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Abstract

The aim of this paper is to develop a functional-analytic framework for the construc-
tion of level set methods, when applied to shape optimization and shape reconstruction
problems. As a main tool we use a notion of gradient flows for geometric configurations
such as used in the modelling of geometric motions in materials science. The analogies
to this field lead to a scale of level set evolutions, characterized by the norm used for the
choice of the velocity. This scale of methods also includes the standard approach used in
previous work on this subject as a special case.

Moreover, we apply this framework to some (inverse) model problems for elliptic
boundary value problems. In numerical experiments we demonstrate that an appropriate
choice of norms (dependent on the problem) yields stable and fast methods.
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1 Introduction

Level set methods, originally introduced by Osher and Sethian [59] have developed to be one
of the most successful tools for the computation of evolving geometries, which appear in many
practical applications (we refer the monographs by Osher and Fedkiw [60], Sethian [73], and
the references therein for a presentation of various applications). Level set methods do not
only lead to efficient computational schemes, but are also able to handle topological changes
such as merging and splitting of connected components, which is impossible with classical
methods based on curve parameterizations.

Since evolving geometries arise in many physical processes such as growth or phase tran-
sitions, materials science has been a major field of applications for level set methods from
the beginning. Recently, level set methods have been employed also for the solution of shape
optimization problems and shape reconstruction problems, i.e., inverse problems, where the
unknown is some shape or curve. Whereas the choice of the normal speed of an evolving curve
or surface is determined by a physical model in materials science, the situation is different for
shape optimization and reconstruction, where one of the basic question for the setup of a level
set method is an appropriate choice of the velocity such that a decrease in some functional
(and possibly convergence to a solution of the optimization or reconstruction problem) can be
achieved. In most of the existing literature (cf. [7, 18, 22, 28, 29, 46, 53, 58, 66, 67, 70, 74]),
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the choice of the velocity is motivated by ad-hoc approaches, and the presentation is rather
problem-specific or restricted to a small class of problems. The aim of this paper is to make a
first step on the way towards a unified theory of level set methods for inverse problems, which
also involves a clear functional analytic background for the construction of such methods.
The main motivation for this step is to carry over techniques used for variational models
in materials science, where the speed is defined as a gradient flow for a corresponding en-
ergy functional, to the field of shape optimization and shape reconstruction, thus providing
a framework for the construction of level set methods for these problem classes.

Since most attention in this paper is paid to a framework for constructing level set methods
for inverse problems, we shall not be concerned with other important issues in the context
of level set methods, which we only mention shortly in the following. A first important issue
for ill-posed problems is their regularization, which is usually realized by adding additional
stabilizing terms to the objective (such as perimeter) or by an appropriate termination of the
iteration dependent on the data noise. Another important problem is the coupling of level set
methods and elliptic partial differential equations arising in most of the problems presented
here, from an analytical as well as from a computational point of view. Both in materials
science and in inverse problems, such a coupling usually occurs in two directions: the level
set evolution is influenced by the solution of an underlying state equation via a functional
dependence in the normal speed and vice versa influences the state equation via the zero level
set on which the equation has to be solved, respectively on whose boundary some Dirichlet
or Neumann conditions are posed.

For convenience, we will restrict our attention to the case Q C R? in the following, since for
Q C R! the problems of shape optimization and reconstruction reduce to finite dimensional
problems and for Q C RY, d > 3, the technicalities in the differential geometry of surfaces
might shadow some of the key features. Nonetheless, the main ideas presented here remain
unchanged in arbitrary spatial dimensions.

The remainder of the paper is organized as follows: we first give a short introduction
of level set methods and shape derivatives, which are the main tools used in the following.
Motivated by the applications we have in mind (and the ones considered in previous work), we
present three model problems related to underlying state equations of elliptic type in Section
2, each of them representing a larger class of problems. We will outline the specific features
of the different model problems as well as some common properties for all problem classes
such as a unified representation of the shape derivative. In Section 3, a variational framework
for the construction of local level set methods based on shape derivatives is derived, which
is motivated by variational models in materials science. The application of this framework
to our model problems and some properties of the arising level set methods are discussed
in Section 4. Finally, we present the results of some numerical experiments for our model
problems, before we conclude and give an outlook to important problems for future work in
Section 5.

1.1 Basic Notations

In the following we introduce the basic notations and assumptions used throughout the paper.
We shall use the following standard notations from geometric measure theory: £¢ denotes
the d-dimensional Lebesgue measure and H¢ denotes the d-dimensional Hausdorff-measure
(cf. [33, 55] for detailed definitions and further properties of these measures). By n we shall
always denote the normal vector of a curve in R?, and by s = div n we shall denote its
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curvature. Indicator functions of a sety A shall be denoted by x4 in general, where

1 imA
XA_{ 0 else (1.1)

For open or closed sets K C R? we will use the standard notions of continuity and
differentiability, denoting the total derivative of order j of a function f by D) f, and partial
derivatives with respect to a variable z by the standard symbol %, if z € RY is the spatial
variable also by V f. Moreover we shall use Sobolev spaces on domains €2 and on curves T,
denoted as usual by H"(2) or H"(T"). For a details on their definition and properties we refer
to the monograph by Adams [2].

1.2 Level Set Methods

The key feature of the level set approach is to represent domains and their boundaries not via
parameterizations, but as level sets of a continuous function ¢, the so-called level set function.

For the computation of an evolving open set Q(t), t € RT, one can define the function ¢
on RY x R, and and determine the evolution of Q via

Q1) = {¢(.,1) < 0}. (1.2)

The boundary I'(¢) of Q(t) (if ¢(.,¢) vanishes only on a set of zero Lebesgue measure) is then
given by the zero-level set, i.e.,

I(t) = {¢(.,?) = 0}. (1.3)
If the evolution of the shape is determined by a flow z(t) = £(¢,2(0)) such that

dzx
—(t) =V (z(t),t 1.4
() = V(a(t), 1), (14)
then the corresponding level set function ¢ is determined by the first-order Hamilton-Jacobi
equation

o¢

5 TVVe=0 in RY x RT. (1.5)

In the particular case of a velocity in normal direction, i.e.,
V=un onT' x RY, (1.6)

where v is a scalar function and n represents the unit outer normal on I', we can use the
relation n = % to compute evolution of the level set function from the nonlinear level set
equation
o¢ _ BN o Rt

g +v|Vé| =0, in RY x RT, (1.7)
where v has to be extended also to RY — I'. In general, evolutions with the same normal
component of the velocity coincide (tangential components correspond to reparametrizations
only), so that we will restrict our attention to the case (1.6).
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1.3 Level Set Methods for Inverse Problems and Optimization

In the following we review some recent developments in the construction of level set methods
for inverse problems dealing with the reconstruction of shapes. Moreover, we present some
variants of this method as well as some new approaches for the construction of level set
methods using shape derivatives and a formal variational formulation. The most general type
of inverse problems we are interested in is of the form

F(Q) = 2, (1.8)

with F' : M — Z being a nonlinear operator defined on a class M of shapes, and z are the
given data in some Hilbert space Z.

