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Abstract — This paper is devoted to the mathematical analysis and the numerical
solution of data-driven construction of fuzzy controllers. We show that for a special
class of controllers (so-called Sugeno controllers), the design problem is equivalent
to a nonlinear least squares problem, which turns out to be ill-posed. Therefore we
investigate the use of regularization in order to obtain stable approximations of the
solution. We analyze a smoothing method, which is common in spline approximation,
as well as Tikhonov regularization with respect to stability and convergence.

In addition, we develop an iterative method for the regularized problems, which uses
the special structure of the problem and test it in some typical numerical examples.
We also compare the behavior of the iterations for the original and the regularized
least squares problems. It turns out that the regularized problem is not only more
robust but also favors solutions that are interpretable easily, which is an important
criterion for fuzzy systems.

1. INTRODUCTION

Fundamentally, the idea of fuzzy sets and systems, dated back to Zadeh [34, 35],
is to provide a mathematical model that can present and process vague, impre-
cise and uncertain knowledge. It has been modeled on human thinking and
the ability of humans to perform approximate reasoning, so that precise and
yet significant statements can be made on the behavior of a complex system.
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Successful applications of fuzzy logic control include automatic train operation
systems, elevator control, temperature control, power plant control, fuzzy re-
frigerators, washing machines, etc. The main advantage of fuzzy controllers in
comparison with other adaptive systems like neural networks is the linguistic
interpretability of the controller.

1.1. Fuzzy Control

Basically, a fuzzy logic controller consists of three components [1, 7, 17]:

1. The rules, i.e. a verbal description of the relationships usually of a form
as the following (n is the number of rules):

ifzis A;jthenuis B; (1 =1,...,n)

2. The fuzzy sets (membership functions), i.e. the semantics of the vague
expressions A;, B; used in the rules. More precisely (cf. [2]): Given a
universe of discourse X a fuzzy subset A of X is characterized by its
membership function

pa: X —[0,1]

where for z € X the number p4(z) is interpreted as the degree of mem-
bership of = in the fuzzy set A.

3. An inference machine, i.e. a mathematical methodology for processing a
given input through the rule base. The general inference process proceeds
in three (or four) steps: first the fuzzification, then the inference itself, the
composition and finally the (optional) defuzzification.

In the following we assume that a reasonable inference scheme—a Sugeno con-
troller [30], where the output membership functions are crisp values—is given.
For a complete definition of a Sugeno controller, see Section 2.

There are still two components left which have to be specified in order to
design a fuzzy controller—the rules and the fuzzy sets. Recent effort has been
concentrated on developing new techniques which may be able to design the
membership functions and rule base automatically from measured data. Ge-
netic algorithms have played a special role in fuzzy control design as well as
methods treating fuzzy systems as artificial neural networks to adjust member-
ship functions using back propagation. For references see the article of Tan and
Hu [31]. Also classical optimization algorithms, such as the method of steepest
descent have been applied in tuning small and medium sized controllers.

Under the quite natural assumptions that product is used as fuzzy inference
rule, summation as the composition scheme, and center of gravity as the de-
fuzzification method, the tuning of a Sugeno controller reduces to fitting a set
of data {(xi,¥:)}i=1,...,m by a linear combination of membership functions in
the least squares sense, i.e. seeking a solution of the minimization problem

m n 2

(9= Y asbs(ait))” = min, (1.1)

t
i=1 j=1 (@)
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where b; represents the membership functions and @ = (a1, as,...,a,)" the
coefficients. The concrete shape of the membership functions depends on the
knot sequence t, which is also included in the optimization procedure. Therefore,
the minimization problem (1.1) is nonlinear.

Among the wide range of possible membership functions for Sugeno con-
trollers, we will concentrate on two different kinds: trapezoidal and B-spline
membership functions, firstly for the one-dimensional case (see Section 2). The
more general class of B-spline membership functions for Sugeno controllers, in-
cluding the often used triangular membership functions, were proposed in Zhang
and Knoll [36]. We mention that in a more abstract setting such approxima-
tions have been introduced as abstract splines by Sard [20] and generalized by
Groetsch [12].

1.2. Tll-posedness and regularization

Assuming for the moment that the knot sequence ¢ is fixed, we end up with a
linear least squares problem

lly ~ B(#)al|*/2 = min, (1.2)

where B(t) := (bj(zi,t))i=1,...,m; j=1...,n is the so-called observation matrix.
(1.2) has a unique solution, if and only if the observation matrix B has full rank
which is equivalent to the—in approximation theory well-known—Schoenberg-
Whitney condition [6]. In our case, we also have to take into account data errors.
Usually, the data y is the result of measurements contaminated by noise. Often,
the exact position z; of the measurement is only known approximately, i.e. we
get a set of noisy data (x7, y%) with error bounds v and §. Then, (1.2) belongs
to the class of ill-posed problems and we have to use regularization techniques
to obtain a stable solution to our problem.

In the case of linear ill-posed problems, the regularization theory is very
well developed [8]. It is shown by a simple example in Section 2, that the full
nonlinear minimization problem (1.1) is indeed ill-posed in the sense that so-
lutions do not necessarily depend on the data in a continuous way. Generally,
the theory for nonlinear ill-posed problems (cf. [8], Chapter 10) involves more
technical problems as the linear case. The case of an ill-posed nonlinear least
squares problem, where no ”attainability assumption” is fulfilled, is even more
complicated and by far not so well developed [3]. As a characteristic of our
problem is that it is linear in one set of variables (the coefficients ) and non-
linear in the set of free knots ¢, we cite [24], where the problem of regularizing
an operator consisting of a linear and nonlinear part is considered in a more
abstract framework.

