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Abstract

This paper presents an algorithm for computing the dis-
tance between two free-form surfaces. Using line geome-
try, the distance computation is reformulated as a simple
instance of a surface-surface intersection problem, which
leads to a low-dimensional root finding in a system of equa-
tions. This approach produces an efficient algorithm for
computing the distance between two ellipsoids, where the
problem is reduced to finding a specific solution in a system
of two equations in two variables. Similar algorithms can
be designed for computing the distance between an ellipsoid
and a simple surface (such as cylinder, cone, and torus). In
an experimental implementation (on a 500 MHz Windows
PC), the distance between two ellipsoids was computed in
less than 0.3 msec on average; and the distance between an
ellipsoid and a simple convex surface was computed in less
than 0.15 msec on average.
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1 Introduction

Computing the minimum distance between two objects of
arbitrary shape has important applications in diverse areas
such as computational biology, robotics, CAD/CAM, com-
puter graphics, computer animation, computer games, and
virtual reality [7, 15, 23]. For example, distance computa-
tion can be used for collision detection in robotics and com-
puter games, and for generating force feedback in haptic
rendering, to mention only a few.

There are many efficient algorithms for computing the
distance between two polyhedral objects [4, 5, 12, 14, 19,
21, 22, 24, 32]. Distance computation for general free-
form objects is, however, more difficult [1, 13, 30]. Con-
ventional algorithms solve a set of polynomial equations,
which is time-consuming. In a recent work, Johnson and
Cohen [16] present an interesting approach that combines
polyhedral approximation and subdivision to NURBS prim-
itives. Using the convex hulls of control polyhedra, two
closest NURBS patches are detected and their minimum



distance is then computed by recursive subdivision to the
NURBS patches.

In the core of efficient algorithms for collision detec-
tion and distance computation are fast geometric tests for
two primitives such as spheres, OBB (Oriented Bounding
Boxes), LSS (Line Swept Sphere), RSS (Rectangle Swept
Sphere), and k-DOP (k-Discrete Oriented Polytope) [14, 21,
22, 32]. We may also consider some other simple geometric
primitives for this purpose. Cylinder, cone, torus, surface of
revolution, surface of linear extrusion, and canal surface are
good candidates for these primitives.

A canal surface is the envelope of a sphere with varying
radius, which moves along a space curve [28]. Cylinder,
cone, torus, and cyclide are special types of canal surfaces.
Kim [20] computes the distance between a canal surface
and a simple surface (cylinder, cone, and torus) by reducing
the problem to solving a polynomial equation in one vari-
able, which can be computed very quickly. Seong et al. [29]
compute the distance between two surfaces of revolution us-
ing a simple structure of their Gauss maps, where the nor-
mal matching between two surfaces is explicitly given in a
closed-form equation. (They consider the surfaces of rev-
olution generated by slope-monotone closed curves; how-
ever, the basic approach can be applied to more general sur-
faces of revolution.)

Wang et al. [33] present an efficient algorithm for testing
the separation of two ellipsoids. Separation test is easier
than distance computation since a positive distance implies
the separation of two objects.

In this paper, we consider the distance computation for
two ellipsoids. Typically, the existing algorithms formulate
this problem as a system of four equations in four variables.
Using line geometry, we obtain a particularly compact for-
mulation of the problem. We transform the distance com-
putation to a system of two equations in two variables.

Rimon and Boyd [27] approximate the distance between
two ellipsoids by iteratively computing a sequence of point-
ellipsoid distances, where each point-ellipsoid distance is
computed by solving a polynomial equation in one vari-
able. In the present paper, we use point-ellipsoid distance
computations only a couple of times and generate an ini-
tial solution for the distance of two ellipsoids. Then we
find a solution in a system of two equations in two vari-
ables. The solution is tested whether the corresponding foot
points on the ellipsoids realize the minimum distance; oth-
erwise, other solution is searched for a shorter distance. In
an experimental implementation, the distance between two
ellipsoids was computed in less than 0.3 msec on average
(on a 500 MHz Windows PC).

