisfy
(1.5), (1.8), (1.16) and (1.17). Then the estimate (3.8) holds.
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Proof. Let the function g : RN — R be defined by

(z) = k forzeU
9\) = 0 else ’

and let f, : RY — R be a sequence of continuous functions such that f, is identically zero in
RY —U, 0< fi(z) < s for z € U, and f, — g uniformly in any compact set not containing
OU. Since u satisfies |[Vu| > f in the viscosity sense in RY x (s,5), we obtain from Lemma
3.5, that u is a viscosity subsolution of (3.9) with f = fx. Moreover, the function @ defined
by
g (z,t) = u(z,s) — (a1 + ao fr(z))(t — s).

is a viscosity supersolution of (3.9) with @x(.,s) = u(.,s). Hence, from Theorem 2.4 we obtain
that u < @ in RY x (s, ), and the limit & — oo yields (3.8). O

4 Properties of the Growth Front

Now we turn our attention to the growth front I'(¢), the set €2(¢), and their geometrical
characteristics. A first important question is the so-called non-empty interior problem, which
is rather difficult to solve for general Hamilton-Jacobi equations. For special equations such
as the mean-curvature equation, examples are known, where the evolving zero level sets of
the viscosity solution create a nonempty interior in finite time (cf. e.g. [11, 5]). For the class
of first-order equations we are considering, this equation can be answered positively due to a
result of Barles et. al. [3] (cf. also [17] for a different proof):

Proposition 4.1. Let the assumptions of Theorem 3.8 hold. If LN (T'(0)) = 0, then
LN@@) =0, Vtelo,T]. (4.1)

Moreover, the front T'(t) is independent of the initial value, i.e., if ups, ¢ = 1,2, satisfy
{z€RN | ug(z) =0} =T(0) for i = 1,2, then the sets T'1(t) and To(t) defined by (1.2)
with u being the unique viscosity solution of (1.1) with initial value up1 and ug 2, respectively,
are equal for all t € [0,T].

As an immediate consequence of Corollary 3.2 we obtain a comparison of Q(¢) with the
level sets of u_ and uy, i.e,

{zeRY |u (z,6)<0}C Q) Cc{zeRY |up(z,t) <0} (4.2)

holds for all ¢ € (0,7T), which well be deduced subsequently to derive lower and upper bounds
for Q(t). Moreover, from the nonnegativity of the Hailtonian, we may deduce the monotonicity
of Q(t) with respect to time, which shows that I'(¢) really represents a growth front:

Proposition 4.2. Under the assumptions of Theorem 2.4,the inclusion Q(s) C Q(t) holds
for s < t. Moreover, if either a; > 0 or a1 = 0 and the assumptions of Theorem 8.3 (ii) are
satisfied, then the growth front satisfies T'(t) NT(s) =0 for s < t.

Proof. Because of the nonnegativity of the Hamiltonian, the stationary function %(.,t) :=
u(., ) is a viscosity supersolution of (1.1) in the time interval [s, ¢] with the same initial value
as u at time ¢. Hence, by Theorem 2.4 we obtain that u(.,s) = ¥(.,t) > u(.,t) and thus,

Qs)={zeRY |u(,s)<0}Cc{zeRY |u(,t)<0}=Q().
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If a; > 0 we obtain that % < —ay < 0 in the viscosity sense in RY x (s, ) and consequently

the set { z € RV | u(z,t) < —a } contains the sets Q(s) for a < a;(t — s), which implies
(C(s)NT(t)) C (2s)NT(2)) = 0.
If a3 = 0 and the assumptions of Theorem 3.3 (ii) are satisfied, then we obtain a lower

bound estimate on |Vu(z,t)| on { z € RN | —§ < u(z,t) <6 } for § sufficiently small and
ou

consequently obtain that 5 is negative and bounded away from zero on this level set, which
allows an analogous reasoning as in the first case. O

Another interesting property is the boundedness of the number of connected components
of Q(t) and I'(¢). For a growth model without nucleation of new objects, it is obvious that the
number of connected components cannot increase with respect to time (but it may decrease
if objects merge). This statement is made rigorous by the following result:

Proposition 4.3. Let the assumptions of Proposition 4.2 be satisfied and suppose that Q(0)
and T'(0) are compact sets with M connected components. Then, for all t > 0, the sets Q(t)
and T'(t) are compact sets with at most M connected components.