We note that an analogous ill-posed problem arises in the problem of function
approximation with neural networks. In this case the problem is also given
by (1.2), the basis functions are usually of the form

bj(z;a,b) = O'(Cl;-r.ilf +b;), (1.3)
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with a; € RV and b; € R. The so-called activation function o is usually chosen
to be a sigmoidal function, i.e., a monotone and piecewise continuous function
on R, which satisfies
t_l}r_noo o(t)=0 tllglo o(t) =1.

Similar to our problem in fuzzy control, the minimization is performed with
respect to the weights and also with respect to the parameters a; and b; on
which the output depends in a nonlinear way. The main difference is that in
the approximation with neural networks one is not interested in the behavior
of the parameters a; and b;, since they do not have a particular meaning, but
one rather wants to achieve convergence of the approximating output f, :=
Z?:l a;bj(x; a,b) to the function from which the samples y; are taken. For
this reason the results obtained in the sequel cannot be transferred directly to
neural networks, but there are several techniques that could be carried over
to that field in future work. For further details we refer the reader to the
monograph by Bishop [4] and also to [5, 10, 28].

In the following (Section 3) we investigate smoothing—a stabilization ap-
proach commonly used in the area of spline approximation—which is only a
regularization method under the severe restriction of additional constraints on
the free knots. Then, we investigate classical Tikhonov regularization. We de-
velop existence, stability, and convergence results without any restrictions as
in the case of smoothing. Finally, in Section 5 numerical experiments verify
theoretical results obtained in Section 4. It turns out, that Tikhonov regular-
ization gives the best results with respect to stability and interpretability of
fuzzy controllers.

1.3. Approximation properties of Sugeno controllers

It has been shown by several authors [16, 32, 15], that fuzzy controllers are
universal approximators in the sense that it is possible to construct such rule
bases that approximate uniformly any continuous function defined on a com-
pact subset of R™ with arbitrary accuracy. Proofs are based upon the Stone—
Weierstrass Theorem and purely existential in nature. From a practical—fuzzy
control oriented—point of view, these theorems suffer from the fact that the
number of rules in the base is not bounded, in addition to that even the sup-
ports of the terms in the rules are not bounded (e.g. Gaussian membership
functions).

As already mentioned, the tuning of a Sugeno controller reduces to a data
fitting problem by a linear combination of membership functions. From a purely
mathematical point of view, we now let both the number of membership func-
tions and data points tend to infinity and examine the approximation power.
We consider the case of B-spline membership functions, where a wide range of
convergence results exists [6, 27].

We can approximate a large class of functions arbitrarily well by splines of
a fixed order if we are willing to use many knots. The order of approximation
attainable will increase with the smoothness of the class of functions being
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approximated. Additionally, substantial gains in the rate of convergence can be
achieved when using the knots as free parameters that can be adjusted to the
particular function being approximated (cf. [27], Chapters 6-7).

2. OPTIMIZATION OF SUGENO CONTROLLERS

2.1. Basic definitions of Sugeno controller and membership functions

If we look at a Sugeno controller from the point of view of mappings which
assign to each crisp observation a crisp value (vector) in the output space, i.e.,
there is a function F, : X — R% associating to each input z its corresponding
output y, it is possible to construct an explicit formula substituting the fuzzy
control system completely.

Definition 2.1. Let X be an input space, let Ay, As, ..., A, be normalized
fuzzy subsets of X with > pa,(x) > 0 for all z € X, and f1, fa,..., fn be
functions from X to R, and consider the rulebase (i = 1,2,...,n)

if x is A; then u = f;(x).

Then the Sugeno controller defines the following input-output function Fjy :

X — R
Fy(@) = 3" pai(@) fi(@) | pai(@). (2.1)

In the following we consider the special case, that for i = 1,2, ...,n the func-
tions f; are constant, that is f;(z) = a;. In a first step, we restrict ourselves to
the one-dimensional case, i.e., a single input-single output controller. However,
for the output variable this is no restriction. If the number of output variables
is higher than one, it can easily be shown [15] that in every case it is possible to
decompose the controller into as many independent controllers as many output
variables we have.

Among the class of membership functions, we consider first the classical
trapezoidal ones. Let the knot sequence t = {t;}, where

a = tl S t2 S S t2n71 S tzn =} (22)
be a partition of the universe of an input variable defined over [a, b], correspond-

ing to n linguistic terms. Then the mathematical formulation of the trapezoidal
membership functions b; (j € {2,...,n —1}) is as follows:

(z —taj2)/(t2j—1 —t2j—2) if € (t2j-2,t25-1)

b (.Z' t) . 1 ifxe [tzj_l, tzj]
T (=2 + toj1)/ (bojur — bay)  if & € (b25,12541)
0 otherwise

with appropriate definitions for j =1 and j = n (Figure 1).
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Figure 1. Trapezoidal membership functions

Now we turn to the more general class of B-spline membership functions for
Sugeno controllers. Assume that z is an input variable of a Sugeno controller
that is defined on the interval [a, b]. Given a sequence of ordered knots t = {t;},
where

tl=---=tk=a<tk+1S---Stn<b=tn+1=---:tn+k (23)

let b; denote the j-th normalized B-spline basis function of order k for the
knot sequence ¢t. For an exact definition see e.g. [6]. The complete knots
consist of two parts, the interior knots that lie within the universe of discourse,
and extended knots that are generated at both ends of the universe for a unified
definition of B-splines (leading to the so-called marginal linguistic terms in [36]).

From the point of view of fuzzy control, B-splines have some properties such
as positivity, local support, and partition of unity 2?21 bjk(z,t) = 1 which
qualify them well as membership functions.