A similar approach can be applied to the distance compu-
tation between an ellipsoid and a simple surface (cylinder,
cone, and torus). In an experimental implementation, the
distance between an ellipsoid and a cylinder was computed

in less than 0.1 msec on average; and the distance between
an ellipsoid and a cone or the convex part of a torus was
computed in less than 0.15 msec on average. Clearly, the
problem becomes more difficult when we consider general
free-form surfaces, and we are currently exploring the po-
tential of our method in this case. In a recent paper, Bischoff
and Kobbelt et al. [2] develop multiresolution techniques for
approximating general objects by a collection of ellipsoids,
which may be used in order to reduce the general situation
to the ellipsoidal case.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review line coordinates. Section 3 presents
the normal congruence of a surface, both in parametric and
implicit representations. In Section 4, we outline the proce-
dure of computing the distance between two surfaces based
on line geometry. Section 5 considers the distance of two
ellipsoids, and Section 6 considers the distance between an
ellipsoid and a simple surface (such as cylinder, cone, and
torus). Experimental results are given in Section 7, where
some implementation details are briefly explained. Finally,
Section 8 concludes this paper.

2 LineCoordinates

The geometry of lines in three-dimensional space is a classi-
cal subject of advanced geometry. Its origins can be traced
back to Monge (1771), Pliicker (1846) and Klein (1868).
Standard textbooks are due to Hoschek [9], Hlavaty [11],
and, more recently, to Pottmann and Wallner [28].

Throughout this paper, we shall use homogeneous coor-
dinates

P= (p03p13p23p3) # (0,0,0,0) (1)

to describe points in 3-space. These coordinates are homo-
geneous; for any A # 0, the vectors p and Ap describe the
same point. Consequently, the points in three-dimensional
space are identified with one-dimensional subspaces of R?.

If py # 0, then the associated Cartesian coordinates of p
are

P P2 P3
E:(£17£27£3): (p_O’p_O’p_O) . (2)
The Cartesian coordinates can be obtained by intersecting
the one-dimensional subspace spanned by p with the plane
po = 1, and omitting the 0-th coordinate. In the sequel,
underlined letters always refer to Cartesian coordinates.
Otherwise, if po = 0, the coordinates p correspond to a
so-called ideal point; it can be used to represent the intersec-
tion point of all lines with a direction parallel to (py, p2, p3)-
If two vectors of homogeneous coordinates are linearly de-
pendent, then they correspond to the same point in 3-space.



The set of lines in 3-space is a four-dimensional man-
ifold. Lines in 3-space can be equipped with homoge-
neous line coordinates (sometimes called the “Pliicker co-
ordinates™)

L = (Li,...,Lg)
= (Lo1, Loz, Los, L3, L3y, L12). (3)

If a line is spanned by two points p and q, then the line
coordinates are given by

Lij = piq; — pjai- (4)

These line coordinates are homogeneous; the vectors L and
AL correspond to the same line. If we replace p and q with
two other distinct points on the line, then we get again the
original line coordinates, multiplied with a non-zero factor.

In particular, one may generate the line coordinates from
a point (1,p) with normalized homogeneous coordinates,
and from a point (0, §) at infinity with ||G]| = 1 (the latter
corresponding to one of the two unit direction vectors of
the given line). In this special case, the line coordinates are
given by the six-dimensional vector

L = (d,p x d) ()

which consists of the direction vector ¢ and the so-called
momentum vector p x ¢. Note that the latter vector does
not depend on the specific choice of the point p. The mo-
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Figure 1: Direction and momentum vector of a line.

mentum vector is perpendicular to the plane that contains
the origin and the line. The general homogeneous line co-
ordinates are obtained by multiplying L) with arbitrary
non-zero factors.

The coordinates of any given line satisfy the quadratic
equation (Plucker’s condition)

LiLy+ LyLs+ L3 Lg = 0. (6)

This equation is obviously satisfied by the normalized coor-
dinates (5). Due to its homogeneous nature, it is also satis-
fied for general coordinates (3).

The incidence of two lines can be expressed by line co-
ordinates: if two lines L and M intersect, then

Ly My + Ly My + Ly Ms + Ly M,
+L3 M6+L6 M3 =0 (7)

holds. Consequently, Pliicker’s condition means that every
line intersects with itself.