The first and fundamental step towards level set methods for general classes of inverse
problems was made by Santosa [70] in the case when F' can be written as F(Q2) = G(xa)
with xq as in (1.1). By formal calculus of shape derivatives, Santosa deduced that the shape
derivative of the associated least-squares functional

1 2 1 2
T@) = SIF(©) ~ 21> = 3G lxa) ~ 2|
is given by

(@) = /F v (G'(x0)* (Clxa) — 2)) ds, (1.9)

where G'(xq) : X — L?(0) is the adjoint of the Fréchet-derivative G’ in L?(0). We want to
metion that for typical applications to inverse problems, G'(xq) is a smoothing operator and
hence, the evaluation of the L?-adjoint on the curve I is well-defined.
In order to obtain an evolution in descent direction Santosa now proposed to choose the
velocity via
v=-G'xa)"(Glxa) - Al onT, (1.10)

where ¢|pr denotes the restriction of a function defined on © to the curve I' C ©. Santosa
approach seems to be related to a continuous version of the steepest descent algorithm, re-
spectively to the method of asymptotic regularization for inverse problems (cf. [78]), where
the evolution of an L2-function towards a solution of G(f) = z would be determined by
V- curen-». (1.11)
The restriction to shape derivatives and the choice of a normal velocity using only the
information contained in the right-hand side of (1.10) may be dangerous for general operators
G, since the corresponding evolution of the shape Q(t) might stop at a shape, which is no
solution of G(xqn) = 2. To see this, let G : L?(©) — L2(O) be an integral operator with
continuous kernel k£ € C(O x 0), i.e.,

G(f) () = /@ K(z,9)f (4)dy. (112)

Moreover, let I'y = 08, k(.,y) = 0 on I'g, and z # G(xq,)- Then, an evolution starting at
I’y would leave this curve fixed, since

v(y) = — (G'(xa,)"(Glxa,) — 2)) (y) = — /@ k(z,y)(G(xay) — 2)(x)dx
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vanishes on I'g, but €2y is not a solution of the inverse problem. Therefore, an alternative
method for choosing the velocity, which uses values of G'(xq)*(G(xqa) — z in the whole domain
(and not only on the boundary I') was developed and analyzed by the author in [18]. In this
paper however, we will be concerned with the construction of level set methods using shape
derivatives, a choice motivated by several reasons: First of all, there seems to be no way
to generalize the approach in [18] to more general obstacle problems, which depend also on
other geometric quantities than the indicator function of 2. Secondly, for all model problems
we have mind, the above problem will not appear, i.e., the evolution can stop at a solution
only, which we shall show below. A third reason is that the numerical implementation of
the method in [18] is less efficient than approaches like Santosa’s, since some elliptic partial
differential equations have to be solved to compute the velocity.

Another desirable property for a level set method used to reconstruct interior obstacles
such as in our introductory example is that the evolving zero level set remains a subset of
the domain ©. This is not guaranteed automatically by an approach like Santosa’s, but also
depends on the extension of the velocity outside the interface. The standard methods for
constructing extension velocities are based on constant extension in normal direction of the
level set (cf. [1]) and allow no control of the velocity on the boundary. An alternative way
to construct extension velocities is to choose v = 0 on the boundary of the exterior domain
(which should equal a level set for some positive value) and to extend v e.g. via solving a
Dirichlet problem for the Laplace equation on the exterior domain. For this extension, the
boundary of the exterior domain remains equal to a positive level set during the evolution
and hence, the zero level set must stay inside. As we shall see below, this extension is natural
for one of the methods we propose.

1.4 Shape Derivatives

Shape derivatives are an important tool for shape optimization and reconstruction problems.
Their underlying idea is to compute the variation of a functional J(2), when the shape is
perturbed in normal direction with speed v. The according shape derivative is then denoted
by J'(Q)v, for a comprehensive introduction to this topic we refer to the monograph by
Sokolowski and Zolesio [76].

Assume that we are considering a class @ of shapes, and let Q € O be sufficiently close
to a regular shape 2 with boundary I'. Then Q) can be represented as

Q=T +0)(Q),

where I is the identity map and 6 : R? — R? is a small regular mapping. Then, for § small
enough, one can show the existence of functions G(f) : T' - I" and ¥(#) : ' — R such that

(I+6)oGO)=I+T(O)n on T, (1.13)

with n : T — S%~! denoting the unit (outer) normal on T.
If we now consider an operator F : O — X (for some vector space X), then (1.13) implies
that one can rewrite F in a neighborhood of €2 as

and hence compute (formally) a derivative as

F'(Q) = F'(0)T'(0).
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The derivative of ¥ is given by ¥/(0)V = V.n, for all vector test functions V : ' — RY
and, in particular, ¥/(0)V = v for (1.6). Since tangential components of V are related to
reparameterizations of I' only, one usually considers variations of the form (1.6) and writes
the shape derivative as

F'(Q)w = F'(0)v (1.14)

In the same way, i.e., by computing higher order derivatives of F(¥(6)) and of (1.13) one
can define shape derivatives of higher order. Of particular importance for some problems are
second derivatives or shape Hessian, given by

F'(Q) = F'(0)(¥'(0), ¥'(0)) + F(0) " (0).

In some applications such as electromagnetic shaping (see the first model problem below), one
can show that the second derivative is coercive (as a bilinear form of the variation v), which
implies stability results. For a detailed discussion of first and second order shape derivatives
and their structure we refer to Novruzi and Pierre [57].

For shapes €2(t) evolving with normal speed v, the shape derivative can be used to compute
time derivatives of quantities related to Q(t) via some operators F, i.e.,

%f(ﬂ(t)) = F(Q(t))v(t). (1.15)
This result can be used e.g. if F is some functional to be optimized to construct the speed
method or velocity method (cf. [30, 76, 81]) by choosing a speed v in dependence of the shape
derivative such that F'(2(¢))v(t) < 0. By extending shape derivatives to less smooth shapes
and variations (which is possible for many examples), the velocity method can be used in
combination with level set methods, which leads to level set evolutions with nonincreasing
objective. This observation motivates the analysis in this paper, concerned mainly with a
framework for the choice of appropriate velocities.

2 Elliptic Model Problems

In the following we shall discuss some model inverse problems for elliptic equations, which
serve as a motivation for our analysis and shall be used subsequently as test examples. The
basic guideline for choosing model problems is to give typical examples for shape optimization
and shape reconstruction, representing a larger class of (more complicated) practical applica-
tions. For this sake we shall also give extensions of the problems and references to literature
in the subsequent presentation.

Example 1 (Support Reconstruction). By the term support reconstruction we understand
the type of problem considered by Santosa [70] and by the author in [18], where the shape
enters into the inverse problem via its indicator function, i.e., the aim is to reconstruct the
support of some function. Such problems typically appear in the identification of piecewise
constant parameters in partial differential equations or in image processing. As an example
for the reconstruction of an interior shape we consider one of the most simplest problems
appearing in practive, namely the identification of of a domain @ ¢ © C RV from u|y €
L?(M) of the solution u to

—Au = xq, in © (2.1)



subject to homogeneous Dirichlet boundary conditions on I'y C 0 and the Neumann condi-
tion 5
U
— = onI',, =00 —T4. 2.2
The set M where data are measured is either a subset of I';, or of ©.
A prominent example in this class of problems is the inverse conductivity problem with one

measurement, which means to identify  from the over-determined boundary value problem

—div ((1 + kxa)Vu) = f, in (2.3)
u = g, on 0N (2.4)

ou
m h, on 0N (2.5)

for some positive real number k. Many aspects of this problem have been studied in the last
decade, ranging from local identifiability properties (cf. [34, 45, 4]), over size estimates (cf.
[5, 6]) to the iterative solution and regularization (cf. [41, 48, 50]). In some cases also multiple
Dirichlet-to-Neumann data (g;, h;) are considered instead of the single measurement (g, h); in
other applications, (2.3) and (2.4) are used with a measurement of the state u on ©y C © — Q.
Both cases lead to global identifiability and stability result. A recent level-set based solution
of the latter problem, using Santosa’s strategy, has been discussed by Ito, Kunisch and Li
[46].

The class of support reconstructions includes many examples, where the jump set of
parameters arising in partial differential equations is to be determined from indirect measure-
ments. Such applications arise e.g. in inverse scattering (cf. [24] an the references therein),
in or in the characterization of semiconductor devices (cf. [19, 20])

The associated least-squares functional is given by (with f 9 representing a noisy measure-
ment)

1
@ =5 [ ju- g as, (2.6)
2/
with shape derivative
J(Q)v :/u*v ds, (2.7)
r
where the adjoint u* satisfies
Au* = 0 in Q (2.8)
ou*
5, — xwmlu- /) onTy (2.9)
n
v = 0 on I'y. (2.10)

in the case of boundary measurements (M C I'),), respectively

—Aut = xu(u—f9) in (2.11)

ou*
o 0 onT), (2.12)
vt = 0 on I'y. (2.13)

in the case of distributed measurements (M C Q).
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For a detailed analysis of first and second shape derivatives for this problem and some
further analysis we refer to Hettlich and Rundell [39].

