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Abstract

We consider the check of the involutive basis property in a polynomial
context. In order to show that a finite generating set F of a polynomial
ideal I is an involutive basis one must confirm two properties. Firstly, the
set of leading terms of the elements of F has to be complete. Secondly,
one has to prove that F is a Gröbner basis of I. The latter is the time
critical part but can be accelerated by application of Buchberger’s criteria
including the many improvements found during the last two decades.

Gerdt and Blinkov (Involutive Bases of Polynomial Ideals. Mathemat-
ics and Computers in Simulation 45, pp. 519–541, 1998) were the first
who applied these criteria in involutive basis computations. We present
criteria which are also transfered from the theory of Gröbner bases to
involutive basis computations. We illustrate that our results exploit the
Gröbner basis theory slightely more than those of Gerdt and Blinkov. Our
criteria apply in all cases where those of Gerdt/Blinkov do, but we also
present examples where our criteria are superior.

Some of our criteria can be used also in algebras of solvable type, e. g.,
Weyl algebras or enveloping algebras of Lie algebras, in full analogy to
the Gröbner basis case.

We show that the application of criteria enforces the termination of
the involutive basis algorithm independent of the prolongation selection
strategy.
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1 Introduction

This article contributes to an improvement of Janet’s involutive basis algorithm
in the context of polynomial ideals by adding criteria to avoid needless reduc-
tions. Since the involutive basis algorithm is similar to Buchberger’s Gröbner
basis algorithm [Buc65], it is quite natural to ask whether one can adapt the
improvements such as the use of criteria as described in [Buc79] in order to
speed up the algorithm. A first attempt has already been given by Gerdt and
Blinkov [GB98]. Although many useless prolongations are detected by their cri-
terion, we found examples where our more general criteria detect additional
unnecessary reductions. Two such examples are given in Section 8. In fact, our
criteria are as strong as in the Gröbner basis case in the sense that if three
polynomials form a Buchberger triple, cf. [BW93, p. 229], one S-pair is avoided.

We start by recalling some standard notions and clarify our notation in Section 2.
Our main theorem is presented and proved in Section 3. In Section 4, we extract
from the main theorem some criteria. Furthermore we present an algorithm to
test the involutive basis property which incorporates these criteria. The following
Section 5 compares our criteria with Buchberger’s criteria. The application of
our criteria to the computation of involutive bases is treated in Section 6.

Up to now any implementation of the involutive basis algorithm is bound to
a normal selection strategy, i. e., one must choose the next prolongation such
that its leading term is minimal with respect to the divisibility semiorder. Apel
[Ape98a] proved that the involutive basis algorithm (without usage of criteria)
will terminate if the division refines the Thomas division in each step and a
normal selection strategy is used. We give an example in Section 7 where the
involutive basis algorithm does not terminate if one deviates from a normal
strategy. In the same section we show, however, that termination is guaranteed
even independent of the selection strategy if our criteria are applied.

We conclude our article with two examples that demonstrate the power of our
criteria.

2 Preliminaries

As a reference we give here our notation in tabular form.

X set of variables X = {x1, . . . , xn}
K field
K[X] polynomial ring over K in the variables X
Id(G) ideal of G ⊆ K[X] in K[X]
T monoid of all power products of K[X]
u E v divisibility relation on T : ‘u divides v’
u C v divisibility relation on T : ‘u divides v properly’
〈U〉 monoid in T generated by U ⊆ T
t 〈Y 〉 cone with vertex t, t 〈Y 〉 = {tu |u ∈ 〈Y 〉}
≺ admissible term order on T
supp f set of all terms of f
lt f leading term of f with respect to ≺
lc f leading coefficient of f with respect to ≺
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lm f leading monomial of f with respect to ≺, lm f = lc(f) lt(f)
[g1, g2] abbreviation for lcm(lt g1, lt g2)
spol(f, g) S-polynomial of f and g
a EG g ‘ancestor of’ relation wrt G: ‘a is an ancestor of g’
anc g ancestor polynomial a with a EG g
wanc g weak ancestor polynomial w with ltw E lt g

FGt

{∑
g∈G hgg

∣∣∣∀g∈G hg ∈ K[X] ∧ (hg = 0 ∨ lt(hgg) � t)
}

F̂Gt abbreviation for
⋃
s≺t F

G
s

S(f, g) abbreviation for the relation spol(f, g) ∈ F̂G[f,g]
R(x, g, f) abbreviation for ‘NFM(xg,G) was computed’ where xg was involutively

top-reduced using f

We denote by K[X] the polynomial ring over a field K in the variables X =
{x1, . . . , xn}. The monoid of power products of K[X] is denoted by T . Since we
are not interested in this article in computations with respect to different term
orders we fix an arbitrary admissible1 term order ≺ on T . For 0 6= g ∈ K[X]
we denote by supp g (⊂ T ) the set of terms of g that appear with a non-zero
coefficient and by lt g the biggest term of supp g with respect to the term order.
Furthermore, ifG ⊆ K[X], let lt(G) := {lt g | 0 6= g ∈ G}. Divisibility and proper
divisibility of two terms u, v ∈ T is written as u E v and u C v, respectively.
By [g1, g2] we abbreviate the least common multiple of the leading terms of two
polynomials g1, g2 ∈ K[X].

Definition 2.1 [Ape98b, p. 54] Let G = {g1, . . . , gr} ⊆ K[X] and ≺ be an
admissible term order on T . For t ∈ T , let FG,≺t be the additive subgroup of
I := Id(G) consisting of all polynomials h ∈ I which can be represented in the
form h =

∑r
%=1 h%g% where h% ∈ K[X] and either h% = 0 or lt(h%g%) � t for

all % = 1, . . . , r. The family
(
FG,≺t

)
t∈T

is a K[X]-module filtration of I, the

so-called Gröbner filtration of I. By F̂G,≺t we denote the union
⋃
s≺t F

G,≺
s .

Since we have fixed a term order, we omit the upper index ≺ throughout the
rest of the article.

The proof of our main theorem is based on the following characterisation of
Gröbner bases.

Theorem 2.2 [Ape98b, Theorem 5.4] Let G = {g1, . . . , gr} ⊆ K[X]. G is a
Gröbner basis of I := Id(G) if and only if FGt = {h ∈ I |h = 0 ∨ lth � t} for
all t ∈ T .