Proof. The compactness of Q(t) and I'(¢) follows from the finite speed of propagation and
the continuity of u. If Q(s) or I'(s) has more than M connected components for some s > 0,
then there exist a nonempty set U; and an open set Uy with Uy C Us such that u(.,s) > 0 in
Ui, u(.,0) < 0 in U and u(.,t) > 0 on QU for all ¢ € [0, s]. Thus, the function ¢ = 0 is a
viscosity subsolution of (1.18) in Uz x [0,7] and %(.,0) > u(.,0) as well as ¥(z,t) > u(z,t)
for z € OU. Hence, by comparison we obtain that 0 = ¢ > u in Uy X [0, s|, which contradicts
u(.,s) > 0 in Uj. O

4.1 Regularity of the Growth Front

In the following part we are concerned with the local Lipschitz regularity of the growth front
['(t). To the author’s knowledge, the only result for the level sets of u is due to Ley [17] who
should that the set I'*(¢) is locally Lipschitz for almost every « in an interval around « = 0.
Unfortunately, this statement gives no information on the growth front I'(¢) itself, which need
not be Lipschitz continuous even if the initial set I'(0) is arbitrarily smooth (cf. Figure 1 for
an illustration). The counter-example given by Ley is the propagation of two distinct radial
shapes via the eikonal equation, i.e., for the simple Hamiltonian H(z,t,p) = |p|. At some
time ty > 0 the balls meet and the arising set I'(¢g) is not locally Lipschitz at the contact
point. Nonetheless, the evolving curve I'(¢) in this example is locally Lipschitz continuous
HN L almost everywhere, for almost all ¢ € [0,7], which is not a pecularity of this example
as we shall prove below.
For this sake we introduce the arrival time

7(z) ;= inf{ t e R" | u(z,t) =0 } =inf{ t € R" | u(z,t) <0 }. (4.3)

Due to the monotonicity in the evolution we obtain that the set { ¢ € Rt | u(z,t) = 0 }
contains only a single element, so that 7 is defined implicitely by the relation u(z,7(z)) = 0
and the level set I'(¢) can be represented equivalently via

Tt)={zeR |1(z) =t} (4.4)
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Figure 1: Schematic representation of a front with non-Lipschitz respectively local Lipschitz
regularity.

This representation of the level set for monotonically advancing fronts has been used for
modelling crystal growth by the minimal-time method (cf. [27]) and to develop the so-called
fast marching methods for computing the evolution of growth fronts. Fast marching methods
are based on solving the stationary Hamilton-Jacobi equation (cf. [1, 23, 25])

H(z,7,V7) =0, inRY —Q(0), (4.5)

with the boundary condition 7 = 0 on I'(0) to obtain the arrival time as a viscosity solutions.
The analysis of viscosity solutions for the stationary equation (and the equivalence of its
viscosity solutions and the arrival time) is presently available only if the Hamiltonian is
nonincreasing with respect to the second argument, which is a too strong assumption for the
applications we have in mind. Therefore we will only use the definition as arrival time in the
following and directly deduce its properties from the ones of the viscosity solution u of (1.1),
(1.4).

In order to obtain a function 7 defined on RY — Q(t) we extend the Hamiltonian con-
tinuously to RN x (T,00) via H(z,t,p) = H(z,T,p) for t > T and consider the associated
viscosity solution u defined on RY x Rt. We start with results on the well-definedness and
local Lipschitz continuity of the function 7:

Lemma 4.4. Let the assumptions of Proposition 4.2 hold, and let 2(0) be a compact set with
['(0) = 02(0) such that the signed distance function or, is Lipschitz continuous. Then the
arrival time defined by (4.3) satisfies 0 < 7(x) < oo for all z € RY — Q(0).