Using these homogeneous line coordinates, one may
identify a line in three-dimensional space with a point L on
the hyperquadric (6). This point will be called the Plicker
image of the line.

The quadric surface (6), which is embedded in a 5-
dimensional real projective space, is called the “Klein
quadric” . Any point L on it corresponds to a line. Note
that points with L; = L, = L3 = 0 correspond to lines at
infinity.

3 TheNormal Congruence of a Surface

Consider a surface in three-dimensional space. We may as-
sociate with each point the normal, i.e., line through this
point which is spanned by the normal vector. The normals
form a two-dimensional family (called a “congruence”) of
lines. It is called the normal congruence of the given sur-
face.

Figure 2: The normal congruence of a surface.

Using line coordinates, the normal congruence can be
identified with a two-dimensional surface which is con-
tained in the Klein quadric C. We will refer to this surface
as the Plucker image of the normal congruence.

3.1 Parametric Representation

If the surface is given by a parametric representation,

x(u,v) = (wo(u,v), 21 (u,v), 22(u,v), 23(u,v)), (8)



where (u,v) €  C R?, then a normal vector can be ob-
tained from
N _ 9 0 9
(U,U) - 6_UX(U’U) X %X(U,U)- ( )
Using the definition of the line coordinates we arrive at a
parametric representation of the normal congruence

L(u,v) = (20N, (z1,22,23)7 x N). (10)

Clearly, as this is a homogeneous representation, it can
be multiplied by arbitrary non-zero factors. If the given
surface is rational (i.e., the coordinate functions z;(u,v)
are polynomials), then the normal congruence is again
given by a rational parametric representation.

Example 1: We consider the normal congruence of an el-
lipsoid®. Its equation in Cartesian coordinates is

2 2 2
X X X
=1 —_2+—_3=1

az ' B 2 ’ (1)
and the equation in homogeneous coordinates is
2 2 2
Ty [ ®y T3 2
2ttt =% (12)

where the constants a, b, ¢ > 0 specify the principal diame-
ters.

A rational quadratic parametric representation (which
can be obtained by stereographic projection with the cen-
ter at the “south pole”) is

zo = 14+u?+v? (13)
1 = 2au,

T2 = 2bv,

z3 = (1—u®>—-vYe,

with parameters (u,v) € R?. (See [6] for a detailed dis-
cussion of rational parameterizations of quadric surfaces.)
From (9) we get the normal vector

. 4(2bcu, 2acv, ab(l —u? — UQ))T
N= . (14)
(14 u?+402)3
Finally, after taking out common factors, we arrive at a para-
metric representation of the normal congruence,

L(u,v) = ( 2bcu(l +u? +v?),
2acv(1 + u® +v?),
ab(1 + u? +v*)(1 — u? —v?), (15)
2(6% — ?)av(l — u® —v?),
2(c? — a®)bu(l — u? —v?),
4(a® — b*)cuv )

In order to cover the whole ellipsoid with regular parameter-
izations, we have to use another stereographic projection?.

1A classical source, including many related references, is [31, No.44],
entitled “Die Normalenkongruenz der Flachen zweiter Ordnung”.

20therwise, the parameterization misses the center of projection, and
the distance computation may run into numerical problems in its vicinity.

For instance, choosing the center at the north pole of the
unit sphere, we obtain the same as (13), but with the oppo-
site sign of z3. The normal congruence is then again given
by (15), but with opposite signs of L, , Lo, and Lg.

By restricting both stereographic projections to parame-
ters (u,v) from the unit disc, u? + v2 < 1, we will cover
both the upper and the lower hemisphere of the ellipsoid. In
order to obtain two triangular Bézier patches covering the
whole ellipsoid, we apply the mappings to a circumscribed
triangle of the unit circle, see Figure 3. The associated nor-
mal congruences are then given by quartic triangular Bézier
patches.

stereographic projections 1

Figure 3: Covering the ellipsoid with triangular patches.

3.2 Implicit Representation

Alternatively, one may describe the normal congruence in
implicit form. The implicit representation can be computed
either by implicitizing a parametric representation, such as
(10), or directly from an implicit representation of the sur-
face.