Definition 2.3 Let g1, g2 ∈ K[X]. We define the S-polynomial of g1 and g2

by

spol(g1, g2) :=
t1g1

lc(t1g1)
− t2g2

lc (t2g2)

where t1, t2 ∈ T are such that lt(t1g1) = lt(t2g2) = [g1, g2].

1An order on T is admissible if it is a well-order and compatible with the monoid structure
of T .
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Definition 2.4 Let G ⊆ K[X] and f, g ∈ K[X]. We define by SG(f, g) the
binary predicate spol(f, g) ∈ F̂G[f,g]. In places where G is clear from the context,
we omit the upper index and simply write S(f, g).

The notation S(f, g) is just a short hand for saying that the S-polynomial has a
‘good’ representation. Note that the following lemma is just Buchberger’s chain
criterion.

Lemma 2.5 [Buc79] Let G ⊆ K[X] be a finite set of non-zero polynomials. For
any f, g, p ∈ G it holds

S(f, p) ∧ S(p, g) ∧ lt p E [f, g] =⇒ S(f, g).

Definition 2.6 Let G = {g1, . . . , gr} ⊂ K[X] be a set of non-zero polynomials.
We define a quasi order EG on G by f EG g if and only if there exist c ∈ K and
t ∈ T such that g − ctf ∈ F̂Glt g. If f EG g, we say that f is an ancestor of g.

The quasi order EG is a partial order if all leading terms of G are pairwise
distinct.

Note that f EG g implies lt f E lt g and S(f, g).

Janet [Jan20] introduced an algorithm to compute passive complete systems of
PDEs. His algorithm was translated by Wu [Wu91] and Zharkov and Blinkov
[ZB93] into the world of polynomials where it turned out to be another method
to compute Gröbner bases that possess an additional structure. Such a struc-
ture comes from a separation of the variables into multiplicative and non-
multiplicative. Janet used a certain rule for the separation of variables (nowadays
known as Janet division). Gerdt and Blinkov [GB98] realised that such a sepa-
ration can be generalised and came up with the concept of ‘involutive division’.
A second approach of generalising Janet’s method is due to Apel [Ape98a]. Al-
though there are now two slightly differing notions of involutive division, our
main theorem will be shown to hold in both situations. We will explicitly state
the necessary assumptions that must additionally be made.

Since an involutive division can be seen as a restriction of the ordinary divisibil-
ity relation on terms, Apel [Ape98b] used the term ‘admissible partial division’
instead.

Definition 2.7 Let (Yt)t∈T be a family of subsets of X. The family M =
(t 〈Yt〉)t∈T is called a partial division. If v ∈ u 〈Yu〉, then v is called an M-
multiple of u, and u is anM-divisor of v. The ordinary division (t 〈X〉)t∈T
is denoted by O.

Let U ⊆ T . Each family N = (u 〈Yu〉)u∈U induces a partial division M =
(t 〈Yt〉)t∈T by setting Yt := X for t /∈ U . We also call N a partial division and
mean its induced partial division. Let @ be an irreflexive linear order on U ⊆ T .
A partial division M = (t 〈Yt〉)t∈T is called admissible on (U,@) if for all
u, v ∈ U with u @ v, one of the conditions

u 〈X〉 ∩ v 〈Yv〉 = ∅ or (1)
u 〈Yu〉 ⊂ v 〈Yv〉 (2)
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holds. M is admissible on U or U-admissible if there exists an irreflexive
linear order @ on U such that M is admissible on (U,@).

LetM = (t 〈Yt〉)t∈T be a partial division. The set U ⊆ T is calledM-complete
if M is admissible on U and⋃

t∈U
t 〈Yt〉 =

⋃
t∈U

t 〈X〉 .

The set U is called complete if U is M-complete for some partial division M.

The following definition introduces a partial order on the set of all partial divi-
sions.

Definition 2.8 [Ape98a] Let M and N be two partial divisions. If Mt ⊆ Nt
for all t ∈ T we say that N refines M.

The Thomas division [Tho37] is a particular admissible partial division and
mainly of theoretical interest. Apel [Ape98a] showed that the involutive basis
algorithm will terminate if one chooses in each iteration a partial division which
refines the Thomas division.

Definition 2.9 (Thomas Division) Let U ⊆ T be a set of power products.
Define Yt = X for all t 6∈ U and Yt := {x ∈ X | ∀u ∈ U : degx u ≤ degx t} for
all t ∈ U . The division (t 〈Yt〉)t∈T is called Thomas division on U .

Definition 2.10 Let G ⊆ K[X] be a set of polynomials. G is called an involu-
tive basis if G is a Gröbner basis and ltG is complete. An involutive basis G
is an M-involutive basis if ltG is M-complete for some partial division M.

Definition 2.11 Let G ⊆ K[X] be a set of non-zero polynomials and M be a
partial division. G is called M-minimal (resp. M-reduced) if lt g /∈ Mlt g′

(resp. supp g ∩Mlt g′ = ∅ and lc g = 1) for all g, g′ ∈ G with g 6= g′.

Theorem 2.12 [Ape98a, Theorem 5.1] Let G = {g1, . . . , gr} ⊆ K[X] be a set
of non-zero monic polynomials and let @ be an irreflexive linear order on T . Let
M = (t 〈Yt〉)t∈T be a partial division which is admissible on (ltG,@). Further-
more assume that G is M-minimal. Then the following statements are equiva-
lent.

(i) G is an M-involutive basis.

(ii) ltG is M-complete and G is a Gröbner basis.

(iii) ltG is M-complete and S(gi, gj) for all 1 ≤ i < j ≤ r.

(iv) For all 1 ≤ i ≤ r and x ∈ X\Ylt gi there exist j ∈ {1, . . . , r} and t ∈
〈
Ylt gj

〉
such that xgi − tgj ∈ F̂Glt(xgi).

(v) For all 1 ≤ i ≤ r and x ∈ X \ Ylt gi there exist j ∈ {1, . . . , r} and t ∈ 〈X〉
such that xgi − tgj ∈ F̂Glt(xgi) and lt(gj) @ lt(gi).

Proof. The implications (i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv) are trivial.
The implication (iv) =⇒ (v) follows by admissibility of M on (ltG,@). And
(v) =⇒ (ii) follows from Theorem 5.1 in [Ape98a]. �
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3 Main Theorem

Our main theorem will add another equivalent condition to those presented in
Theorem 2.12. We are going to present the theorem first and use in the proof
some lemmata that will follow. Let us emphasise the fact, that the lemmata are
pure Gröbner business without any reference to a partial division.