Proof. Let 77 and 7~ be the arrival times associated with the functions u«® and ug_. Due to
Corollary 3.2, we have 77 < 7 < 7~ on RY —Q(0). Since the growth front is independent of the
initial value in the sense of Proposition 4.1, we may assume without restriction of generality
that 4 and u& are the solutions with initial value or (), which satisfies |V0p(0)| =1 in the
viscosity sense in RY. As we have seen at the end of Section 3, this implies that ‘Vuoi| =1
in the viscosity sense, and hence, we obtain that
0 0
8;1’—_; = _(0’1 + a’2)a ag—;—

in the viscosity sense. Thus, the associated arrival times satisfy

= —(41 + A4y)

or(0) (z) _0r(0) (z)

— _ + _ O\
@)= 2O ) =
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for z € RV — Q(0), which gives a lower and an upper bound for 7(z). O

Proposition 4.5. Let the assumptions of Theorem 3.3 (ii) and Lemma 4.4 be satisfied, then
7 is locally Lipschitz continuous in Q(T)—$(0), and its norm in WH°(Q(T) — Q(0)) depends
onT, H, and ugy only.
Proof. Let z € Q(T)1 — ©(0).. Due to Theorem 3.3, there exists a neighborhood U of z, a
time ¢y > 7(z), and a constant ¢y = e_j;\/g such that |Vu| > ¢ in U x (7(x),to). Hence,
Oou . . .
n < —a1 —agcy <0, in the viscosity sense in U X (s, ).
Now consider the set P(z) =UN{y e QT) | to > 7(y) > 7(z) }. If U is sufficiently small,
then u(y, 7(x)) < (a1 + a2co)(to — 7(z)) for y € P(z) and hence, with the estimate for % we

may deduce that u(y,7(z) + ) < 0 for § = 1;(11’4’_7(1(;6)0) Thus, noticing that u(z, 7(z)) = 0, we
obtain the estimate

1
T —7(r) < —— (uly, 7(z)) —u(z,7(z
) = 7(0) < s (ulyy7(0)) — uley7(2))
and from Theorem 2.3 we may deduce the existence of a constant ¢; = ¢1 (T, H, ug) such that
7(y) — 7(z) < ¢1 |x — y|. Since the constant ¢; does not depend on x we may conclude that
|V7| < ¢; almost everywhere in Q(7T') — ©(0). O

In order to analyze the regularity of the front I'(¢), we introduce the concept the sub-
differential for locally Lipschitz functions f : RY — R, defined by (cf. [9] for a detailed
discussion)

acf(.’l)) = { h ERN | limsupf(y-l_ep) _f(y)

> (h,p),Y p e RN }. (4.6)
y—x,el0 €

Due to Rademacher’s Theorem, a locally Lipschitz continuous function is differentiable for
almost every z and the identity dc f(z) = {Vf(z)} holds at such points. By generalization
of the implicit function theorem to locally Lipschitz functions, we will show in the following
that the growth front is locally Lipschitz continuous at a point z, if 0 ¢ dc7. For this sake
we introduce the following notations:

Definition 4.6. We set
So :=={ 2 € UyeporT'(t) | 0 € Bc7(z) } (4.7)

and
S :={ z € Uyepo,nT(¢) | T'(t) is not Lipschitz at z } (4.8)

An important relation between S and Sy is the following result:
Lemma 4.7. Let 7 € C(QT) — (0)) be locally Lipschitz continuous. Then S C Sp.

Proof. The proof can be carried out in an analogous way to the proof of Theorem 5.4 in
[17]. O

Now we are in position to prove the main result of this section:
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Theorem 4.8. Under the assumptions of Proposition 4.5,
HNTHSNT(t) =0, for almost every t € (0,T).

Proof. Let % denote the set of points z € Q(T') — Q(0) such that 7 is differentiable at z. From
Rademacher’s Theorem, we may conclude that £V (S — %) = 0 and dc7(z) = {V7(x)} = {0}
for x € § N . Hence, with the coarea formula and the we obtain

T
/ HN-USNT(t) dt = /|V7‘| dEN:/ |Vr| dcN
0 S S—¥

LY S =) |17l = 0.

IN

which implies the assertion. U

Finally, the boundedness of 7 in W allows to deduce an upper bound on the Hausdorff-
measure of the propagating front, when interpreted as an L'-function of the time variable:

Theorem 4.9. Under the assumptions of Proposition 4.5, the estimate

/ U UDW) di < ¢ (diam Q0) + (A, + A)T)Y (4.9)
0

holds for some constant c € RT.

Proof. From the coarea formula and the representation (4.4) of I'(¢) we obtain that

T
/ HY-NT (1) dt = / Vr(@)| do < co LY (UT)),

0 Us(t)

where ¢y = ||7||jy1.00. From the proof of Lemma 4.4 we observe that 7(z) > T for or,(z) >
(A1 + A2)T and thus,

diam Q(T') < diam Q(0) + 2(A; + A2)T,

which implies (4.9). O
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