Finally, we investigate the possible zeros of the shape derivative. If J'(Q2) = 0 for some
regular shape, i.e., u* =0 on I' = 9, then we obtain by uniqueness for the Laplace equation
that u* = 0 in Q. Hence, we obtain also that u* and % vanish on I'" and the uniqueness of
the Cauchy problem implies that 4* = 0 in ©® — . Consequently, from the definition of u*
we may conclude u|y; = f% on M, i.e., the residual is zero, too.

Example 2 (Boundary and Obstacle Reconstruction). As boundary reconstruction
problems or obstacle reconstruction, we summarize the class of inverse problems where the
unknown is a part of the boundary of the domain on which some state equation has to be
solved. In typical applications, this identification is based on overdetermination on a known
part of the boundary, where Dirichlet and Neumann values of the solution are known. On the
unknown part, usually a homogeneous boundary condition is specified. Our model problem
for this class is again related to the Laplace equation, we consider the identification of I' = 92
from a measurement v € L?(M), where u is the solution of

Au = 0 in@O-T (2.14)

ou

am =9 onT), (2.15)

g—z =0 onT (2.16)
u = 0 on I'y. (2.17)

The set M where measurements are taken is either a subset of the fixed Neumann boundary
I',, or a subset of ©. Moreover, we assume that ¢ is not a constant function on I'j,, which
is needed for identifiability of ' (cf. [11] for further details on this problem). An analogous
boundary reconstruction problem would consist in identifying an unaccessible boundary curve
I'=00 — (I';, NTy) from measurements on the accessible part of the boundary.

This problem and variants with Dirichlet-type or mixed boundary conditions on the in-
terface T' have been investigated recently with respect to identifiability and stability (cf.
[3, 11, 13, 17]), which can be obtained using continuation techniques for elliptic Cauchy
problems. The most important pplication of such a problem is inclusion detection in elastic
media under anti-planar conditions (for the planar case one obtains the same problem with
the Laplace equation replaced by the equations of linear elasticity, cf. [11]). The Problem
with Dirichlet condition I' appears as an asymptotic case in identifying a p-n junction of a
semiconductor device (cf. [19, 20]) and in corrosion detection from electrostatic or thermal
data (cf. [49, 65, 77]). The parabolic variant of this problems is discussed by Bryan and
Caudill [15, 16] as a model for thermal imaging. Park and Shin [61] discuss a similar identifi-
cation problem with the Navier-Stokes system coupled to the heat equation as the underlying
state equations, which is motivated by several applications such as thermal tomography or
Brigdman crystal growth.

The shape derivative of the output least-squares functional (f° representing the noisy data
and M CT)

= 1
I = T0,0) =5 [ ju-rP ds (2.18)
M
is given by

J(Q)v = - /F[Vu.Vu*]v ds, (2.19)



where [.] denotes the jump across I'. The function u* solves the adjoint problem, which is
given by

Au* = 0 in®-T (2.20)

ou”
o = xw(u— ) onl, (2.21)
pfu™n = 0 onT (2.22)
vt =0 on I'y. (2.23)

For further details on this problem and its shape derivative we refer to [11], where also
penalization by perimeter, i.e., minimization of the functional

Jnl(®) = /M u— O ds + aH!(T) (2.24)

has been analyzed as a regularization method with respect to the Hausdorff metric. For the
shape derivative, this additional regularization term would yield again a second term involving
the integral over curvature.

Example 3 (Shape Optimization). A first important class of shape optimization prob-
lems are those concerned with the reconstruction of a whole region (and, in particular, its
boundary) on which the state equation has to be solved (cf. [12, 63, 76] for an overview).
As a simple model we consider the problem of electromagnetic shaping, which consists in the
minimization of

= 1
J(Q) = F(u,Q) = = / Vul? dz + eH}(9Q) - min, (2.25)
2 Ja Qec
where € is a nonnegative real number and u is the solution of the Laplace equation
—Au=f in Q, (2.26)
with f being a source function defined on R?, and u satisfies the Dirichlet boundary condition
u=g on 0. (2.27)
As an additional constraint on the domain we have a restriction on the volume

cQ) = /Q | dz > V. (2.28)

This problem has been investigated well in the shape optimization literature (cf. [25, 26, 38,
62, 68]) and can be used for the design of electromagnetic structures.
A general structure for this class of problems is the minimization of a domain functional

T©) = J(w,9) = Sa(u,u) + H'(09) = J (u—g) +alu,g)) +eH' (), (229

N =

where u € g+ Uy, g € U D Uy (U and Uy being spaces of functions defined on ) is the
solution of the variational problem

a(u, ) = £(p), Y o € Uy, (2.30)
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with some symmetric, continuous, coercive bilinear form a : Y x4 — R and a continuous linear
functional £ : Y — R. The most prominent example in this class is the minimal compliance
problems (cf. e.g. [12]), where u is a displacement vector and the underlying elliptic system
are the continuity equations of linear elasticity. Level set methods for this problem have been
used by Sethian and Wiegmann [74] as well as Allaire, Jouve and Toader [7], and produced
good numerical results (however, without theoretical justification).

The shape derivative of the objective functional (for I" sufficiently regular) is given by

1
J'(Q)v = / Vu.Vu' dz + / |Vul?v ds + 6/ kv ds, (2.31)
0 2 Jr r

where u' is the shape derivative of u, which solves Au’ = 0 in Q and v’ = —v% on T = 90.

An application of Gauss’ Theorem shows that

! ou/ !
VuVu de = [ u— — | ulAu dz =0
Q r on Q

and thus, the shape derivative is given by

1
J Qv = / (§|Vu|2 + GK,) vds =: /pv ds. (2.32)
r r

For further details on the computation and properties of the first and second shape derivatives
for this problem we refer to Dambrine and Pierre [26].
Finally we compute the shape derivative of the constraint, which is given by

Q) = /F v ds. (2.33)

In order to remain feasible one has to make sure that fr v ds > 0 if the equality constraint is
active.

We finally notice that a common feature of all the problems is a representation of the
shape derivative in the form

J(Q)v = /va ds, (2.34)

where p: I' = R can depend on the solutions of the direct and adjoint problems as well as on
the geometry of the interface I' (e.g. via its curvature). This representation holds in general
for shape optimization problems (cf. [76]) and was the basis for the so-called speed or velocity
method (cf. e.g. [30, 76, 81]).

3 A Functional-Analytic Framework

In this section we shall provide a functional-analytic basis for the construction of level set
methods based on the idea of gradient flows for some energy functional. For convenience
we start with a short review of gradient flows for general systems and their relations to
optimization and regularization, and then carry these ideas over to gradient flows for geometric
configurations. Finally, we give examples of the most important norms in which gradient flows
can be derived.
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3.1 Gradient Flows of the Total Energy

Using standard ideas of equilibrium thermodynamics, many physical evolution models can be
determined as gradient flows for the total energy £ of a system. For example, the well-known
heat equation

%—1: — div(DVw) inQCRY
is determined as a gradient flow of the form
ow
£ 3.1
S = —Vut(w) (31)

for the total energy
£(w) = %/ D(@)|Vu(z)|? da.
Q

If the aim is to derive evolution models for geometric configurations instead of functions,
the form (3.1) is not directly applicable, since one has to give a meaning to the term on the
left-hand side describing the evolution of the geometry as well as to the variation of the energy
on the right-hand side. The latter can be realized in the framework of shape derivatives, with
gives the variation of the energy for variations of the domain in normal direction. For the
first, we need a different formulation of gradient flows. For this sake we return to the simple
example of the heat equation. Following the presentation by Almgren and Taylor [8], we
consider the the following variational problem for a small time step At

D(z wat+At2dx+—/th+At z,t)|? dz — min 3.2

3 | D@ Pt s [ | w@ ) de o min o (32)
where W represents an appropriate set of admissible solutions (e.g. Hg(Q2)). From the first-
order optimality conditions one obtains that the solution of this variational problem satisfies
(at least in the standard weak sense)

w(z,t + At) — w(z,t)
At

which leads to the heat equation as At — 0. The general approach corresponding to (3.2) is
given by the variational problem