Theorem 3.1 Let G ⊆ K[X] be a set of non-zero monic polynomials, let @
be an irreflexive linear order on ltG, and let M = (t 〈Yt〉)t∈T be an admissible
partial division on (ltG,@) such that G is M-minimal. Moreover, let J be an
arbitrary linear order on G.

For all g ∈ G and x ∈ X \ Ylt g let there exists f ∈ G such that lt(xg) ∈Mlt (f)

and one of the following conditions holds.

1. xg − lt (xg)
lt f f ∈ F̂Glt (xg).

2. There exist g′, f ′ ∈ G such that

lt g′ E lt g, lt f ′ E lt f, [g′, f ′] = lt (g′f ′) (3)

and either

(a) lt f C [g, f ] or

(b) lt f = [g, f ] ∧ ∃f ′′ ∈ G : f ′′ EG f ∧ [f ′′, f ′] C [g, f ].

3. There exist g′, f ′, p ∈ G such that

lt g′ E lt g, lt f ′ E lt f, [p, g′] C [g, f ], [p, f ′] C [g, f ] (4)

and either

(a) lt f C [g, f ] or

(b) lt f = [g, f ] ∧ ∃f ′′ ∈ G : f ′′ EG f ∧ [f ′′, f ′] C [g, f ].

4. There exist g′, h, h′ ∈ G, y ∈ X \ Ylth such that

lt g′ E lt g, lth′ E lth, [g′, h′] C lt(xg) = lt(yh), h J g. (5)

Then G is an M-involutive basis of I = Id(G).

Proof. Since for all g ∈ G and x ∈ X \ Ylt g the monomial lt (xg) is contained
in the involutive cone of lt f for some f ∈ G, the set ltG isM-complete. Hence,
it remains to show that G is a Gröbner basis of I. This is equivalent to show p ∈
FGlt p for all p ∈ I \ {0}. Suppose there exists p ∈ I \ {0} with p /∈ FGlt p. Let t ∈ T
be the minimal (w.r.t. ≺) term such that there exists p ∈ I satisfying p ∈ FGt \F̂Gt
and lt p ≺ t. We call L = ((hi, gi))i=1,...,k a t-representation if hi ∈ K[X] \ {0},
gi ∈ G, lt(higi) � t, and lt gi 6= lt gj for all i, j ∈ {1, . . . , k} with i 6= j. Let
Σ (L) :=

∑k
i=1 higi and Γ (L) := {gi | lt(higi) = t, t /∈Mlt gi , 1 ≤ i ≤ k }. We

also say that L is a t-representation of p if p = Σ (L). If L is a t-representation,
Σ (L) ∈ FGt \ F̂Gt , and lt Σ (L) ≺ t then Γ (L) 6= ∅. Among all t-representations
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choose L = ((hi, gi))i=1,...,k such that p := Σ (L) ∈ FGt \ F̂Gt , lt p ≺ t, and
maxJ Γ (L) is minimal with respect to J.

So, w.l.o.g. let g1 be the maximal element of Γ (L) with respect to J. From
the definition of Γ (L) it follows that there exists x ∈ X \ Ylt g1 such that x
divides lth1. ByM-completeness there exists f ∈ G such that lt(xg1) ∈Mlt(f).
The polynomial g = g1, its non-multiplicative variable x, and the polynomial
f must satisfy one of the assumptions 1–4. We are going to show that each of
these assumptions implies spol(g1, f) ∈ F̂Glt(xg1). For the first assumption this is
obvious. For conditions 2 and 3 we apply Lemma 3.4 and 3.5, respectively, in
order to show S(g1, f). Finally, if assumption 4 applies to g = g1 and x then
we must have S(h, f) for the element h from condition 4 since by construction
of L we conclude spol(h, f) = yh− lt (yh)

lt f f ∈ FGlt (yh). Application of Lemma 3.6
shows S(g1, f).

It follows lt(h1)g1 = lt (h1g1)
lt f f+ĥ for a suitable polynomial ĥ ∈ F̂Gt . Substituting

the left hand side of the above equation in the sum
∑k
i=1 higi by the right hand

side yields a new t-representation L′ = ((h′i, g
′
i))i=1,...,k′ of p.

Moreover, Γ (L′) ⊆ (Γ (L) \ {g1}) ∪ {f}. Neither t ∈Mlt f nor f J g1 can hold,
since then L′ would contradict the minimality assumptions on L.

If t /∈ Mlt f and g1 J f we can assume, w.l.o.g., g′1 = f and repeat the above
arguments. For x′ ∈ X \Ylt g′1

such that x′ E lth′1 there exist f ′ ∈ G and ĥ′ ∈ F̂Gt

satisfying lt (x′g′1) ∈ Mlt f ′ and lt(h′1)g′1 = lt (h′1g
′
1)

lt f ′ f ′ + ĥ′. Hence, again we can
construct a representation L′′ of p where now f ′ instead of g′1 appears in the set
Γ (L′′).

Iteration of the above process will eventually terminate with a t-representation
L∗ of p, which contradicts the minimality assumptions on L since the sequence
lt g1, lt f, lt f ′, . . . is decreasing with respect to @ according to the admissibility
ofM and finite because there are only finitely many elements in G whose leading
term divides t. In summary, the supposition of the existence of p ∈ I satisfying
p 6= 0 and p /∈ FGlt p must have been wrong and the assertion of the theorem
follows. �

Remark 3.2 We introduced the additional order J for use in condition 4 in
order to achieve more flexibility in view of an application of the Theorem to the
completion procedure. Of course, one could simply use g J g′ :⇐⇒ lt g @ lt g′

or g J g′ :⇐⇒ lt g ≺ lt g′. But having in mind not only the involutive basis
check but also the involutive basis completion algorithm, it is preferable to use
the ‘age’ or ‘index relation’ for J, i. e., gi J gj :⇐⇒ i < j, where the elements
of G are enumerated according to insertion time in G.

The freedom to choose J allows to circumvent the following situation. During
a completion process it may happen that a non-multiplicative prolongation xg
is explicitly reduced because its reduction preventing basis polynomial h is not
yet part of the basis at this time. A good criterion could and should avoid this
situation by preventing the reduction of yh instead. This behaviour is ensured
by using the age relation as J in a criterion derived from condition 4.