2.2. Tuning of Sugeno controllers as
an ill-posed least squares problem

Assume (z,y) is a set of so-called training data, where & = (21, %2,...,Zm,)" is

the training data vector, and y = (y1,¥2,...,¥m)' the desired output for x. It
follows immediately from (2.1), and the partition of unity (2.1), that designing
a Sugeno controller from training data, is then equivalent to the least squares
problem

m n

(y,- - Zajbj(alc,-;t))2 = min (2.4)

)
= = ((oe1,00,...,005) ,t) ER™ X[, b] ¢

where (b;)j=1,...,n is one of the membership functions introduced above. The
concrete shape of the membership functions is determined by the ¢-dimensional
knot vector t. £ represents the number of free knots.
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As already mentioned, we have to consider data errors in y and x, i.e.,
instead

llz — 2|l < (2.5)
||y - yé”l2 < 67

where ||z|,2 := /Y -, # denotes the usual ¢, norm.

The following example shows that the problem of finding a minimum to (2.4)
is ill-posed, even if we have complete information about the function f, from
which the samples y are taken.

Example 2.1. Let n =2,k € N, k > 2, a =t =0, t§ = k3 and
th = 2k3 th = b =1, and choose af = k, af = 0. The fuzzy membership
functions b; and by are defined by

1 if £ <t

bi(z;t) = (t3 —x)(ts —t2) ifte <z <t3 (2.7)
0 ifts <z

ba(z;t) =1 — by (z; ). (2.8)

Then f*¥ = afby(x;t%) + akbs(x;t%) converges to zero in Ly([0, 1]), but of has
no bounded subsequence. Hence, the optimization problem is unstable with
respect to perturbations in the data.

In the remainder of the paper we will assume that the functions b; satisfy
the Lipschitz-estimate

bj(@,t) — b;(&,8)| < Lle — 3|, Va,3 Vte bl

with some nonnegative real constant L.

3. SMOOTHING

In the following we investigate a common stabilization approach for spline ap-
proximation (cf e.g. [23]), which consists of replacing (2.4) by

2

m n 2 n
> (yz - j;ajbj(xi;t)) +5| j;ajbj(';t)‘mm) = min, (3.1)

i=1

where |-|gr(q) denotes the norm or seminorm in the Sobolev space H*(f).
Especially in classical approximation theory, this spline smoothing problem is
often considered, where the smoothing term characterizes the smoothness of the
spline (cf. [6] for fixed knots). It should be mentioned that in practical appli-
cations, the smoothness of the controller output is one of the most important
design requirements.
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However, one can easily show by an adaptation of Example 2.1 that the
minimization problem (3.1) is ill-posed itself and thus, this minimization is not
a regularization method. So, in addition we impose the constraints

tit1 —t; > ¢, j=1,...,0—1, (3.2)

which are necessary to remove the possible instabilities caused by two equal or
almost equal knots.

For notational simplicity, we do not bother with multiple knots at the end of
the intervals (cf. the definition of the knot sequences (2.2), (2.3)). We will show
that (3.1) subject to (3.2) is a well-posed problem and its solution will converge
to a minimizer of the original problem with the additional constraint (3.2) for
fixed € and appropriately chosen 8 — 0 as v,d — 0. However, we cannot show
convergence as € — 0, which is a serious disadvantage.

Now we turn our attention to the stabilized problem (3.1) supplemented
by (3.2). For the sake of simplicity we restrict our analysis to the case of
Q = (0,1), trapezoidal functions b; and the H'-norm defined by

lullZ gy = / (Juf?* + | Vul?) dz

as the stabilizer. Obviously, the number of inner grid points must be even in this
case to ensure that the output equals one in the intervals (0,¢;) and (¢¢,1). The
number of basis functions is then given by n = %Jr 1. We note that a similar but
technically much more complicated reasoning is possible for other spline basis
functions, but the technical details would shadow the basic concepts. Therefore,
they are omitted here.

The stabilizing term can be transformed to a bilinear expression in terms of
the variable o via

S amo]l,, = Awa s o B0 .

where the symmetric, positive definite matrices A(t) and B(t) are defined by

A = ( /0 (s s (5 ) dr) (3.4)

i,j=1,...,n

B = ( /0 s )0, (a5 ) d) . (3.5)

i,j=1,...,n

Now we define a new grid s;, which does not include the intervals (t2;,t2;41),
on which b} = 0 for all 4, more precisely,

st =t1, Sjy1 =85+t —t25-1,5=1,.. .,£/2. (3.6)

This allows us to find an equivalent definition for the matrix B(t):
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Lemma 3.1. Let {¢;};=1,..,¢/2 denote the usual piecewise affinely linear
finite elements on the grid {s;};—1, . ¢/2, i.€.,

é;

where &;; denotes the Kronecker delta symbol. Then the matrix B(t) defined
by

(si,si41) 18 affinely linear ,  ¢;(s;) = 6i5,V 4, ,

= ( / Godads)

equals B(t) defined by (3.5). Furthermore, the matrix A(t) can be represented
in the form

= ([es@as) o) (37)
where Aq(t) is a positive semidefinite matrix.