— div(D(z)Vw(z,t + At)) + =0,

E(w(.,t+ At)) + ——|lw(.,t + At) —w(.,t)]|> =  min (3.3)

2At w(. tHAEW

and the corresponding first-order optimality condition leads to the gradient flow as At — 0.
It is worth noting that gradient flows have a long tradition in the regularization of inverse

problems. Of particular importance is the method of asymptotic regularization ([31]). For

a linear operator equation of the form Aw = f, with A : W — Z being an operator acting

between Hilbert spaces one can define the energy as the according least-squares functional

£w) = 314w — 1| (3.4

and asymptotic regularization as the corresponding gradient flow is given by

ow .
o = ~AT(Aw =), (3:5)
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where A* : Z — W is the adjoint operator. In the case of a nonlinear operator A analogous
reasoning leads to

ow

57 = ~Aw)(Aw) - f), (3.6)

where A’(w) denotes the Fréchet-derivative of A at w € W. For an analysis of the method of
asymptotic regularization in the linear case and a detailed discussion in a general framework
for ill-posed problems we refer to Chapter 4 of the monograph by Engl et al. [31], and for the
analysis in the nonlinear case to Tautenhahn [78]. Moreover, this method has been applied
successfully to ill-posed problems of different origin, such as for parameter identification (cf.
[42, 43)).

From the method of asymptotic regularization one can deduce a variety of well-known
regularization schemes by specific time discretizations. For example, an explicit time dis-
cretization yields the so-called Landweber iteration (cf. [31, 51] for the linear and [14, 37, 71]
for the nonlinear case)

Wig+1 = Wg — At A'(wk)*(A(wk) - f), k= 0, 1, cees (37)

Another important scheme, the method of iterated Tikhonov regularization (cf. [31, 35, 36]),
consisting of the sequence of minimization problems

1 o
—|A —fIP+ = — k=0,1,... 3.8
2|| (wiq1) = fII° + 2||w/c+1 w|? w,fffgw’ N P (3.8)

is obtained by an implicit time discretization, with At = a~'. One observes that this varia-
tional problem coincides (apart from different notations) with the one used in the approach
by Almgren and Taylor presented above, which provides further arguments for our idea that
many schemes arising from variational models in physics can also serve as good regularization
and optimization schemes. Motivated by this analogy, we shall therefore try to carry over the
models for evolution towards optimal geometries in materials science to evolution methods
for shape optimization and reconstruction in the following sections. The level set method will
provide a natural representation of evolving shapes in this context.

Before proceeding in the announced direction, we shall mention some further regularization
approaches based on gradient flows. An analogous reasoning as above has been used by
Scherzer and Weickert [72] in the context of mathematical imaging to obtain relations between
diffusion filtering and generalizations of iterated Tikhonov regularization. More precisely they
showed that diffusion filters of the form

681: = div (¢(Vw>)Vw)  in QxR (3.9)

with the degraded image as initial value corresponds to the limit of the gneralized iterated
Tikhonov regularization method

G t+ At)?) do + —— t+ At) —w(z,t) d i 3.10
/Q ([Vw(z,t + At)?) $+2At/|wa: + w(z, )| 33_’1”(_;1&%6),\,’ (3.10)

with G being the anti-derivative of the filter function g. The work by Scherzer and Weickert
[72] and subsequent investigations in [64] demonstrate the suitability of gradient flows for the
regularization of inverse problems in a rather general framework.
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3.2 Gradient Flows for Geometric Configurations

If we consider instead of functions the evolution of a curve I" with associated nergy £(I"), then
we can define the variations of I due to a field v in normal directions (as in the setup for
shape derivatives, cf. (1.13)) given by

It + At) :={ z + Atv(z)n(z) | z € T'(¢) } (3.11)

and try to obtain a gradient flow from the minimization problem
v At 2 :
E(T?(t+ At)) + —||v||} — min (3.12)
2 veY

where V is a Hilbert space of suitable domain variations and At||v|| measures the variation
between I'(¢) and v?(t+At). The solution of this minimization problem satisties the first-order
optimality condition

o0&

%(I‘”(t + At))At w + At (v, w)y =0, Ywe. (3.13)

Division by At and performing the limit A — 0 finally yields
E'T(t + At))w + (v,w)y =0, Vwe. (3.14)

where £'(T'"(t + At))w denotes the shape derivative of £ with respect to the normal varia-
tion w. If the shape derivative exists and defines a continuous linear form on V, then the
Riesz representation Theorem guarantees the existence and uniqueness of a variation v € V
satisfying (3.14).

We finally note the above definition can be extended to a level set framework by defining
I'Y(t + At) not via (3.11), but as the zero level set of ¢(.,t + At), where ¢ is a solution of the
level set equation (1.7) in the time inverval (¢,t + At), with I'(¢) = {¢(.,t) = 0}. A canonical
choice ¢(.,t) seems to be signed distance function to I'(¢), which can also be used to compute
shape derivatives and to define metrics on shapes (cf. [10, 27]).

3.3 Examples of Inner Products for the Shape Variation

In the following we present the probably most important possibilities for Hilbert space norms
(and corresponding inner products) of shape variations and derive the corresponding form of
(3.14). We will divide the norms into five types (with the different norms within one type
being equivalent), representing the values r = 1, %,O, —%, 1 in the scale of Sobolev spaces
H"(T'). The inner products for integer s have been discussed as models for microstructural
evolution (cf. [21, 79]), but for inverse problems also non-integer values of r seem to be of
interest. It turns out that each of the discussed inner poducts (and corresponding norms) has
special properties and might yield advantages for certain problem classes.

In the following we will assume that there exists a function p : I' — R such that the shape
derivative can be written as

£'(T)w = /F o(z) wiz) ds(z), ¥ weV. (3.15)

As we have seen above, this assumption is not very restrictive for the types of problems we
have in mind, and it is satisfied by all model problems we consider.
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H'-Norm: ”Laplace-Beltrami Flow”

As a first possibility for choosing a Hilbert space norm on I' we investigate the space V =
H!(T') with the inner product

(v, w) g1 () :/ (@8—“’ —I—'uw) ds, Vv,weHY) (3.16)
r

where s is the arclength variable. This choice is suitable if ' consists of connected curves and
leads to the partial differential equation

0%

~ 952 +v=—p onT (3.17)

for the variation v defined by (3.14), involving the so-called Laplace-Beltrami operator. If a
connected component of I' is non-closed, then this equation has to be supplemented by the
Neumann type boundary condition

0
a—z =0 ondr. (3.18)
An obvious generalization of the standard inner product in H' is a weighted one, i.e.,
O0v Ow
(v,w)H}VI(F) = /r (Mla% + Movw) ds, Yo, we HY(T) (3.19)

for some positive function M; : I' — R, : = 0, 1. In this case we obtain the anisotropic elliptic
equation
0 ov
—— | M1— Myv = — T. 3.20
95 ( 1 (‘)s) + Myv p on (3.20)
In some applications, variants of the H' inner product (3.16) corresponding to subspaces
are of importance. A first important example arises from problems, where the volume of €
shall be conserved during the evolution. The appropriate subspace of variaions in H*(T) is
given by
HX(T)={ve HY) | /Uds:O}, (3.21)
r

which incorporates the volume conservation. A simple inner product on this space of varia-
tions is given by

(v, w) gy = %%—ZJ ds, Y o,w € HA(T), (3.22)
r

and it defines an equivalent norm to the original H'-norm because of the Poincaré inequality.
The partial differential equation for (3.14) is

&%v

752 =P onT, (3.23)

supplemented by the integral condition fr v ds = () and again homogeneous Neumann bound-
ary conditions on JI'.
Another important subspace is

HY() = { v e H'() | wlor = 0 }, (3.24)
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with the same inner product as H!(T'). Since variations of this type keep the boundary points
of I' fixed, they are of particular interest for shape reconstruction or optimization problems
where the unknown I' is a non-closed curve whose boundary points are known. In this case,
(3.14) results again in the equation (3.23), but now supplemented by the Dirichlet boundary
condition v = 0 on JI'.