Suppose that the surface is algebraic, i.e., the zero con-
tour of a trivariate polynomial,

f(§1,§2,£3) =0. (16)
Clearly, the normal vector at a surface point is the gradient
(N17N25N3):Vf(§15£27£3)' (17)

The normal at a point of the surface is spanned by the two
points (in homogeneous coordinates) (1,z,,z,,z3) and
(0, Ny, N5, N3). Consequently, the Pliicker coordinates of
the normals satisfy the equations

Li = AN,
L2 = )‘N2)



Ls = AN, (18)
Ly = MzyNs — z3N»),
Ly = ANzzN1 — 2, N3),
Lg = ANz N2 — z,N1),

for some homogenizing factor A # 0. Thus, we got
1+3+6=10 equations (16), (17), (18) for the 13 unknowns
z;,N;, L, A. Using suitable algebraic techniques (direct
elimination and/or resultants) we may eliminate the un-
knowns z;, N;, and A, giving 3 algebraic equations for the
line coordinates L4, ..., Lg. One of these equations can be
chosen as Pliicker’s condition (6).

In principle, this elimination works for any surface. The
resulting equations, however, will be useful for low degree
surfaces only.

Example 2: We consider an ellipsoid (11) as an example,

2 2 2
_ x| I3 I3 _
f_ﬁ-i_ﬁ-i_a_l_o’ (19)
2z, 235 233
V= (ﬁﬁﬁ)

We may easily eliminate z,,z,,z; and Ny, N, N3 from
the equations (16), (17), (18), as it is possible to solve for
them and substitute the results into the remaining equations.
This leads to 4 equations for the remaining 7 unknowns
Ll,...,L6 and \.

2A\Ly = LyL3(B* — C?),
2A\Ls = L L3(C? — A?),
2\Lg = L1Ly(A? — B?), (20)
4X* = LJA? + L3B? + L3C?
Note that Pliicker’s condition (6) can be derived from these
equations by computing the sum of the first three equations,

multiplied by L1, Lo, and L3, respectively.
Still, the homogenizing factor A has to be eliminated.

Case 1: All three principal diameters are identical, A =
B = (C (sphere). In this case, the normal congruence,
which consists of all lines which pass through the origin of
the Cartesian coordinate system, is described by the three
equations

Ly=1Ls = Lg = 0. (21)

Case 2: Two of the principal diameters are identical, e.g.,
A = B (ellipsoid of revolution). This entails

Lg=0. (22)

Another equation is obtained by solving any of the first two
equations for A and substituting it into the fourth equation.
With the help of the first equation we get

L3 (A’L?+ B*L3+ C*L3) = LiL3 (B? — C?)%.(23)

Case 3: All principal diameters are different. First we ob-
tain certain quadratic equations by solving any two of the
first three equations for A and equating the results. This re-
sults in three equations,

LyLs(A?—B?) 4+ L3Lg(A2-C?) =0, (24)
and

LiL4(A*~C?) + Lo Ls(B*~C?) = 0, (25)

L1L4(A%2—B?) + L3L¢(C*—B?) = 0. (26)

Note that Pliicker’s condition (6), combined with any of
these three equations, is equivalent to the remaining two
equations.

Second, we obtain a quartic equation by eliminating A
from the fourth equation in (20) with the help of any of the
first three equations. For example, using the third one, we
arrive at

Ly (ALY + B’L + C*L3) = L1Lj (A* — B?)*.(27)
To sum up, the homogeneous line coordinates of the normal
congruence of a general ellipsoid without rotational sym-
metries are characterized by equations (24) and (27).

4 Distance Computation

Consider solids in three-dimensional space. We will assume
that the two solids are disjoint. Their boundaries are as-
sumed to be C! surfaces (orientable manifolds). We denote
the boundary surfaces with £ and M. Their minimum dis-
tance d is defined as

d= min

—ql|. 28
peL’qullp qll (28)

If the minimum distance is reached at the two points p and
q, then the line spanned by p and q is a normal of both sur-
faces. Thus, the minimum distance can be computed using
the following strategy.