Proof. Since b; = 0 on (t2;,t2i41) for all 4, j and b}(2;t) = ¢}(Si(z)) on
(t2;—1,t2i), where S; is the unique transformation of the form S;(z) = z + o;
that maps (t2;_1,t2;) onto (s;, s;11) we obtain

/b'a:t :Utdy:—/gi)z DEAC)

and consequently B(t) = B(t).
An analogous argument yields the decomposition

= ( /¢i(s)¢j(s) ds)i,j:l,...,n * ( /(0 -5 ils)ba(s) ds) =10

where S = U(ta;—1,t2;). We now define Ay(t) as the second term in the previous
identity and since

1 ifi=j, s € (t2;2,t2i 1)

bz(s)b](s) = {0 else for s € (07 1) -5 ,

Ap is a diagonal matrix with nonnegative entries and therefore positive semidef-
inite. 0O

To carry out the stability analysis we will use the following result adapted
from stability estimates in finite element theory:

Lemma 3.2. For each ¢y > (0 there exists a positive real number ¢; such
that for all t satisfying inf;cri . o_13{tjy1 —t;} > co/l, the estimate

jéa? <el gajbj (z; t)H;(Q) (3.8)

holds.
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Proof. Lemma 3.1 and (3.3) yield the identity
n 2
H Z a;bj(z; t)H o= a'®a+a' Ay(t)a > o' da,
= (@)

where

&= ([ [6:(5)65(6) + 610516 o)) ds)

A standard argument from finite-element theory (cf. [29]) implies that the
minimal eigenvalue of the symmetric matrix ® is bounded below by c¢; £, where ¢;
depends only on ¢/2, which is a lower bound for the length of the interval
(s1,8,). DO

Now we are able to show that the stabilized problem 3.1 is well-posed, i.e.,
a minimizer exists and the dependence of the minimizers on the data is stable
(in a set-valued way), which is expressed in the following propositions:

i,j=1,...,n

Proposition 3.1 [Existence of a minimizer]. For ally € R™ and « € [0,1]™
there exists a minimizer of (3.1), if e > 0 and 8 > 0.

Proof. Since a minimizer must yield an output less or equal than the one
from a = 0, we may add the additional constraint (using Lemma 3.2, € = ¢/~
and the notation C' = ¢1/¢p)

The resulting set of admissible points is compact in R* x R¢ and since the
objective functional is continuous, the existence of a minimizer follows from a
standard principle in optimization. O

Proposition 3.2 [Stability]. Let 3 > 0, € > 0, y* — y and ¥ — . Then
the according sequence of minimizers of (3.1) has a convergent subsequence and
the limit of every convergent subsequence is a minimizer of (3.1).

Proof. As in the proof of Proposition 3.1 we obtain the estimate

n C m
Do lafP < 2=y k.
ﬂG i=1

=1

Consequently, the sequence (a*,t*) is bounded, which implies the existence
of a convergent subsequence. Let (a*¢,t*¢) be a convergent subsequence with
limit (o,t), then the continuity of the objective functional together with the
definition of (a,t*) implies that (c,t) is a minimizer of (3.1). O

Finally, we want to investigate the question of convergence of minimizers of
the regularized problem as the noise level (v,d) and the regularization param-
eter B tend to zero. Of course, it would be of interest to let € tend to zero,



M. Burger, J. Haslinger, U. Bodenhofer, and H. W. Engl 11

too, but in this case one cannot guarantee that the minimizers are uniformly
bounded.

Theorem 3.1 [Convergence under constraints].. Let € > 0 be fixed, let
(v*,6%) be a monotone sequence convergent to (0,0) and let (z7",y%") be a
corresponding data sequence satisfying (2.5), (2.6) with (v,d) = (v*,*). More-
over, let the regularization parameter 3* be chosen such that

g* =0, max{~y*,d%}/8% = 0.

If a minimizer of (2.4) with exact data exists, then each sequence of minimizers
(o, t*) of (3.1), (3.2) with noisy data (:U"Yk,y‘sk) and 3 = % has a convergent
subsequence and the limit of each convergent subsequence is a minimizer of the
least squares problem (2.4) subject to (3.2).

Proof. Let (&,%) be a minimizer of the problem with exact data, then the
definition of (a,t*) implies

<Y (0"~ abial D) +p*aT[AW) + BE)]

<
Il
=
~.
Il
=
<.
=

i=1 j=1
m n
>3 (y' > asb; %t)) —c1 (8 + Llla*|la "),
i=1 j=1
and hence,
c A 9
> (@)? < % 8 + Llllalle + lle o1y + 2 3 6

Finally, with the standard estimate ||a*||;» < v/n||a*||;2 we conclude that

> (k) <£(4ﬂ—+2L||allel k)+L2ci—§2(;—:)2+2£

Ck],
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which implies

c
2223 a2

lim sup Z(af)2 < .

Thus, the sequence (af,tk) is bounded and therefore there exists a convergent
subsequence. The fact that the limit of a convergent subsequence is a minimizer
of (2.4) follows from

limsupz (yf - Zafbj(x;y ,tk)) < Z (yl - Zdjbj(xi,i)) .
i—1 =1 i—1 =1

4. TIKHONOV REGULARIZATION

In this section we investigate a different approach to the regularization of the
least squares problem (2.4), namely the classical Tikhonov regularization in the
parameter space R” x Rf, it consists of minimizing the functional

14

> (v - Zajbj(x;’;t))2 FBYad 4B Yt~ ) =min  (41)
Jj=1 j=1 )

i=1 7j=1

for appropriately chosen 3; and 32 (in dependence of § and y%), where ¢* is a
prior for ¢, e.g. the uniform grid points. In this case we can show convergence
for appropriate choice of f; — 0 as the noise level tends to zero even for S = 0,
which is due to the compactness of the set of admissible {¢;}.

We restrict our attention again to the case Q = (0,1), but we note that the
method and all proofs can be carried out in the same way (but with vectors t;).
In the general theory (cf. e.g. [3, 8, 9]), the existence of a minimizer of problem
(4.1) can be shown if 31 > 0 and B2 > 0. In our special case, the positivity of the
second regularization parameter (2 is not necessary to guarantee the existence,
since we have the additional information that the parameters ¢; are contained
in the compact set (:

Proposition 4.1 [Existence of a minimizer]. For ally € R™ and x € [0,1]™
there exists a minimizer of (4.1), if §; > 0.