Obviously, the theorem still remains valid if the linear order J is replaced by a
family (Jt)t∈T of linear orders on G and the condition h Jlt (xg) g is used in
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assumption 4. In our implementation we do not exploit this fact so far. But a
possible improvement based on this observation would be to deviate from the age
relation by making elements h small with respect to Jlt (yh) in case the reduction
of the non-multiplicative prolongation yh can be avoided according to one of the
other criteria 2 or 3.

Remark 3.3 The statements of Theorem 3.1 and the corresponding Lemmata
are not only valid for partial divisions M which are admissible on (ltG,@)
but an analogous statement including conditions 2–4 holds also for arbitrary
continuous involutive division in the sense of [GB98].

This is obvious for Lemmata 3.4–3.6 none of them depends on the partial divi-
sion M.

There are two critical points in the proof of Theorem 3.1 where replacing the
admissibility of M on ltG by the weaker condition u 〈Yu〉 ∩ v 〈Yv〉 = ∅ for all
u, v ∈ ltG turns out to be insufficient. The first place is the deduction of M-
completeness from lt (xg) ∈

⋃
h∈GMlth for all x ∈ X and g ∈ G. But this

statement remains true for arbitrary continuous involutive divisions.

The second critical place is the proof of the termination of the iteration process
transforming the representation

∑k
i=1 higi of p into a representation where the

largest summand h1g1 is replaced by lt (h1g1)
lt f f + ĥ, where ĥ ∈ F̂Gt , f ∈ G, and

lt f is the involutive divisor of lt (h1g1). Obviously, this process terminates if
for each t ∈ T and each U ⊆ T any sequence (y1, u1), (y2, u2), . . . of pairs from
X × U satisfying yiui E t and yiui ∈ Mui+1 \Mui for all i = 1, 2, . . . is finite.
Again, this condition holds for all continuous involutive divisions.

Lemma 3.4 Let G ⊆ K[X] be a set of non-zero monic polynomials with distinct
leading terms. Let g, f ∈ G. For each s ≺ [g, f ] and each h ∈ Id(G)\{0} assume
h ∈ FGs =⇒ h ∈ FGlth. Furthermore, assume condition 2 of Theorem 3.1. Then
S(g, f) holds.

Proof. Let g, f, g′, f ′ ∈ G be such that (3) holds. From [g, g′] ≺ [g, f ] it follows
S(g, g′). In addition S(f ′, f) by [f, f ′] ≺ [g, f ] in subcase 2a and S(f ′, f ′′) due
to [f ′, f ′′] ≺ [g, f ] and S(f ′′, f) because f ′′ EG f in subcase 2b. Moreover,
S(g′, f ′) according to Buchberger’s coprime criterion. By repeated application
of Lemma 2.5 we conclude S(g, f). �

Lemma 3.5 Let G ⊆ K[X] be a set of non-zero monic polynomials with distinct
leading terms. Let g, f ∈ G. For each s ≺ [g, f ] and each h ∈ Id(G)\{0} assume
h ∈ FGs =⇒ h ∈ FGlth. Furthermore, assume condition 3 of Theorem 3.1. Then
S(g, f) holds.

Proof. Let g, f, g′, f ′, p ∈ G be such that (4) holds. From [g, g′], [g′, p], [p, f ′] ≺
[g, f ] follows S(g, g′), S(g′, p), and S(p, f ′). While we deduce S(f ′, f) from
[f ′, f ] ≺ [g, f ] in subcase 3a we obtain S(f ′, f ′′) from [f ′, f ′′] ≺ [g, f ] and
S(f ′′, f) by the assumption f ′′ EG f in subcase 3b. Finally, repeated applica-
tion of Lemma 2.5 yields S(g, f). �
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Lemma 3.6 Let G ⊆ K[X] be a set of non-zero monic polynomials with distinct
leading terms. Let t ∈ T be a term and for each s ≺ t and each h ∈ Id(G) \ {0}
assume h ∈ FGs =⇒ h ∈ FGlth. Let g, g′, h, h′ ∈ G be such that lt g′ E lt g,
lth′ E lth, and [g′, h′] C [g, f ] = [h, f ] = t.

If S(h, f) holds then S(g, f) holds, too.

Proof. From [g, g′], [g′, h′], [h′, h] ≺ t follows S(g, g′), S(g′, h′), and S(h′, h).
By Lemma 2.5, we deduce S(g, h). Moreover, S(h, f) by assumption. We con-
clude S(g, f) by Lemma 2.5. �

Remark 3.7 Lemmata 3.5, and 3.6 and their proofs remain valid almost lit-
erally for left ideals generated by G of algebras of solvable type. Lemma 3.4 is
based upon Buchberger’s coprime criterion and, therefore, cannot be transfered.

Hence, after removing Condition 2 also Theorem 3.1 including its proof holds
in the more general situation of left ideals generated by G of algebras of solvable
type. Only a few standard adaptions, cf. [AL88] or [KRW90], are necessary in
the proof.

4 Check of the Involutive Basis Property

In this section we will present an algorithm which checks theM-involutive basis
property of a given finite set G with respect to a given partial divisionM. This
algorithm is based upon Theorem 3.1. Conditions 2–4 of the theorem are used in
order to create criteria for omitting the reduction of certain non-multiplicative
prolongations. In the presented algorithms we use the following assumptions and
notations. Let G = {g1, . . . , gr} ⊆ K[X] with lt g 6= lt g′ for all g, g′ ∈ G and let
M = (t 〈Yt〉)t∈T be an admissible partial division on ltG. Let H ⊆ G be minimal
with the property 〈ltH〉 = 〈ltG〉. Let anc,wanc : G→ G be two functions such
that anc g EG g, lt(wanc g) E lt(anc g) E lt g, and wanc g ∈ H for all g ∈ G.
Both functions are combined to define a family of functions ancs : G→ G by

ancs g :=

{
wanc g if lt (anc g) C s
anc g otherwise

for all s ∈ T and g ∈ G. By anc g and wanc g we abbreviate the notions ‘an-
cestor’ and ‘weak ancestor’ of g, respectively. Usually, s will be equal to [g, f ]
when calling ancs f or ancs g during the investigation of a non-multiplicative
prolongation xg which is involutively top-reducible by f ∈ G.

Under the made assumption that the leading term of the weak ancestor divides
the leading term of the ancestor, the objects ancs f and ancs g can always serve
as f ′ and g′ in Conditions 2–4 of Theorem 3.1. The above definition of ancs
even incorporates a generalisation of Theorem 3.1 whose justification is covered
by the forthcoming Remark 4.1.