1. Generate the line coordinates of the normal congru-
ences of both surfaces. The Pliicker images of the
normal congruences are two two-dimensional surfaces
which are embedded in the Klein quadric.

2. Intersect the two normal congruences in order to find
the joint normals of both surfaces. That is, we have to
intersect two two-dimensional surfaces embedded in a
four-dimensional manifold. This will result in a finite
number of joint normals.

3. Find the two foot points of all joint normals and check
their distances.



Clearly, surface-surface intersection (SSI) is a standard
problem in geometric computing, and it can be attacked
with various techniques, see [10, 25, 26]. In particular, the
computations get particularly simple, if one of the surfaces
is given in implicit form, and the other surface by a para-
metric representation. Other techniques are based on the
comparison of bounding volumes, such as bounding boxes,
which can be derived with the help of the control struc-
ture. Many SSI algorithms can easily be generalized to the
higher-dimensional situations [26].

5 Distanceof Two Ellipsoids

In order to compute the distance of two ellipsoids, we have
to intersect the Pliicker images of their normal congruences.
We formulate this problem in implicit/parametric form.
5.1 First Ellipsoid

The first ellipsoid is given in standard form,

.ZL'2 1.2 2
A—12+—2+E=:c3. (29)

Its principal radii A, B, C' are assumed to be mutually dif-
ferent. Consequently, the normal congruence satisfies — in
addition to Pliicker’s condition — the equations

F(L) = LyLs(A®>—B?) + L3Lg(A*-C?) = 0, (30)
G(L) = (L3 + L2+ L3) (AL} + B’L3 + C%L3)
~IRI3 (4 - B
—L312(B? - C?)? (31)
L33 (C* - A2 =0,
see Case 3 of Section 3.2. (If some of the principal diam-
eters are identical, however, then the simpler equations of
Cases 1 and 2 should be used.) Note that (31) is obtained
by summing up three alternative derivations of (27), each
from the first three equations in (20). We use this slightly

more complicated equation since we can deal with degener-
ate cases easily using this formulation.

5.2 Second Ellipsoid

Again, we start from the standard form of this ellipsoid,

2 2 2
ry [ T3 | I3 2
§+b—2+—:$0, (32)

where the constants a, b, ¢ specify the principal diameters.
First we parameterize the normal congruence, see Sec-
tion 3.1, which leads to a quartic rational surface (15) in
line space. Then, we use dual quaternion calculus to move
the ellipsoid to a general position in space. More precisely,

we apply a translation and a rotation to the ellipsoid. The
most compact representation of the transformation of the
line coordinates can be given with the help of dual quater-
nions, see [3, 17]. We identify (“~) the homogeneous line
coordinates with vectors consisting of three real and three
dual components,

C=(Ls,...,Lg) (33)
~ L= (L1, L2, L3)+ €(L4, Ls, L),

where € is the dual unit, €2 = 0. These vectors are then
embedded into the ring of dual quaternions, H, = H + €H]
where the quaternions @ € H are (formally) written as a
sum of a scalar part and a three-dimensional vector,

Q=qo+ (q1,¢2,93) =q0 + 7 (34)

The conjugate quaternion equals @ = go — §. The quater-
nion multiplication x is defined as

(go + @) * (ro + ) (35)
= (goro—G-F) + (goF +rod+ g x 7).

Analogous rules (always taking the identity €2
account) are valid for dual quaternions.

Now we are ready to represent spatial displacements by
dual quaternions. The rotation around the axis spanned by
& [|a@]] = 1, through the angle ¢ corresponds to R, and a
translation by a vector V corresponds to 7, where

¢

R = cosg +sin§é’,

= 0 into

and 7 =1+ %e\'/. (36)

If a spatial displacement is applied to a line £, then the new
homogeneous coordinates can be computed from

L=T*xR*xL*xR+T. (37)

Note that this transformation transforms the pure® dual
quaternion £ into another pure dual quaternion, and also
Pllcker’s identity is still satisfied. Thus, one may again
identify £ with homogeneous line coordinates L.

Summing up, if the second ellipsoid is subject to a spatial
displacement, then the Pliicker image transforms according
to (37). The resulting normal congruences are denoted with
L(u,v).