Proof. As in the proof of Proposition 3.1 it suffices to show that the set of
admissible a can be restricted to a compact set by an a-priori estimate. Again
from a comparison with the output functional at the point a = 0, we may
conclude that a minimizer («,t) of (4.1) must satisfy

m

i 1
a? <= |yl

(%5 = 5y £

1=

J
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We note that the stability and convergence analysis of Tikhonov regulariza-
tion with respect to the perturbation in the output y can be carried over directly
from [9, 25]. Since we are also interested in perturbations in the positions x, we
need some modifications, which we will prove in the following;:

Proposition 4.2 [Stability]. Let 8, > 0, y* — y and ¥ — x. Then the
according sequence of minimizers (o, t¥) of (4.1) has a convergent subsequence
and the limit of every convergent subsequence is a minimizer of (4.1).

Proof. Again we compare the value of the objective functional achieved at
(aF, t*) for the data x* and y* with the one achieved with (0,%*) and obtain

the a-priori estimate
n m

1
2 k2
Zajfa lys |”

j=1 i=1

Since y* — vy, the right-hand side is uniformly bounded as k — oo and there-
fore the set of minimizers is bounded, which implies the existence of a weakly
convergent subsequence.

By standard techniques (as in [25]) one can show that a convergent subse-
quence (without restriction of generality (a*,t*) itself and limit (&, %)) satisfies

m n n 4
Z (y, — Z@jbj(l‘i;t_))Z + 5 Z 64? + B2 Z(t_] - t;)2
i=1 j=1 Jj=1 Jj=1

m n £

<Y (=Y abilest) +a X lasP + 5 X (- 6)?
j=1

1 j=1 j=1

for all admissible (a,t) and thus, the limit is again a minimizer of (4.1). O

The convergence result in this case holds for the full problem (2.4), not only
for a constrained version:

Theorem 4.1 [Convergence]. Assume that a minimizer of problem (4.1)
exists. Moreover, let (v*,5%) be a sequence converging to (0,0) and denote
by (a®,t*) the according sequence of minimizers of (4.1) with data (x7,y?),
satisfying (2.5), (2.6). Then (a*,t*) has a convergent subsequence and the limit
of every convergent subsequence is a minimizer of (4.1) with exact data (x,y)
if the regularization parameters satisfy

BY =0, B —0, max{y"6"}/Bf -0, Fe>0: Bi/B} >e (42)

Proof. By similar reasoning to the proof of Theorem 3.1 we can deduce
that

k
lim sup Z(aff < Z&? + lim sup % Z(tj - t’;)2
1

for a minimizer (&, %) of (2.4). The remaining steps of the proof are the same
as for Theorem 3.1. 0O
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Finally, we want to investigate the rate of convergence of the regularized so-
lutions as & — 0. For this sake we need additional smoothness of the parameter-
to-output map, which we will define and analyze in the following Lemma:

Lemma 4.1. Let b; € C([0,1]**!) for all j € {1,...,n}, then the nonlinear
parameter-to-output operator F' defined by

F:R" x[0,1] —» R™

(1) = (Z;;l a;b; (a:i;t)) (4.3)

i=1,....m
is continuous. Moreover, if the partial derivatives 0b;/0t; exist and are con-

tinuous functions for all j € {1,...,n}, k € {1,...,¢}, then F is continuously
Fréchet-differentiable with partial derivatives

8

Bar F(a,t) = (br(2i;1))i=1,....m (4.4)
0 (= Ob

o1 Flet) = (;ag 5 (x”t)>i:1,...,m‘ (4.5)

If the partial derivatives above are all Lipschitz-continuous, then F' is Lipschitz-
continuous, too.

For convergence rates, we restrict our attention to the case of v = 0, which
corresponds to an implicit assumption that errors in the input variables can
be transformed to errors in the output variables. Of course, this may be a
severe restriction, but so far it is the only one enabling the application of the
standard theory of Tikhonov regularization. As usual for ill-posed problems,
the convergence can be arbitrarily slow in general (cf. e.g. [21]), rates can only
be achieved under additional conditions on the solution. A standard condition
of this kind is the source condition

JweR™: (a,t-t*)=F(at)w, (4.6)

which is an abstract smoothness condition. The adjoint of the operator F'
defined in (4.3) is given by

S
F'(a,t)*(u,v) = izt br(@is t)us (4.7)

n ~(z;t)v;
Ei:l Z;nzl Qj @E

Theorem 4.2 [Rate of convergence]. Let y° € R™ satisfy (2.6) and let
ao,to be a solution of minimal distance (in the product space ¢*> x ¢2) to the
prior (0,t*). Furthermore, let the metric projection of the exact data y onto
R(F) be unique and equal the projection of R(F) N B(F(ay,ty)). Finally,
let b; € CY1([0,1]) and denote by LF the resulting Lipschitz-constant of F' in
B, (g, to) due to Lemma 4.1. If (4.6) holds with

Lp||lwlle <1, (4.8)
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then the choice 5, = B2 ~ Ve vields
(@’ — g, t° — to)ll 2 s = O(V3), (4.9)

where (a?,t%) denotes the solution of (4.1) with noisy data y°.

The assertion follows by an application of Theorem 3.7 in [3].

Remark 4.1. It is clear that the source condition is a severe restriction if
m < n + £, since the set of parameters that can fulfill the source condition is a
lower-dimensional manifold. However, the case of m > n + £ usually arises in
practical applications and thus, the source condition is mainly an assumption on
the regularity of the distribution of the parameters ¢} with respect to the grid
points. To illustrate this, we consider the case of cubic B-splines on the unit
interval, where the free knots are given by ts,...,...,t,—1 and we have t; = 0
and t, = 1. Suppose that the following condition is fulfilled:

Veke{l,...,n—1} Fii(k),i2(k) Ty (k)> Tig (k) € (tk, tes1),

then we can set w; = 0 for all i ¢ {i1(k),i2(k)}req,...,n—1} and write the
source condition as a system for (w;, (1), Wiy(1),- -+ Wi, (n—1)> Wiz (n—1)), Which
is an upper-diagonal system of size 2n — 2 x 2n — 2. Since the diagonal entries
are all nonzero (note that ;, (x) and z;,(x) are in the interior of the interval
(tg,tr+1), there exists a unique solution. Hence, the source condition (4.6) is
satisfied and (4.8) holds if in addition ||a|| and ||¢ — t*|| are sufficiently small.