Let idx be a function which assigns to each element gi ∈ G its index i. The
function NFM assigns to each polynomial h ∈ K[X] an M-involutive normal
form of h modulo G. NFM(0, G) = 0 and h′ is an M-involutive normal form
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of h 6= 0 modulo G if h →∗G,M h′ and h′ = 0 or lth′ /∈
⋃
t∈ltGMt. The

symbol→∗G,M denotes the reflexive, transitive closure of the involutive reduction
relation which is defined for h 6= 0 by h→G,M h′ iff

∃g ∈ G, t ∈ 〈Ylt g〉 , c ∈ K \ {0} : h′ = h+ ctg ∧ lt (tg) ∈ supph \ supph′.

If we have h →∗G,M h′ and lth ∈ Mlt g \ supph′ for h ∈ K[X] \ {0} and g ∈ G
then we say that h is involutively top-reducible by g (with respect to M)
and h is involutively top-reduced using g during the M-reduction of h to
h′.

We write NF, →G, and →∗G as abbreviations for NFO, →G,O, and →∗G,O, re-
spectively, where O = (t 〈X〉)t∈T denotes the ordinary division.

Algorithm 1 involutiveBasisCheck

Call: h = involutiveBasisCheck(G,M)

Input: G ⊂ K[X] \ {0} · · · finite set of polynomials with pairwise distinct
leading terms
M = (t 〈Yt〉)t∈ltG · · · admissible partial division on ltG

Output: If G is an M-involutive basis then h = 0, otherwise h ∈ Id(G) and
lth /∈

⋃
t∈ltGMt.

1: Q :=
{
g ∈ G

∣∣ ∃g′ ∈ G \ {g} : lt g ∈Mlt (g′)

}
2: G := G \Q
3: C := {(x, g) | g ∈ G ∧ x ∈ X \ Ylt g } ∪ {(1, g) | g ∈ Q}
4: while C 6= ∅ do
5: Choose smallest (t, g) from C; C := C \ {(t, g)}
6: if not useless(t, g) then
7: h := NFM(tg,G)
8: if h 6= 0 then return h
9: return 0

The subroutine useless is presented as Algorithm 2 where non-specified objects
are inherited from Algorithm 1. It checks if a prolongation can be omitted
according to Conditions 2–4 of Theorem 3.1 which we encoded in the following
predicates.

C1(g, f, s) :⇐⇒ [ancs g, ancs f ] 6= s

C2(g, f, s) :⇐⇒ lt (ancs g) · lt (ancs f) = s

C3(g, f, s,H) :⇐⇒ ∃h ∈ H : lth C s ∧ [h, ancs f ] 6= s ∧ [h, ancs g] 6= s

C4(g, s,G,M) :⇐⇒ ∃h ∈ G, y ∈ X \ Ylth : [ancs g, ancs h] C s = lt(yh)
∧ idx (h) < idx (g)

Remark 4.1 Note, that the correctness of Algorithm 1 essentially follows from
Theorem 3.1. However, the algorithm works also for inputs G which are not
M-minimal. Let Q ⊆ G be as defined in Algorithm 1. It is easy to see that G
is an M-involutive basis of Id(G) if and only if G \Q satisfies the assumptions
of Theorem 3.1 and NFM(q,G \Q) = 0 for all q ∈ Q. It is easy to observe that
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Algorithm 2 useless

Call: b = useless(t, g)

Input: t = 1 ∨ t ∈ X \ Ylt g

g ∈ G
Output: b = true if tg need not be reduced and

b = false otherwise

1: Let H ⊆ G be minimal with the property 〈ltH〉 = 〈ltG〉.
2: s := lt (tg)
3: if @f ∈ G : s ∈Mlt(f) then return false
4: Let f be such that s ∈Mlt(f).
5: return C1(g, f, s) ∨ C2(g, f, s) ∨ C3(g, f, s,H) ∨ C4(g, s,G,M)

the criteria implemented in Algorithm 2 remain valid also for prolongations of
type (1, q).

Algorithm 2 does not fully exploit Theorem 3.1. Instead of using a deterministic
function ancs one could test all possible pairs (g′, f ′) ∈ G×G fitting to the spec-
ification of ancs g or ancs f , respectively. However, it seems that the overhead
caused by the tests is larger than the effect gained by the criterion. Nevertheless,
this question remains open for further investigation.

5 Involutive Criteria vs. Buchberger’s Criteria

With s = [g, f ] the expression C1(g, f, s) reflects a particular case of Condition 3
of Theorem 3.1, namely, when p = ancs g or p = ancs f . It follows the ideas of
[GB98]. While Gerdt and Blinkov refer to elements f ′, g′ ∈ G such that lt f ′ E
lt f , lt g′ E lt g and NFM( lt f

lt f ′ ·f
′) = NFM( lt g

lt g′ ·g
′) = 0 we use f ′ = ancs f and

g′ = ancs g. Therefore, f ′ and g′ need to satisfy only the weaker assumptions
lt f ′ E lt f and lt g′ E lt g in most cases. In the exceptional case lt f = lt (xg)
the additional assumption f ′ EG f is made. Even this additional condition is
still weaker than NFM( lt f

lt f ′ ·f
′) = 0 unless the non-multiplicative prolongations

are processed by increasing leading term, i. e., if the normal strategy is used,
where both conditions become equivalent.

In order to compare the involutive criteria to Buchberger’s criteria applied in
the Gröbner basis algorithm we need to explain the meaning of the explicit re-
duction of an S-polynomial in the involutive algorithm. Consider two elements
g′, f ′ ∈ G. By convention, we say that the S-polynomial spol(g′, f ′) is explicitly
reduced during the involutive algorithm if there are polynomials g, f ∈ G and
a variable x ∈ X \ Ylt g such that g′ EG g, f ′ EG f , lt(xg) = [g′, f ′] ∈ Mlt(f)