5.3 Distance Computation

In order to find common normals of the two normal congru-
ences, we substitute the parametric representations f,(u, v)
into equations (30) and (31). Then we obtain two polyno-
mials of degrees 8 and 16,

f(u,v) = F(f‘(uav)) = Oa (38)
g(u,v) = G(L(u,v)) = 0. (39)

3A guaternion without scalar part is called ‘pure’.




The common roots of these polynomials correspond to the
joint normals of the ellipsoids.

The minimum distance between two ellipsoids is real-
ized at a specific root of the above system of equations. To
find this root efficiently, it is important to generate a good
initial solution. Then we apply a standard Newton method
in two variables.

To generate an initial solution, we use point-ellipsoid
distance computation for a couple of times. Starting from
the center of one ellipsoid, we generate a sequence of points
by generating alternating foot points on both surfaces. We
consider the distance between a point p = (21’92’1_93) and
an ellipsoid

z? oz  x?
f=F+mte-1=0 (40)
2z, 235 235
vi- ()

A foot point (z,, z,, z5) satisfies the following condition,
for some ¢,
(}_)17£27I_)3) - (£17£2’£3)

2z, 2z, 2z
= tVf(£17£27§3) =t (A_217 B_;,C—;> ’

Solving for z, , z,, 5, we get
A2p B2p C2p
r =l g =— =2 g = £3
A2 42t B% +2t C?+2t
Using (40), we get the following equation in ¢

2 2 2 2 2 2
A’p, N B°p, N C*p, 1
A% + 2t B? + 2t C? 42t
Multiplying both sides by

(42 +2t)* (B* +2t)” (C* +21)”,

we obtain a polynomial equation of degree 6 in ¢t. The
largest positive root corresponds to the footpoint realizing
the minimum distance between the point p and the ellip-
soid.

6 Distancewith Other Simple Surfaces

A similar approach can be used in computing the distance
between an ellipsoid and a simple surface, such as cylinder,
cone, and torus.

6.1 Cylinder

We consider a cylinder of radius R

f=2al+23-R*=0, (41)
Vf = (2§172§270)'

The normal at a point x has the Pliicker coordinates
L= (Elagb 07 —ZoX3, L L3, 0)

Consequently, the normal congruence is characterized by
L3 = 0, L6 =0.

Thus, the distance computation reduces to solving the fol-
lowing system of polynomial equations of degree four

We consider a cone
f=2l+z3—cz3=0 (42)

Similar to the case of a cylinder, we obtain two simple equa-
tions which characterize the normal congruence,

(C + 1)L2L3 - CL4 = 0, L6 =0.

Consequently, the distance computation essentially reduces
to solving the following system of polynomial equations

f(u,v) = (AC+ 1)1i2(u,v)ﬁ3(u,v) - CE4(U7’U) =0,
9(u,v) = Le(u,v) =0

of degree 8 and 4, respectively.
6.3 Torus

We consider a torus with major radius R and minor radius r,
(€F + 25 +23 + R* —1*)° —4R*(z] + 23) = 0
The normal congruence is then characterized by
L2+ 12-R’L2=0, L¢=0.
Thus, the distance computation leads to the system

Fwv) = E3(ur0) + B2uy0) — B2E(u,0) =0,
g(u,v) = _EG(U,U) =0.

of polynomial equations of degree 8 and 4, respectively.

7 Experimental Results

We have implemented the proposed algorithm of this paper
on a 500 MHz Windows PC using C++. Figure 4 shows
an example where an ellipsoid moves around another ellip-
soid while smoothly changing its position and orientation.
The figure shows four ’snapshots’ of the motion, at each of
which the distance between two ellipsoids was computed.
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Figure 4: Distance between two ellipsoids.

Without using any witness information from the previous
computations and thus starting from the scratch, each dis-
tance computation took less than 0.3 msec on average. The
performance demonstrates the potential of our approach in
real-time collision detection and avoidance.