5. NUMERICAL SOLUTION OF
THE REGULARIZED PROBLEM

In this section we want to verify theoretical results obtained above by numeri-
cal experiments. The description of the optimization algorithm—a generalized
Gauss—Newton like method—follows Schiitze [22, 23].

5.1. Description of the optimization algorithm

The common characteristic of both the primal nonlinear least squares prob-
lem (2.4) as well as the regularized problems (3.1), (3.2) and (4.1) is that they
are linear in one set of variables (the coefficients ) but nonlinear in the set
of free knots ¢. In the unconstrained case such semi-linear separable problems
were first analyzed in detail by Golub/Pereyra [11]. Later Parks [19] treated
general constrained nonlinear problems of this type.

Consider the following semi-linear least squares problem with linear inequal-
ity constraints:

min{[|G(t)a —y(#)|* | Ct > h, t € [0,1], a € R"} (5.1)

representing (3.1), (3.2) with appropriately chosen regularized observation ma-
trix G € R™P" (p = n — k in case of (3.1), p = n + £ for (4.1)) vector of
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coefficients & € R” and data vector y € R™. The constraints (3.2) on the knot
positions are expressed equivalently in matrix formulation. In the case of (4.1)
we do not include the inequality constraints.

The linear subproblem

min{[|G(t)a —y(®)[|* | o € R"} (5.2)

can be solved easily for fixed ¢, e.g. by reducing G to upper triangular form by
a series of Givens rotations, leading to the minimum norm solution

a(t) = G (B)y(?). (5.3)

where G1(t) is the pseudoinverse of G(t). It follows that the original separable
problem can be written

min{[|G(t) G'(t) y(t) —y(@®)[I” | ¢ € [0,1]% (5:4)

which is now a nonlinear least squares problem in the free knots ¢ only.

Golub and Pereyra [11] showed that under natural assumptions which guar-
antee the continuity of the pseudoinverse, the reduction is feasible in the sense
that the change from minimizing the full problem to minimizing the reduced
problem does not add any critical points and does not exclude the solution of
the original problem. Such a natural assumption is that the rank of the ma-
trix G(t) is constant on an open neighborhood which contains the solution. The
constant rank assumption, even the full rank assumption on G(t) is satisfied in
the case of the regularized problem (4.1) and (3.1) together with (3.2).

Since G(t) Gt(t) is the orthogonal projector on the range of G(t), algorithms
based on (5.4) are often called variable projection algorithms. A variable pro-
jection algorithm using a Gauss—Newton method applied to the reduced prob-
lem (5.4) was used to solve the original least squares problem. The Gauss—
Newton method is based on a sequence of linear approximations of the residuum.
If t¥ denotes the current approximation, then a correction p” is computed as a
solution to the quadratic problem

min{[[[] - G(t") GHE)y(t") + J(¢")pl* | p € R} (5.5)

with J the Jacobi matrix of R(t) := [I — G(t) GT(t)]y(t) evaluated at t. If
the Jacobian has full rank then (5.5) has a unique solution p” which defines the
new approximate

't =tV + p”. (5.6)

The Gauss—Newton method can be generalized to constrained problems. A
search direction p” is then computed as a solution to

min{[|B(¢") + J(&)pl* | C(¢ +p) > h, p € R’} (5.7)
by first transforming (5.7) by Householder reflections into a least distance prob-

lem and finally using an active set strategy for solving the resulting nonnegative
least squares problem [18].
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For evaluating J, the derivative of R has to be computed. Expressions
for the derivatives of B-splines with respect to its knots can be found, e.g.
in [22], the formulas for the Fréchet derivative of an orthogonal projector in [11].
Alternatively the derivatives can be approximated by finite differences. Then [
additional least squares problems have to be solved in each computation of
the derivative. However, in our case, the (regularized) observation matrix G is
banded, so that the costs of realizing the linear algebra involved are relatively
cheap.

The undamped generalized Gauss-Newton method converges only locally
and for small residual problems. In order to globalize the method, a Armijo—
Goldstein line search has been implemented. To be robust the algorithm must
employ stabilizing techniques for the Gauss—Newton steps when the Jacobian J
is nearly rank deficient. This is done by applying a Levenberg—Marquardt
method.

Jupp [14] referred to the potentially high number of local extrema for free
knot least squares problems. Not surprisingly, the local minimum to which
the optimization algorithm converges heavily depends on the starting knot se-
quence t°. Hence, the generalized Gauss—Newton method is rerun several times
with equally distributed random starting values.

5.2. Results for fixed error levels

In the following we compare the results of reconstructing an a-priori given
function from noisy measurements taking into account spline approximation,
smoothing and Tikhonov regularization. The exact data values are perturbed
with uniformly distributed random noise. In these examples we show that reg-
ularization both leads to stable function approximations as well as stable fuzzy
sets and consequent values. In the last example we take a more careful look
onto constructing an interpretable fuzzy controller.

In the figures, the starting knot sequences for the reduced free knot optimiza-
tion problem are marked with * whereas the locations of the resulting (local)
optimal knots are labeled with 0. The noisy data are represented by dots, the
solid line represents the ’optimal’ spline approximation.

In the tables, we compare the residuals 79 and r,; for exact and noisy

data, i.e. - .
ra = [0 (0 - Sy natse )] ()

i=1 j=1

where a?? and ¢7+® denote the solutions to the (regularized) optimization prob-
lems with noisy data.