and the reduction of the prolongation xg could not be omitted by one of our
criteria. Note, the reduction step cancelling the leading term lt (xg) will be per-
formed using f in this situation. The above convention shows that C1 reflects
the fact that the explicit reduction of non-trivial multiples of S-polynomials can
be avoided also in the involutive algorithm. Consider two elements g′, f ′ ∈ G
such that spol(g′, f ′) can be skipped during Buchberger’s algorithm using the
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coprime criterion, i. e., [g′, f ′] = lt (g′f ′). If there exist g, f ∈ G and a variable
x ∈ X \ Ylt g such that g′ EG g, f ′ EG f , lt(xg) = [g′, f ′] ∈ Mlt f then the
reduction of the non-multiplicative prolongation xg is omitted by criterion C2.
If such objects g, f ∈ G and x ∈ X \ Ylt g do not exist then the explicit re-
duction of spol(g′, f ′) is impossible by convention. The correctness of the use
of C2 follows from Condition 2 of Theorem 3.1. Now, consider three basis el-
ements f ′, g′, h′ ∈ G such that lth′ E [g′, f ′]. In this case at most two of the
three S-polynomials spol(g′, f ′), spol(g′, h′) and spol(f ′, h′) need to be reduced
in Buchberger’s algorithm according to the chain criterion. If there is no p ∈ G
such that [g′, f ′] ∈ Mlt p and either f ′ EG p or g′ EG p then spol(g′, f ′) will
not be reduced explicitly by the involutive algorithm. W.l.o.g it suffices to con-
sider in addition the case that there exists f ∈ G such that [g′, f ′] ∈ Mlt f and
f ′ EG f . If [h′, g′] = [f ′, g′] then the reduction of spol(h′, g′) is automatically
omitted by the involutive algorithm, even without application of criteria. So
consider the final case of [h′, g′] C [f ′, g′]. If also [h′, f ′] C [f ′, g′] then criterion
C3 applies in order to cancel any possible non-multiplicative prolongations xg
of some g ∈ G such that g′ EG g and lt (xg) = [f ′, g′]. Hence, spol(g′, f ′) is
not reduced explicitly. Finally, assume [h′, f ′] = [f ′, g′]. If there exist elements
g, h ∈ G and non-multiplicative prolongations xg and yh such that g′ EG g,
h′ EG h, and lt (xg) = lt (yh) = [f ′, g′] then one of these prolongations is
skipped by criterion C4, i. e., either spol(g′, f ′) or spol(h′, f ′) is not reduced
explicitly. But if not both prolongations xg and yh of the above type exist then
the reduction of at least one of the S-polynomials spol(g′, f ′) and spol(h′, f ′)
cannot be reduced explicitly by convention. In summary, Algorithm 1 will never
reduce more than two out of the three S-polynomials spol(g′, f ′), spol(g′, h′) and
spol(f ′, h′) explicitly. The theoretical justification of criteria C3 and C4 consists
in Conditions 3 and 4 of Theorem 3.1, respectively. In summary, we observed
whenever the reduction of an S-polynomial can be avoided in Buchberger’s al-
gorithm our Algorithm 1 will omit the explicit reduction of the S-polynomial of
two elements from H, too.

6 Involutive Basis Completion Algorithm

Until now we discussed the check algorithm for the involutive basis property.
The computation of an involutive basis from an arbitrary given finite generating
set can be done by application of a completion algorithm. Each time the check
algorithm fails for the actual basis, the basis is enlarged by the failure causing
element and the check algorithm is repeated until it ends successfully. But, in
general, some of the prolongations tg treated previously need re-reduction due to
the necessary changes of the partial division caused by the basis enlargements.
This, however, involves reductions of prolongations that have already been ex-
plicitly reduced in a previous run of the check algorithm and it is a natural wish
to avoid such repeated reductions as much as possible.

Total avoidance of repeated reductions is possible if an order @ is fixed during
the whole computation, i. e., each subset U of terms is ordered by the restriction
of a fixed order @ of T to U , and after each enlargement of the basis, a partial
division is chosen which is admissible on (U,@), cf. [Ape98a]. Studying why
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multiple reduction of the same prolongation can be avoided one observes that
Apel’s proof relies on Buchberger’s chain criterion.

Before we are going to present the involutiveBasis algorithm, let us deal
with the question of avoiding repeated reductions of a prolongation. From The-
orem 2.12, Condition (iv), we learn that the reduction of a prolongation (x, g),
g ∈ G, x ∈ X \ Ylt g during the involutive basis check serves for the verification
of two conditions, namely, first the existence of f ∈ G such that lt (xg) ∈Mlt f

and second the validity of S(g, f).

Let G be an intermediate basis andM the corresponding lt(G)-admissible par-
tial division. Suppose in the M-involutive basis check we encounter a prolon-
gation (t, g), with g ∈ G′ ⊂ G, t ∈ X ∪ {1} which has already been explicitly
reduced using h ∈ G′, i. e., lt (xg) ∈ M′lth, where G′ was the basis at the time
when this reduction took place (a previous involutive basis check) and M′ the
corresponding lt(G′)-admissible partial division. Furthermore suppose that now
we find f ∈ G with lt(tg) ∈ Mlt f . This is exactly the situation where tg will
repeatedly be reduced if the reduction cannot be avoided by means of criteria.
The M-involutive basis check requires the verification of SG(g, f). Provided
SG(h, f) holds we can deduce SG(g, f) from SG(g, h) and Buchberger’s chain
criterion. Since the property SG

′
(g, h) is independent of the partial division and

preserved under enlargement of the basis, we can conclude SG(g, h) from the ex-
plicit reduction of tg in theM′-involutive basis check. If h = f or h = anc f , the
relation S(g, f) follows immediately. Let us describe this case by the predicate

C0(t, g,G) :⇐⇒ ∃f ∈ G : lt(tg) ∈Mlt(f) ∧ (R(t, g, f) ∨R(t, g, anc f))

where R(t, g, f) expresses that (t, g), t ∈ X ∪ {1} and g ∈ G, was reduced
explicitly and top-reduced using f ∈ G during the reduction process. It defines
an effective version of Condition 1 of Theorem 3.1. Let s := [g, f ] = lt (tg).
Also in cases where [ancs h, ancs f ] C s, we easily conclude S(g, f). In fact,
this situation can effectively be tested by a slightly generalised version of our
criterion C3 which takes advantage of the knowledge of R(t, g, h). Even the case
[ancs h, ancs f ] = s = lt (ancs h) · lt (ancs f) can be handled by a generalised
version of C3 incorporating C2. In the remaining case, we have to ensure that
a (perhaps multiple) non-multiplicative prolongation of h is either explicitly
reduced starting with f or the reduction is omitted by another reason than
application of a Buchberger like criterion involving g.

Recall the proposals of [Ape98a], i. e., to fix the order @ and to apply Buch-
berger’s criterion only in the restricted sense that each non-multiplicative pro-
longation is reduced only once during the completion process. In this situation
we easily deduce lt f @ lth @ lt g and, further, that lt g can never be an involu-
tive divisor of [h, f ]. Hence, the treatment of the S-pair (h, f) is definitely not
omitted by reference to g.