In the case of computing the distance between an ellip-
soid and a cylinder or a cone (see Figure 5), the two equa-
tions f(u,v) = 0 and g(u,v) = 0 have lower degrees
(cf. Sections 6.1-6.2). Consequently, the computation can
be carried out more efficiently. Using our experimental im-
plementation, the distance between an ellipsoid and a cylin-
der was computed in less than 0.1 msec on average; and the
distance between an ellipsoid and a cone was computed in
less than 0.15 msec on average.

Figure 5: Distance between an ellipsoid and a cylin-
der/cone.

According to the analysis for a torus presented in Section
6.3, the degrees of f(u,v) = 0 and g(u,v) = 0 are 8 and
4, respectively, which are the same as in the case of a cone.
Consequently, each local minimum distance between an el-
lipsoid and a torus was computed in less than 0.15 msec on
average. When the foot point appears on the convex part
of the torus, the distance thus computed is the global mini-

mum distance. However, the foot point may appear on the
non—convex part of the torus as shown in the second and
third *snapshots’ of the moving ellipsoid of Figure 6. In this
more difficult case, the iterative search may fall into a local
minimum, in particular, when the ellipsoid passes through
the center of the torus. In the worst case, one may have to
compute all discrete solutions of f(u,v) = g(u,v) = 0,
and search for the solution that corresponds to the global
minimum distance®. We are currently investigating an effi-
cient method for pruning redundant solutions.

Computing the distance between an ellipsoid and a free-
form surface is the most difficult case. In this case, we use
a parametric representation for the line coordinates of the
free-form surface. The line coordinates of an ellipsoid are
represented implicitly; and they are transformed using dual
quaternions for a translation and a rotation. Again the main
difficulty arises when a local foot point appears in a non—
convex part of the free-form surface. A technique similar to
Johnson and Cohen [16] would generate candidate pairs of
foot points efficiently. We are currently investigating a more
efficient method that is based on the special structure of an
ellipsoid. For example, an ellipsoid can be bounded by a
discrete union of balls very compactly. The distances from
the centers of these balls may provide a reasonably good ap-
proximation to the global minimum distance. An ellipsoid
has a relatively simple medial axis transformation, which
may provide a compact way of approximating an ellipsoid
by a union of balls.

Figure 6: Distance between an ellipsoid and a torus.

4Note that, by composing the parametric and implicit equations of the
normal congruences, we are able to detect all potential joint normals.
Clearly, this requires some additional computational effort, which is not
justified in the general case.



Figure 7: Distance between an ellipsoid and a free-form
surface.

8 Conclusions and Future Work

Using line geometry, it is possible to formulate the task of
distance computation as a surface-surface-intersection (SSI)
problem, involving two two-dimensional surfaces which are
embedded in a four-dimensional manifold. This has been
demonstrated in the case of two ellipsoids. In this situ-
ation, we are able to formulate the SSI problem in im-
plicit/parametric form, leading to a system of only two poly-
nomial equations in two variables. Generally, these equa-
tions are of degree 8 and 16.

This technique works is not limited to ellipsoids; it can
be applied to any pair of quadric surfaces. If one of them is
a simple surface, such as circular cone or cylinder, then the
degree of these equations reduces substantially.

Conventional methods attack the same problem by solv-
ing a system of four equations in four variable. In principle,
by eliminating two variables, the system can be reduced to
two equations in two variables. However, multivariate elim-
ination is a non-trivial task. In this paper, we have demon-
strated some special yet important cases, where the elimi-
nation can be done in a straightforward manner.

According to our experiments, our method appears to
be particularly useful in complicated cases, where the joint
normal of the two surfaces is attached to non—convex, or
nearly parallel, regions of both surfaces. In this situation,
our technique will help to avoid potential problems with lo-
cal minima, as we are able to detect all potential intersec-
tions of the two normal congruences. Clearly, this issue will
become even more important for non—convex objects, such
as general free—form surfaces.

Future research will focus on more general classes of
surfaces, which are characterized by particularly simple
normal congruences. Here, among other candidates, we
plan to investigate the potential of the class of LN (Linear
Normal) surfaces [18], which are characterized by a linear
distribution of normal vectors. (Note that Phong shading
model is based on the assumption that the surface normal
changes linearly along each scanline [8].) These surfaces
can be shown to have rational offset surfaces and normal
congruences of relatively low degree.
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