Example 5.1. The first example deals with the reconstruction of the func-
tion
fi(z) == 10z/(1+1002%) 2z€[-2,2] (5.9)

(see Figure 2), a function already considered in [13] and [22] in the context of
spline approximation and smoothing.
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Table 1. Example 1: Results for different solution strategies

Approximation | Smoothing | Tikhonov reg.
70,0 4.99659 0.55853 0.52923
Ty,6 0.16833 0.59593 0.59760
[|cx]]e2 8.19528 0.56305 0.60057
[t — * |2 1.11397 0.83290 0.41486

Table 2. Example 1:

Starting and optimized knot sequences

0=t

| -1.566 | -1.111 | -0.667 | -0.222 | 0.222 | 0.667 | 1.111 | 1.556 |
Appr. -1.803 | -1.012 [ -0.192 | -0.032 | -0.030 | 0.069 | 1.405 | 1.705
Smoothing | -1.872 | -0.788 | -0.226 | -0.224 | 0.186 | 0.190 | 1.037 | 1.802
Tikhonov | -1.563 | -1.120 | -0.711 | -0.237 | 0.062 | 0.288 | 1.126 | 1.558
,‘\euiq_\ﬁ_.‘\A U%qp*rr\%—”—'*ﬁﬁ

o |

-7

Figure 2. Example 1: The function 10z /(1 4+ 100z) and noisy data (left) and
raw approximation with 11 quadratic B-splines (right; € = 0.001)

Figure 3. Example 1: Reconstruction with 11 quadratic B-splines with smooth-

ing (left; kK = 1, 8 = 0.06, ¢ = 0.001) and Tikhonov regularization(right;
B =04, B2 =0.4)
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Both the abscissa as well as the data values are perturbed with uniformly
distributed random noise. The perturbations of the 40 data samples are within a
level of 5% and 12%, respectively leading to noise levels v = 0.364 and § = 0.199.
For the reconstruction 11 B-splines of order 3 (quadratic splines) are used. The
optimization algorithm for the 8 free knots is started with an equidistant knot
sequence.

When approximating f; without including any smoothing terms, the result-
ing function is rather arbitrary (cf. Figure 2, right); in most cases the opti-
mization procedure breaks down. The Schoenberg—Whitney condition is not
satisfied for the knot sequences in the iterative optimization process, the system
matrix becomes singular. In smoothing some positions of the optimized knot
sequence nearly coincide. However, the minimal distance requirement between
knots stabilizes the calculations. In Tikhonov regularization knots are quite
separated due to the choice of ¢*.

When comparing residuals for exact data, Tikhonov regularization gives bet-
ter results than smoothing, and of course, much better results than approxima-
tion without applying any regularization technique. But Tikhonov regulariza-
tion also gives better results with regard to the linguistic interpretability of the
resulting fuzzy controller, as we will see in the next example.

Example 5.2. Similar to the paper of Setnes et.al. [26] we want to construct
a transparent rule-based model from noisy data measurements considering the
spectral data function

fo(z) 1= 12~ @ 48)(@=58)/0T _ 19e~(243.5)" 4 0 8% 7 €[-10,10] (5.10)

(cf. Figure 4, left). By using inputs z uniformly distributed in [—10,10] 50
samples of fa(z) were obtained and then disturbed with uniformly distributed
noise within a noise level of 10% (§ =9.5804, maximal error =2.0398).

When constructing a Sugeno controller from measurements, the question
on the optimal number of rules or equivalently knots arises. In the context
of spline approximation and smoothing, Schiitze [22] proposes a knot removal
strategy leading to a nearly optimal number of knots. However, we just fix the
number of rules to be equal to eight. Accordingly, the universe of discourse is
split into eight fuzzy sets interpretable linguistically as negative big, negative
medium, negative small, negative very small, positive very small, positive small,
positive medium and positive big. To be interpretable easily, the shape of the
membership functions is chosen to be triangular.

Figure 4 and Figure 5 show the results for approximation, smoothing and
Tikhonov regularization of the noisy data problem. Although the residuum is
smaller for approximation than for smoothing and Tikhonov regularization (Ta-
ble 3), only the later succeeds in constructing an interpretable fuzzy controller
since knots are separated appropriately. In approximation and smoothing knots
of the optimized sequence nearly coincide (Table 4) leading to questionable and
not linguistically interpretable membership functions (Figure 4, right and Fig-
ure 5, lower parts). For Tikhonov regularization ¢* is chosen to be equidistant
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Table 3. Example 2: Results for different solution strategies

Approx | Smoothing | Tikhonov
70,0 12.0859 | 14.6041 14.5291
o5 12.3130 | 14.7508 16.9215
llex]] 2 32.6938 | 25.8770 22.7836
|t —t*|l2 | 4.1379 4.4046 1.8854

Table 4. Example 2: Starting and optimized knot sequences

© =¢* [ -7.143 | -4.286 [ -1.429 | 1.429 | 4.286 [ 7.143 |
Appr. -5.585 | -2.661 | -2.608 | 3.999 | 5.658 | 5.668
Smoothing | -5.372 | -3.119 | -2.399 | 4.215 | 4.346 | 4.655
Tikhonov | -7.124 | -3.718 | -0.989 | 2.790 | 5.354 | 7.354
Table 5. Sugeno controller identified from noisy data
Rule: Antecedent ansequent Consequent label
singleton
R1 : If z is Negative Big then y = —7.605 Negative Medium
R2 : If x is Negative Medium then y = —5.025 Negative Medium
R3 : If x is Negative Small then y = —11.063 Negative Big
R4 : If z is Negative very Small  then y = —0.460 Negative very Small
R5 : If x is Positive very Small  then y = 1.367 Positive very Small
R6 : If z is Positive Small then y = 15.095 Positive Big
R7 : If x is Positive Medium then y = 4.968 Positive Medium
R8 : If x is Positive Big then y = 7.682 Positive Medium