Hi-Norm: “Stefan-like Flow”

Sobolev spaces of fractional order (cf. [52, 69]) such as H %(I‘) are much more difficult to
define and to handle than integer order spaces such as H'(I') or H°(I') = L?(T"). Although
not used much in this context, the space H 2 (T') seems to be of interest for our purpose, since
its elemelnts are just the Dirichlet values on I" of an H'-function in Q, © — Q or © — I'. The
space H2(I') has been used successfully by Hettlich and Rundell [40] to construct iterative
regularization methods for the identification of the support of a source term in an elliptic
partial differential equation. However, their iterative solution methods were based again on
parameterizations of the bolundary curve I" and limited to simply connected domains €.

In general, the space H?(T') and its inner product are defined by the Hilbert space inter-
polation of H(T') and L?(T') (cf. Lions and Magenes [52] for a comprehensive treatment of
this topic), which is unfortunately not very useful for practical computations. An alterna-
tive definition of inner products on H 2 (T') (leading to equivalent norms as the original one)
is possible via the characterization of its elements as traces of elements in H'(Q2). E.g., if
I' = 09 consists of closed components only, then we can define an inner product via

(v,w)H%(F) = /Q(Vf).Vu?) dz, Vov,we Hz(T), (3.25)

where ¥ € H'(Q) and % € H'(Q) are the unique extensions of v and w, respectively, to €,
satisfying
At =Aw =0 in Q. (3.26)

An application of Gauss’ Theorem for sufficiently regular functions v and w shows that

R ov
(v,w)H%(F) = /Q(VU.Vw) dz = /F Y ds
and hence, (3.14) is just the weak form of the Neumann-type condition

S—Z =—p onTI. (3.27)
If © is in the interior of an outer domain ©, then we can also define an equivalent norm
by (3.25) with & € H'(© — Q) and @ € H'(© — Q) being the extensions solving the Laplace
equation in ® —  and satisfying an additional boundary condition on 9. This additional
boundary condition allows to incorporate further a-priori information such as 2 C © into a
level set evolution. If we choose © as a level set of the initial level set function ¢g, and use the
boundary condition o = 0 on 00, then the level set © will be unchanged during the evolution
and hence, the zero level set ) remains a subset.
In the last case as well as if I is an interface in ©, we have another possibility to define
an equivalent H 2-norm, namely as the H'-norm of an extension & to © — T, i.e.,

(0,0) 3 0y = /@_F(w.vw) dz, Y uv,we H(I), (3.28)
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where ¥, € H'(© — I') are extensions of v and w satisfying the homogeneous Laplace
equation on © —I" and an additional boundary condition on 90 (e.g. a homogeneous Dirichlet
condition). With this choice of the inner product, (3.14) turns to the weak formulation of the
homogeneous Laplace equation in © —T" (for the extension ¥) with jump condition [g—g] =—p
onl.

We finally want to mention that in all choices of inner products for the H >~ norm the
computation of an extension velocity v is automatically included in the choice of the velocity
via (3.14). This is a particular advantage in connection with level-set methods, since they
need an extension velocity in a larger domain like ©. Moreover, we have seen that by choosing
appropriate boundary conditions on © and a suitable initial value for the level set function,
we can obtain an evolution of the zero level set that stays inside I', which is important in
many applications.

L2-Norm: “Santosa Flow”

Possibly the most simple inner product is the one of variations in L?(T), given by
(v, w)p2(ry = / vw ds, Y v,w € L*(T). (3.29)
r

In this case, (3.14) results in the explicit formula
v=—p on T, (3.30)

which coincides with Santosa’s method of choosing the normal velocity.
An anisotropic version of the L? inner product is given by

(v, w)r2(ry = / % ds, Y v,w € L*(T), (3.31)
r

with a bounded function M : T' — RT. The formula for v obtained from (3.14) is then given
by
v=—-Mp onT, (3.32)

Anisotropic functionals are of particular interest if the M is a function of the outer normal
on T, ie., M = M(n), where M : S — R, and S' being the unit sphere in R2. In materials
science, anisotropies of this kind are introduced in order to model the structure of crystal
lattices, and consequently they are often nonsmooth functions. For shape optimization such
an anisotropic penalty term might be used to achieve minimizers that prefer certain geometric
structures.

H~2-Norm: “Mullins-Sekerka Flow”

In a similar way to H 2 (T') we can characterize H —2 (T") as the space of Neumann values on I’
of functions in H'(f). For constructing an extension of the Neumann values, one has to be
more careful, since the Laplace equation with general Neumann boundary conditions might
have no solution. A solution to A% = 0 in 2 supplemented by g—z = v on I' = 9N exists if
and only if fF v ds = 0. In the level set context, such a choice for the velocity implies that
the volume is conserved during the evolution, which is desirable for certain applications. If

there is no volume constraint, then we have to use a more general equation like —Ayp+1 =0
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combined with the Neumann boundary condition. For simplicity, we will not consider the
latter case, but the results in this case are analogous.
For [.v ds =0, the Neumann problem

-Ay, = 0 in Q (3.33)
8816: = v on 0N (3.34)
has a unique solution in the space
HX Q) ={vypecH(Q) | /qu dz =0 }. (3.35)
The above equation for 1, leads in a natural way to the inner product
(0,0) 14y = /Q(wv.wpw) dz, YV ov,we H2 (D), (3.36)

where 1), and 1), are the solutions in H}(Q) of (3.33), (3.34) with Neumann values v and w,
respectively.
Using (3.14), [, w ds = 0, and Gauss’ Theorem we obtain that

~[o-prwds=— [ pwds= [ popudo= [ g ds
r r Q r
with #!(I)olp = [.. p ds. Hence, we obtain that ¢, = —p+p on I' and A, = 0 in Q. Due

to
/vds:/(—p—i—ﬁ) ds =0,
r r

the resulting function 4, is an element of H!(Q) and v = 66%” equals its Neumann value on I'.

Not sqrprisingly, the computation of v in this case is somehow dual to the computation for
the H?2-norm, where v was chosen as the Dirichlet value of a solution of the Laplace equation
with Neumann values equal to —p. .

The evolution obtained in the case of the H 2(I') has the physical interpretation of
motion by bulk diffusion, it is called Mullins-Sekerka flow (cf. [56, 54]) in the materials
science community or also Hele-Shaw flow (cf. e.g. [44] and the papers therein).

We finally mention that instead of [.4 dz = 0 in the definition of H!(Q) one could
use (1) = 0, with £ being a continuous linear functional on H'(f2) not vanishing on the
subspace of continuous functiosn, for the definition of a space H:(Q) still providing a unique
solution. However, a different choice of the functional £ would not guarantee that the solution
of the homogeneous Laplace equation with Dirichlet values depending p satisfies the integral
condition, and hence, one cannot show that a corresponding Neumann value v exists.

H -Norm: “Surface Diffusion Flow”

A rather weak norm, but nonetheless a very important one in materials science is the H~1-
norm, which is defined on the space
5w,

H')={veD'T)|Iw, € H(): 52 =V 1, (3.37)
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and generated by the inner product

(v, w)g-1(ry = : %8;’—;" ds, Vv, w e HY(T), (3.38)
with w, and w, being the H& functions associated to v and w, respectively, via the Laplace
equation. An application of Gauss’ Theorem shows that (3.14) leads to w, = p on I' and
hence, the velocity is given by

0?p

="+

0s?

An evolution of this type is often called surface diffusion (cf. e.g. [32]), if the energy coincides

with the perimeter of T', then also the term motion by Laplacian of curvature is used (note

that p equals the curvature in this case and thus, v is the surface Laplacian of the curvature,

cf. e.g. [9, 23]). When interpreted as a partial differential equation for the curve, the motion

by Laplacian of curvature is fourth-order parabolic and hence, its numerical approximation

is a difficult task. In particular, explicit time discretizations lead to extremely small time

steps (proportional to the fourth order of the fineness of the spatial discretization) in order

to achieve stability, while fully implicit schemes yield very stiff problems, at least in the case
of the original surface diffusion flow (cf. [23, 75]).

onT. (3.39)

4 Application to the Model Problems

In this section we apply the methods deduced above to our model problems. We discuss the
possible choices of norms for each example and discuss its particular properties. In addition,
we give the results of some numerical experiments to test the behavior of the obtained level
set methods. For all numerical exmples we use an explicit weighted essentially non-oscillatory
scheme for the level set equation (cf. [47] for details), while we solve the direct and adjoint
problem with the finite element method using a fictitious domain approach, which depends
on the problem and will therefore be outlined below.