Our discussion makes clear that our criteria, in particular C0 and (a generalised
version of) C3, will avoid multiple reductions of a prolongation in a huge number
of cases by exploiting the knowledge of previously performed reductions.

Another aspect of a ‘good’ dynamical property of the criteria has already been
given in Remark 3.2. We propose to use the index function as stated in the
definition of C4 in order to let the history of reductions decide which of several
potential prolongations need not be reduced.
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So in contrast to the multiple reduction avoidance rule from [Ape98a] we still
do not lose the freedom of changing @ during the completion process.

Algorithm 3 involutiveBasis

Call: G = involutiveBasis(F )

Input: F ⊂ K[X] \ {0} · · · finite set of polynomials with pairwise distinct
leading terms

Output: G · · · involutive basis of the ideal of F in K[X]

1: G := F
2: M := (t 〈Yt〉)t∈lt(G) := partialDivision(ltG)
3: Q :=

{
g ∈ G

∣∣ ∃f ∈ G \ {g} : lt g ∈Mlt (f)

}
4: C := {(x, g) | g ∈ G \Q ∧ x ∈ X \ Ylt g } ∪ {(1, q) | q ∈ Q}
5: while C 6= ∅ do
6: Choose (t, g) from C; C := C \ {(t, g)}
7: if not (C0(t, g,G) ∨ useless(t, g)) then
8: h := NFM(tg,G \Q)
9: if h 6= 0 then

10: G := G ∪ {h}
11: M := (t 〈Yt〉)t∈lt(G) := partialDivision(ltG)
12: Q :=

{
g ∈ G

∣∣ ∃f ∈ G \ {g} : lt g ∈Mlt (f)

}
13: C := {(x, g) | g ∈ G \Q ∧ x ∈ X \ Ylt g } ∪ {(1, q) | q ∈ Q}
14: return G

The function call partialDivision(ltG) in lines 2 and 11 computes a partial
division which is admissible on the monomial set ltG and refines the Thomas
division on ltG.

The correctness of Algorithm 3 follows from Theorem 3.1 and Remark 4.1.

Remark 6.1 The functions anc and wanc reflect parts of the history of the
algorithm. They are initialised by anc g := g and wanc g := h where h ∈ G is
such that lth is a E-minimal divisor of lt g. The values anc g and wanc g are
updated during the run of the algorithm in the following situations.

1. Assume that a pair (1, q) was chosen in line 6 and q was involutively top-
reduced using some polynomial f ∈ G in line 8. Then for all g ∈ G with
anc g = q set anc g := anc f and wanc g := wanc f .

Moreover, if lt (anc f) ≺ lt (anc q) 6= lt q, set anc q := anc f and wanc q :=
wanc f .

2. Assume that a pair (x, g) was chosen in line 6 and involutively top-reduced
by some polynomial f ∈ G with lt(xg) = lt f in line 8. If anc f = f then
for all h ∈ G with anc h = f set anc h := anc g and wanch := wanc g. If
lt (anc g) ≺ lt (anc f) 6= lt f , set anc f := anc g and wanc f := wanc g.

3. Assume that the prolongation tg was involutively top-irreducible in line 8.
Then its remainder h gets anc h := anc g and wanch := wanc g.
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4. Assume that the prolongation tg was involutively top-reducible in line 8.
If the remainder h is non-zero then assign anc h := h and wanch := f
where f ∈ G ∪ {h} is such that lt f is a E-minimal divisor of lth. Note,
if the normal strategy is used in Algorithm 3, it always holds f = h.

The updates of anc and wanc described in 1 and 2 analogously apply to Algo-
rithm 1.

The idx function is updated so that each new element h in line 10 gets a bigger
index than any of the elements in G in order to simulate the age of a polynomial.

7 Selection Strategy vs. Termination

In [Ape98a] it was proved that Algorithm 3 without application of criteria will
always terminate if a normal selection strategy is applied. Indeed, without the
assumption of using a normal selection strategy there are non-terminating ex-
amples. Also the assumption of a fair selection strategy, i. e., no prolongation
stays in C forever, is insufficient for ensuring termination of the criteria free
algorithm from [Ape98a].

Let us give a simple example of how it can happen that the involutive basis
algorithm (without criteria) does not terminate if one deviates from a normal
strategy.

Example 7.1 We use the lexicographical term order refining u � v � w �
x � y. For the readers convenience we write the multiplicative variables in curly
brackets behind each polynomial. The division refines the Thomas division in
each iteration. Let the following 7 polynomials be given and consider Algorithm 3
without application of criteria and with a selection of the next prolongation as
given below.

g1 = x {x} , g2 = y {y} , g3 = u2 {u} , g4 = v2 {v} , g5 = w2 {w} ,
g6 = ux− wy {w, x} , g7 = vy − wx {w, y}

First we reduce the prolongation ug1 by g6 and obtain g8 := wy {w, y}. Then we
reduce vg8 by wg7 and obtain g9 := w2x {w, y}. Now y is the only multiplicative
variable for g8. Then we add g10 := ug9 − w2g7 = w3y {w, y}. All variables
are now non-multiplicative for g5. We go on by adding g11 := vg10 − w3g6 =
w4x {w, y}, g12 := ug11−w4g7 = w5y {w, y}, etc. Each time a polynomial gi+1

(i > 7) is added to the basis, the variable w becomes non-multiplicative for gi.
Obviously, this process is infinite by adding the polynomials g2i+6 = w2i−1y,
g2i+7 = w2ix (i > 0).

Note that in the previous example the reduction step vg8 − wg7 would not be
performed in Algorithm 3, because wanc g8 = wanc g7 = g2 = y C [g8, g7] = vwy
and, hence, C1(g8, g7, vwy) is true.

This is the key-observation which led to Theorem 7.2. The criteria tested in
line 7 make Algorithm 3 terminating even independent of the selection strategy
used in line 6.
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Theorem 7.2 Algorithm 3 terminates for all inputs fulfilling its specification,
independent of the selection strategy applied in line 6.

Proof. Let us sketch the proof idea. We first show that there can be only
finitely many explicit involutive top-reductions during any run of the algorithm
because many of the potential top-reductions are avoided due to criterion C1.
Then, by the properties of a partial division which refines the Thomas division,
there can be only finitely many top-irreducible prolongations.