Figure 4. Spectral data function f» and noisy measurements (left) and raw
approximation with 8 triangular membership functions (right; £ = 1, € = 0.01)
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T T . e
Figure 5. Approximation with 8 triangular membership functions with smooth-
ing (left; k = 1, 8 = 0.01, ¢ = 0.01) and Tikhonov regularization (right;
pr = P2 =0.5)
Table 6. Consequent values for two different noisy data sets
A -8.190 | -4.879 | -11.067 | 5.506 | -0.842 | 19.804 | 5.124 | 7.751
PPT- 1" 8362 | -3.800 | -15.577 | -1.186 | 1.505 | 18.874 | 2.065 | 15.428
-8.648 | -4.307 | -13.382 | -1.380 | -0.110 | 19.405 | 5.758 | 7.280
Tikhonov
-8.268 | -3.984 | -14.710 | -0.716 | -0.291 | 21.700 | 4.100 | 7.595

within the underlying interval. The linguistic fuzzy model constructed from
Tikhonov regularization is given in Table 5.

Furthermore, we demonstrate that Tikhonov regularization leads not only
to stable output functions but also to stable and well-interpretable fuzzy sets
and consequent values as opposed to raw approximation. The calculations were
done with 50 data samples perturbed with random noise within a 2 % level for
measurement locations and an 8 % level for output values. Two such noisy data
sets were generated. Figure 6 and Table 6 show that Tikhonov regularization
leads to consequent values and fuzzy membership functions, which coincide quite
well for the two differently perturbed data sets, which is not the case without
regularization and demonstrates that Tikhonov regularization is a powerful tool
in the numerical optimization of fuzzy controllers.

5.3. Results for error level tending to zero

Again, we consider the reconstruction of the function f; (cf. (5.9), Figure 2)
and try to validate the convergence properties stated in Theorem 4.2. We take
90 data samples equidistant in [—2,2] and perturb the y-values with uniformly
distributed random noise up to a noise level of 20 % (maximal error = 0.0986,
maximal § = 0.5226). 15 B-splines of order 5 act as membership functions in
Tikhonov regularization. It is easily shown that the assumptions of Theorem 4.2
are satisfied.

The residuum for the least squares approximation of the exact data is equal
to 0.004322. The resulting knot sequence
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1 1
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0.6 0.6
0.4 0.4
0.2 0.2

-5 0 5 10 -5 0 5 10
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0.8 0.8
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0.2 0.2

-5 0 5 10 -5 0 5 10

Figure 6. Optimized fuzzy membership functions for two different noisy data
sets with raw approximation (left) and Tikhonov regularization(right; 81 =
0.5, B2 = 20)

coefficients
knots

Figure 7. ||a® —a||z, and |[¢° —t*||s, vs. & (left) and residuum ||F(a®, ) —y’||s,
of Tikhonov regularized approximation to noisy data vs. noise level (right)

t = {-1.2665, —0.7356, —0.1896, —0.0351, —0.0350,
0.0349, 0.0350, 0.1896, 0.7355, 1.2656}

is taken as the prior t*. The regularization parameters are chosen according to
the theory (81 = 2 = O(v/3) ), where one has to take into account appropriate
equilibration of the two parameters. Figure 7 (left) shows the 5 difference of the
coeflicients and knots obtained from exact data vs. noisy data. It is noticeable
that the difference between the knot sequences is nearly constant or even declines
with increasing d, which could be explained by the increased weighting of the S
term in the objective functional. The £y difference of the coefficients is quite
well in agreement with the theory. Finally, in Figure 7 (right) the residuum
of the Tikhonov regularized approximation to noisy data is plotted against the

error level §.
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6. EXTENSIONS AND OPEN PROBLEMS

We have seen in the preceding sections that regularization leads to stable ap-
proximations of the minimizers and, in addition, improves the interpretability
of the arising fuzzy systems, because grid points are separated. So far, we have
restricted our analysis to a one-dimensional situations, but multi-dimensional
problems arise in many applications. Under the assumptions of the previous sec-
tions, the input-output function Fy of a Sugeno controller with d-dimensional
input variable is given by

Fy(z1,Ta,...,1q)
ni ne ng

= Oy ,ja,....54 Z Z A Z bjl(él?l,tl) . bj2(232,t2) et bjd(.’Ed,td).

J1=1j2=1 Ja=1

F; represents a d-dimensional tensor product spline. However, the results on
Tikhonov regularization can be carried over to a multi-dimensional situation
without many modifications (except with respect to notation). In the case of
smoothing the change to higher dimensions is more difficult, since it is not
obvious how the singular values of the system matrix can be estimated for
arbitrary parameters t.

Since our analysis seems to be a novel approach to the optimization of fuzzy
systems, there are still open problems connected to it, which might be of im-
portance for application. In particular we want to mention the so-called gener-
alization error (cf. [33]), which means the error of the approximator at points
z ¢ {zi}i=1,...m- A desirable property of the approximators would be conver-
gence to the function from which the samples are taken, as the number of grid
points m tends to infinity. However, such a convergence result can be obtained
only if also n — oo, which is often not desirable for fuzzy systems. Nevertheless
a meaningful approximation should yield boundedness (and smallness) of the
error as m — oo.

If the grid is regular enough one could consider the case h — 0, where h is a
real number such that |z; — z;_1| < h for all 4, which allows a rather standard
deterministic analysis. For more irregular distributions of sampling points, one
should use different concepts such as stochastic models for the locations. This
will be one of our main items for future research.
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