4.1 Support Reconstruction

For the problem of support reconstructimll in Example 1 we have several possibilities for the
choice of the norm, the weakest being H~2(I"), since the shape derivative (2.7) is a continuous
functional on this space (when interpreted as a linear functional of the normal velocity v, cf.
[39]). A particular case yielding further insight into the problem is that the volume of € is
kown in advance and equals the volume of the initial value (0), and that M N Q(t) = 0.
In this case we may choose a volume-conserving flow, and revisiting the construction of such
flow via a solution 7 of the Laplace equation in €2, we observe that with the adjoint solution
u* the relation

Alp—u*) = 0 in
Pp—ut = 0 onT

holds. This implies ¥ = u* by a uniqueness result for the Laplace equation in (2, slince P = u*
on 02 . Hence, the choice of the velocity corresponding to a gradient flow in H ™2 ('), is just

B ou*
on

v = onT, (4.1)
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Figure 1: Reconstructions with Santosa’s method at iterations 25, 50, 75, 100, 125 and 150.

so that we need not solve an additional boundary value problem in Q. For the norm L?(T'), the
velocity is simply determined as v = —u*, while for the case of a velocity in H 2 (T") we solve an
additional partial differential equation as in the previous example, now with [%] =u*onT.
Hence, in this case the three choices are related to different levels of derivatives of the adjoint
solution u*, the Mullins-Sekerka flow to the first derivative, Santosa’s flow to the derivative
of order zero (u* itself) and the Stefan-type flow to the solution of a Laplace equation, which
can be interpreted as a generalized antiderivative (in spatial dimension one it equals exactly
the antiderivative).

For numerical purposes, we approximate the indicator function xo = H(¢) by a continuous
function H¢(¢), with H, being continuously differentiable and approximating the Heaviside
function H as ¢ — 0. For our purpose, there are several advantages of this relaxation: First of
all, the solution with smoothed source is more regular and thus, the convergence rate of a finite
element method (as the discretization fineness tends to zero) is higher. Of course, there is an
additional error in terms of € introduced by the relaxation, but with an appropriate relation
between e and the discretization fineness, good results can be achieved (cf. [80] for further
details). A second advantage is that the shape derivative of the problem with relaxation is
not an interface problem as for discontinuous source, but again an elliptic problem with a
source dependent on ¢. The weak formulation of this derivative is given by

/ Vo' .Vw = —/ H($)|Vo|w dz. (4.2)
© ©

If we use again the adjoint solution u* (defined as above) and apply the coarea formula, we
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Figure 2: Reconstructions with the Mullins-Sekerka flow at iterations 25, 50, 75, 100, 125 and
150.

obtain that
dJ ! * ! * 1
&~ — [ H($)IVelow do=— [ HLp) vu* dH* dp, (4.3)
dt o R {¢=p}n©

from which we obtain the velocities for the different norms.

For a first numerical test, we investigate the problem in © = (—1,1)? with homogeneous
Dirichlet boundary conditions on 90 and a distributed measurement of the state u on M =
(—1,1) x (0.1,1). The exact solution of the inverse problem is the union of two small circles
(shown in blue in the pictures below) and the initial shape for the level set evolution is a single
large circle. Data are generated in a synthetic way by solving the direct problem on a finer
grid and interpolation to a fixed measurement grid in the set M. In addition, high-frequency
noise of around 5% is added to the exact solution before interpolation in order to avoid so-
called inverse crimes (i.e., data and noise generation and solution of the inverse problem on
the same grid).

We discretize the level set method on a regular grid of 128 x 128 points, with time step
for an interval (¢, + At) chosen to respect the CFL-condition for stability, i.e.,

Atsup |v(z,t)| = 0.9Az, (4.4)
x

where Az is the fineness of the spatial discretization. Since the time is artificial in our case
and depends on the scaling of the velocities, we compare the methods with respect to the
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Figure 3: Reconstructions with the Stefan-type flow at iterations 25, 50, 75, 100, 125 and
150.

number of time steps (which can be interpreted as number of iterations) and not with respect
to the value of the time variable. We plot the evolving shape at each 25—th time step from
25 to 150 in Figures 1-3.

Figure 1 shows the evolution according to Santosa’s method (velocity norm in L?(T)),
Figure 2 according to the Mullins-Sekerka flow (velocity norm in H _%(I‘)), and Figure 3
according to the Stefan-type flow (velocity norm in H > (T")). From a comparison of the plots
one observes that the weakest possible norm for this problem, namely the Mullins-Sekerka
flow, yields the fastest convergence towards the exact solution. For the standard approach
in Figure 1 one observed convergence to a solution of the same quality as for the Mullins-
Sekerka flow, while the Stefan-type flow shown in Figure 3 does not split the domain within
the first 150 time steps. Our numerical experiments showed that this splitting occurs for
the Stefan-type flow after more than 250 time steps and a similar convergence behavior is
obtained afterwards. A quantitative comparison between the three different flows is given in
Figure 4, where the evolution of the residuals (left) and of the L!-error (left, starting from
iterate 20) between the exact solution and the evolving shape (i.e., the error between the
corresponding indicator functions in the norm of L!(©)) are plotted. One observes that for
stronger norms, the evolution is faster in the initial stage, before all three methods stagnate for
some time. This stagnation arrises before the shape splits into two connected components and
is possibly due to singularities in the velocity needed for this splitting. The period over which
the methods stagnate is shorter for weaker norms, so that the Mullins-Sekerka flow finally
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Evolution of the Residual, 8=5% Evolution of the L'-Error, 8=5%

80 0
Iteration Number Iteration Number

Figure 4: Evolution of the Residual (left) and error in the L'-norm (right) during exact
solution and reconstructed shape for § = 5% noise.

yields the fastest evolution. As usual for iterative (or evolutive) regularization methods for
ill-posed problems in presence of noise, the error decreases only to some finite value, before
increasing again or starting to oscillate. This behavior is shown by all of the methods in this
case, but a reasonable reconstruction can be obtained by stopping the evolution according to
the generalized discrepancy principle, i.e., the first time the residual is (roughly) of the same
size as the noise.

4.2 Boundary and Obstacle Reconstruction

For the obstacle reconstruction problem in Example 2, we have a density p in the shape
derivative consisting of a product of gradient jumps. Since we cannot expect the solution of
the direct problem to be smoother than in the class H' (in particular for Neumann values g
in H_%(Pn)), the jump of its gradient must be expected to be an element of H_%(Q) For
the adjoint solution we can expect more regularity, since its Neumann values are related to
the residual, which lies in L2(M). Nonetheless, the weakest norm in which we can expect the
shape derivative to be a continuous linear form is H 2 (T") due to possible lack of regularity in
the direct solution wu.

For the numerical approximation, we use again a fictitious domain approach, which is
based on the observation that the values of w inside §2 have no influence on the objective
in our case, and we may thus use an arbitrary continuation of u inside €2. This allows to
approximate the interface problem by solving

—div (ac(¢)Vu) =0, in © (4.5)
subject to the original boundary conditions on I';, and T'y, where a. is a function satisfying
1 ifp>e
= ) 4.
) ={ 102, (1.6
and interpolates in a montone and continuous way between the values at p = —e and p = e.

This approach is frequently used in shape optimization, when Neumann boundaries are given
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Figure 5: Reconstructions with Santosa’s flow at iterations 50, 100, 150, 200, 250 and 300.

on a shape to be optimized, and is also called weak material method. The computation of
shape derivatives for the relaxed problem can be carried out as in the previous example.
Moreover, we use the same discretization and solvers for the level set equation (1.7) as above.

Our numerical test is carried out in the case of © = (—1,1)?, with homogeneous Dirichlet
conditions on I'y = {1} x (—1,1) and measurements on the Neumann boundary M =T, =
00 —T";. Since data are measured only on the boundary, we have to expect a severely ill-posed
problem without too accurate reconstructions of the exact solution. We use Santosa’s flow
as well as a Stefan-type flow starting from a circle with radius 0.5 centered at (0,0.2). The
exact solution is an elliptic shape, plotted blue in Figures 5, 6; synthetic data and noise (with
noise level 2%) are generated in the same way as for the example of support reconstruction.
From Figure 5 one observes that the flow constructed according to Santosa’s approach shows
an unstable behavior and fails to converge to the solution, while the Stefan-type flow shown
in Figure 6 yields a reasonable reconstruction for this size of the noise level. This statement
is confirmed by the plots of the evolving residual (left) and L!-error (right) in Figure 7,
from which one observes that Santosa’s flow stagnates far away from the solution, while the
Stefan-type flow shows the expected convergence behavior. This result demonstrates again
the importance of choosing appropriate level set evolutions, in particular in connection with
ill-posed problems, where one needs a stable method being able to handle data noise.
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Figure 6: Reconstructions with the Stefan-type flow at iterations 50, 100, 150, 200, 250 and

300.

5 Conclusions and Outlook

In this paper we have provided a rather general framework for the construction of level set
methods based on shape derivatives of an associated objective functional. So far, we have
only considered methods in a gradient flow setup, but several extensions are possible and
subject to future work, such as e.g.

For problems, where a vanishing derivative of the objective does not imply that the level
set evolution has reached an optimum, one can consider other choices of the velocity,
which incorporate more information on the residual than the shape derivative. For a
certain class of problems, such a choice was investigated by the author in [18].

Instead of gradient flows one can consider continuous Newton-type methods in a level
set framework. In a setup similar to the gradient flow proposed by Santosa, Newton-
type approaches have been considered by several authors [22, 28, 29, 70]. An extension
to other norms as proposed in this paper seems rather obvious.

As mentioned in the introduction, further investigations on the efficient coupling of
the level set evolution with the partial differential equations for the state seem to be
necessary. Particularly promising seems to be a cascadic approach, since this can yield
a very fast reduction of the objective during the initial stage of the evolution, when a
coarse grid is used.
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Evolution of the Residual Evolution of the Residual

L L L L L L L L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Iteration Number Iteration Number

Figure 7: Evolution of the Residual (left) and error in the L'-norm (right) during exact
solution and reconstructed shape for § = 2% noise.

e A rigorous analysis of the methods proposed here, with respect to their well-posedness,
their convergence and regularizing properties, is still completely open.

Acknowledgments

Useful and stimulating discussions are acknowledged to Prof. Heinz W.Engl, Bejamin Hackl
(University Linz), Hend Benameur (ENI Tunis), and Gregoire Allaire (Ecole Polytechnique
Paris). Financial support is acknowledged to the Austrian National Science Foundation FWF
under grant SFB F 013 / 08.

References

[1] B.Adalsteinsson, J.A.Sethian, The fast construction of extension velocities in level set
methods,J. Comp. Phys. 148 (1999), 2-22.

[2] R.A.Adams, Sobolev Spaces (Academic Press, New York, London, 1975).

[3] G.Alessandrini, E.Beretta, E.Rosset, S.Vessella, Optimal stability for inverse elliptic
boundary value problems with unknown boundary, Ann. Scuola Norm. Sup. Pisa 29 (2001)
755-806.

[4] G.Alessandrini, V.Isakov, J.Powell, Local uniqueness in the inverse conductivity problem
with one measurement, Trans. Am. Math. Soc. 347 (1995), 3031-3041.

[6] G.Alessandrini, E.Rosset, The inverse conductivity problem with one measurement:
Bounds on the size of the unknown object, STAM J. Appl. Math. 58 (1998), 1060-1071.

[6] G.Alessandrini, E.Rosset, J.K.Seo, Optimal size estimates for the inverse conductivity
problem with one measurement, Proc. Am. Math. Soc. 128 (2000), 53-64.



26

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

G.Allaire, F.Jouve, A.M.Toader, A level-set method for shape optimization, C.R. Acad.
Sci. Paris, Ser. I, 334, 1125-1130.

F.Almgren, J.E.Taylor, Optimal geometry in equilibrium and growth, Fractals 3 (1995),
713-723.

S.A.Alvarez, C.Liu, Motion of a closed curve by minus the surface Laplacian of curvature,
Differ. Integral Equ. 13 (2000), 1583-1594.

L.Ambrosio, C.Mantegazza, Curvature and distance function from a manifold, J. Geom.
Anal. 8 (1998), 723-748.

H.Benameur, M.Burger, B.Hackl, On some geometric inverse problems in linear elastic-
ity, Preprint (2002).

M.P.Bendsoe, Optimization of Structural Topology, Shape, and Material (Springer,
Berlin, 1995).

E.Beretta, S.Vessella, Stable determination of boundaries from Cauchy data, STAM J.
Math. Anal. 30 (1999), 220-232.

A.Binder, M.Hanke, O.Scherzer, On the Landweber iteration for nonlinear ill-posed prob-
lems, J. Inverse Ill-Posed Probl. 4 (1996), 381-389.

K.Bryan, L.F.Caudill, An inverse problem in thermal imaging, SIAM J. Appl. Math. 56
(1996) 715-735.

K.Bryan, L.F.Caudill, Uniqueness for a boundary identification problem in thermal imag-
ing, Electron. J. Differ. Equ. C 01 (1997), 23-39.

A.L.Bukhgeim, J.Cheng, M.Yamamoto, Stability for an inverse boundary problem of
determining a part of a boundary, Inverse Problems 15 (1999), 1021-1032.

M.Burger, A level set method for inverse problems, Inverse Problems 17 (2001), 1327-
1356.

M.Burger, H-W.Engl, P.Markowich, P.Pietra, Identification of doping profiles in semi-
conductor devices Inverse Problems 17 (2001), 1765-1795.

M.Burger, H-W.Engl, P.Markowich, Inverse doping problems for semiconductor devices,
in: Recent Progress in Computational and Applied PDEs (Kluwer Academic/Plenum
Publishers, 2001), to appear.

W.C.Carter, J.E.Taylor, J.W.Cahn, Variational methods for microstructural evolution,
JOM 49 (1997), 30-36.

T.F.Chan, B.O.Heimsund, T.Kastberg Nilssen, X.C.Tai, Level set methods and aum-
gented Lagrangian for parameter identification, Preprint (2002).

D.L.Chopp, J.A.Sethian, Motion by intrinsic Laplacian of curvature, Interfaces and Free
Boundaries 1(1999), 107-123.



REFERENCES 27

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

D.Colton, R.Kress, Inverse acoustic and electromagnetic scattering theory, (2nd ed.,
Springer, Berlin, 1998).

0.Coulaud, A.Henrot, Numerical approzimation of a free boundary problem arising in
electromagnetic shaping, STAM J. Numer. Anal. 31 (1994), 1109-1227.

M.Dambrine, M.Pierre, About stability of equilibrium shapes, Math. Model. Numer. Anal.
34 (2000), 811-834.

M.C.Delfour, J.P.Zolésio,Shapes and geometries. Analysis, differential calculus, and op-
timization (STAM, Philadelphia, 2001).

0O.Dorn, E.M.Miller, C.M.Rappaport, A shape reconstruction method for electromagnetic
tomography using adjoint fields and level sets, Inverse Problems 16 (2000), 1119-1156.

O.Dorn, Shape reconstruction in 2D from limited-view multifrequency electromagnetic
data, Preprint (2000).

M.C.Delfour, J.P.Zolesio, Velocity method and Lagrangian formulation for the computa-
tion of the shape Hessian, STAM J. Cont. Optim: 29 (1991), 1414-1442.

H.W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems (Kluwer,
Dordrecht, 1996).

J.Escher, U.Mayer, G.Simonett, The surface diffusion flow for immersed hypersurfaces,
STAM J. Math. Anal. 29 (1998), 1419-1433.

H.Federer, Geometric Measure Theory (Springer, Berlin, Heidelberg, New York, 1969).

A Friedman, V.Isakov, On the uniqueness in the inverse conductivity problem with one
measurement, Indiana Univ. Math. J. 38 (1989), 563-579.

C.W.Groetsch, M.Hanke, Nonstationary iterated Tikhonov regularization, J. Optim. The-
ory and Appl. 98 (1998), 37-53.

C.W.Groetsch, O.Scherzer, Nonstationary iterated Tikhonov-Morozov method and third
order differential equations for the evaluation of unbounded operators, Math. Meth.in the
Appl. Sciences 23 (2000), 1287-1300.

M.Hanke, A.Neubauer, O.Scherzer, A convergence analysis of the Landweber iteration
for nonlinear ill-posed problems, Numer. Math. 72 (1995), 21-37.

A.Henrot, M.Pierre, About existence of equilibria in electromagnetic casting, Q. Appl.
Math. 49 (1991), 563-575.

F.Hettlich, W.Rundell, Iterative methods for the reconstruction of an inverse potential
problem, Inverse Problems 12 (1996), 251-266.

F.Hettlich, W.Rundell, Iterative methods for the recovery of the support of a source term
in an elliptic differential equation, Inverse Problems 13 (1997), 959-976.

F.Hettlich, W.Rundell, The determination of a discontinuity in a conductivity from a
single boundary measurement, Inverse Problems 14 (1998), 67-82.



28

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

REFERENCES

K.H.Hoffmann, J.Sprekels, On the identification of coefficients of elliptic problems by
asymptotic regularization, Numer. Funct. Anal. Optimiz. 7, 157-177 (1984).

K.H.Hoffmann, J.Sprekels, On the identification of parameters in general variational
inequalities by asymptotic regularization, STAM J. Math. Anal. 17 (1986), 1198-1217.

S.D.Howison, J.R.Ockendon, eds., Special issue: Hele-Shaw flows and related problems,
Eur. J. Appl. Math. 10 (1999), 511-705.

V.Isakov, J.Powell, On the inverse conductivity problem with one measurement, Inverse
Problems 6 (1990), 311-318.

K.Ito, K.Kunisch, Z.Li, Level-set function approach to an inverse interface problem, In-

verse Problems 17 (2001), 1225-1242.

G.S.Jiang, D.Peng, Weighted ENO-schemes for Hamilton-Jacobi equations, STAM J. Sci.
Comput. 21 (2000), 2126-2143.

H.Kang, J.K.Seo, K.Jin, D.Sheen, Numerical identification of discontinuous conductivity
coefficients, Inverse Problems 13 (1997), 113-123.

P.Kaup, F.Santosa, M.Vogelius, A method for imaging corrosion damage in thin plates
from electrostatic data, Inverse Problems 12 (1996), 279-293

K.Kunisch, X.Pan, Estimation of interfaces from boundary measurements, SIAM J. Cont.
Optim. 32 (1994), 1643-1674.

L.Landweber, An iteration formula for Fredholm integral equations of the first kind, Am.
J. Math. 73 (1951), 615-624.

J.L.Lions, E.Magenes, Non-Homogeneous Boundary Value Problems and Applications
(Springer, Berlin, Heidelberg, New York, 1972)

A .Litman, D.Lesselier, F.Santosa, Reconstruction of a two-dimensional binary obstacle
by controlled evolution of a level-set, Inverse Problems 14 (1998), 685-706.

N.Milic, On the Mullins-Sekerka model for phase transitions in miztures, Q. Appl. Math.
49 (1991), 437-445.

J.M.Morel, S.Solimini, Variational Methods in Image Segmentation with 7 Image Pro-
cessing Experiments (Birkhauser, Basel, 1994).

W.W.Mullins, R.F.Sekerka, Morphological stability of a particle growing by diffusion or
heat flow, J. Appl. Phys. 34 (1963), 323-329.

A.Novruzi, M.Pierre, Structure of shape derivatives, J. Evolution Equations (2002), to
appear.

S.Osher, F.Santosa, Level set methods for optimization problems involving geometry and
constraints I. Frequencies of a two-density inhomogeneous drum, J. Comp. Phys. 171

(2001), 272-288.



REFERENCES 29

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

S.Osher, J.A.Sethian, Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton—Jacobi formulations, J. Comp. Phys. 79 (1988), 12-49.

S.Osher, R.P.Fedkiw, The Level Set Method and Dynamic Implicit Surfaces (Springer,
New York, 2002).

H.M.Park, H.J.Shin, Shape identification for natural convection problems using the ad-
joint variable method, Preprint (2002).

G.Peichl, W.Ring, Optimization of the shape of an electromagnet: Regularity results,
Adv. Math. Sci. App. 8 (1998), 997-1014.

O.Pironneau, Optimal Shape Design for Elliptic Systems (Springer, New York, 1984).

E. Radmoser, O. Scherzer, J. Weickert, Scale-space properties of nonstationary iterative
regularization methods, J. Vis. Commun. and Image Repr. 8 (2000), 96-114.

E.Radmoser, R.Wincor, Determining the inner contour of a furnace from temperature
measurements, Technical Report 12/1998 (Industrial Mathematics Institute, University
of Linz, 1998).

C.Ramananjaona, M.Lambert, D.Lesselier, Shape inversion from TM and TFE real data
by controlled evolution of level sets, Inverse Problems 17 (2001), 1585-1595.

C.Ramananjaona, M.Lambert, D.Lesselier, J.P.Zolesio, Shape reconstruction of buried
obstacles by controlled evolution of a level set: from a min-maz formulation to numerical
ezperimentation, Inverse Problems 17 (2001), 1087-1112.

J.R.Roche, Gradient of the discretized energy method and discretized continuous gradient
in electromagnetic shaping simulation, Appl. Math. Comput. Sci. 7, 545-565 (1997).

T.Runst, W.Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators and Non-
linear Partial Differential Equations (DeGruyter, Berlin, 1996).

F.Santosa, A level-set approach for inverse problems involving obstacles, ESAIM: Control,
Optimisation and Calculus of Variations 1 (1996), 17-33.

O.Scherzer, Convergence criteria of iterative methods based on Landweber iteration for
solving nonlinear problems, J. Math. Anal. Appl. 194 (1995), 911-933.

O. Scherzer, J. Weickert, Relations between regularization and diffusion filtering, J. Math.
Imaging and Vision 12 (2000), 43-63.

J.A.Sethian, Level Set Methods and Fast Marching Methods (Cambridge University Press,
2nd ed., Cambridge, 1999).

J.A.Sethian, A.Wiegmann, Structural boundary design via level set and immersed inter-
face methods, J. Comp. Phys. 163 (2000), 489-528.

P.Smereka, Semi-implicit level set methods for motion by mean curvature and surface
diffusion, Preprint.



30 REFERENCES

[76] J.Sokolowski, J.P.Zolesio, Introduction to Shape Optimization (Springer, Berlin, Heidel-
berg, New York, 1992).

[77] K.Sorli, I.M.Skaar, Monitoring the wear-line of a melting furnace, Proceedings of the
"3icipe’ ASME Conference (Port Ludlow, 1999).

[78] U.Tautenhahn, On the asymptotical reqularization of nonlinear ill-posed problems, Inverse
Problems 10 (1994), 1405-1418.

[79] J.E.Taylor, Surface motion due to crystalline surface energy gradient flows, in A.K.
Peters, ed., Elliptic and Parabolic Methods in Geometry (Wellesley, 1996), 145-162.

[80] A.K.Tornberg, B.Engquist, Regularization techniques for numerical approzimation of
PDEs with singularities, CAM Report 02- (UCLA, 2002).

[81] J.P.Zolesio, The material derivative (or speed) method for shape optimization, in: Op-
timization of distributed parameter structures, Vol. II, NATO Adv. Study Inst. Ser. E,
Appl. Sci. 50 (1981), 1089-1151.