By Gi and Mi we denote the value of G and M, respectively, before the i-th
iteration of the while loop starting in line 5 of Algorithm 3. Moreover, G∞ ={
h
∣∣ ∃i ∈ N : h ∈ Gi

}
denotes the set of all polynomials which eventually belong

to the basis G. We have the sequence of inclusions G1 ⊆ G2 ⊆ · · · and the
resulting sequence

〈
ltG1

〉
⊆
〈
ltG2

〉
⊆ · · · must become stationary, let us say〈

ltGk
〉

=
〈
ltGi

〉
for all i ≥ k. Note, that after each iteration the weak ancestors

of all elements h ∈ G∞ satisfy wanch ∈ Gk. Until the k-th iteration this is
obvious and later this follows easily since the leading term of any element of
G∞\Gk has a proper divisor in ltGk. Hence, also after the k-iteration no element
of G∞ \Gk may become a weak ancestor according to the specification of wanc .

Let G∗ :=
{
h ∈ G∞

∣∣ lth E LCM(ltGk)
}

. Furthermore, let X ′ := X ∪ {1} and
R := {h ∈ G∞ | ∃t ∈ X ′, g ∈ G∗ : tg →∗G∞ h}. Note that for the definition of R
we use the ordinary reduction relation with respect to the fix set G∞.

Suppose there exist l ∈ N and h ∈ G∞ such that

Gl+1 \Gl = {h} , h /∈ R, and anc h = h

at creation time of h. Choose l to be minimal with the above property.

First of all, we must have l ≥ k since Gk ⊆ R by construction of R. In order to
satisfy anc h = h and h /∈ Gk, the polynomial h must result from a top-reduction
of some prolongation, i. e., there exist g, f ∈ Gl and t ∈ X ′ such that lt(tg) ∈
Ml

lt f and
(
tg − lm(tg)

lm f f
)
→∗G∞ h. Next, we deduce g /∈ G∗ since otherwise it

will follow h ∈ R because of tg →∗G∞ h. Hence, s := lt(tg) 6E LCM(ltGk).

If anc g = g then g ∈ R by minimality of l. We must have t 6= 1 in this case
since otherwise g →∗G∞ h leads to the contradiction h ∈ R. Hence, in any case
we obtain lt(anc g) C s and, therefore, ancs g = wanc g ∈ Gk.

The equality lt(anc f) = lt f = s is impossible since we would obtain f ∈ R by
minimality of l and, consequently, h ∈ R because of f →∗G∞ h in this situation.
Therefore, lt(anc f) C s and ancs f = wanc f ∈ Gk.

In summary we proved ancs g, ancs f ∈ Gk and s 6E LCM(ltGk). Consequently,
[ancs g, ancs f ] C s and C1(g, f, s). But this means our algorithm would have
omitted the reduction of the prolongation tg during the l-th iteration, a contra-
diction.

In conclusion, the supposition of the existence of h ∈ G∞ such that anc h = h
and h /∈ R must have been wrong.

Since the elements of G∞ have pairwise distinct leading terms the set G∗ must
be finite. Furthermore it follows that the number of polynomials h which can be
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obtained as the result of a single Gröbner reduction step of a fixed polynomial f
modulo G∞ is finite. Noetherianity of ≺ ensures that the number of polynomials
h resulting from f by an arbitrary number of Gröbner reduction steps modulo
G∞ is still finite. Finally, finiteness of G∗ and X implies finiteness of R.

Hence, there exists k′ such that anc h 6= h for all h ∈ G∞ \Gk′ , i. e., all elements
added to G after the k′-th iteration result from top-irreducible prolongations.
But, now, the properties of an involutive division refining the Thomas division
ensure LCM(ltGk

′
) = LCM(ltGl) for all l ≥ k′. Hence, only a finite number of

elements is added to Gk
′
. Therefore, there exists k′′ ≥ k′ such that Gk

′′
= Gl

for all l ≥ k′′. Since Gk
′′

possesses only a finite number of prolongations, there
are only finitely many iterations left. Hence, the algorithm terminates. �

Remark 7.3 Again, let us explain the connection to the method due to Gerdt
and Blinkov. Our Algorithm 3 will work correctly and terminate for any con-
tinuous involutive division L as defined in [GB98] which refines the Thomas
division in the following sense. If U is a set of terms and u ∈ U has maximal
degree in the variable x ∈ X among all elements of U then x is multiplicative for
u with respect to L and U , i. e., each ‘layer’ of L refines the Thomas division.

8 Examples

In this section we give two detailed examples which demonstrate that our criteria
C3 and C4 are not covered by the other criteria. It is clear that the application
of criteria becomes more powerful the longer the polynomials are that would be
involved in a reduction. Nevertheless, for the purpose of demonstration, we have
chosen monomial examples. In both examples we use the Janet division which
is an admissible partial division and defined as follows.

Definition 8.1 Let U ⊆ T be a finite set of power products. Define Yt = X for
all t 6∈ U and

Yt :=
{
xi ∈ X

∣∣∣ @u ∈ U :
(

degxi u > degxi t ∧ ∀ 1 ≤ j < i : degxj u = degxj t
)}

for all t ∈ U . The division (t 〈Yt〉)t∈T is called Janet division on U .

We use a degree lexicographical term order refining x � y � z � t and apply
the normal strategy in Algorithm 3.

Example 8.2 (Application of C3) The polynomials f1 = x2z, f2 = xyzt,
and f3 = xy2t form already a reduced Gröbner basis. We want to compute
a Janet basis of the the ideal generated by {f1, f2, f3}. At the beginning the
above polynomials have {x, y, z, t}, {z, t}, and {y, z, t} as their respective Janet-
multiplicative variables. The next 2 prolongations, namely yf2 and xf2 reduce
to zero by zf3 and ytf1, respectively. The remaining prolongation f4 := xf3 =
x2y2t is irreducible. After adding f4 to the basis, y becomes non-multiplicative
for f1 and the other multiplicative variables remain unchanged. We have to
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check all prolongations again. According to the normal strategy, the next prolon-
gation is f5 := yf1, which is irreducible. Again we have to consider all prolon-
gations. Because of C1(f1, f5, x

2yz) the prolongation yf1 need not be reduced.
Since R(y, f2, f3) and the multiplicative variables of f3 have not changed, the
(repeated) reduction of yf2 is avoided. We can also avoid to reduce xf2, because
C0(x, f2, {f1, . . . , f5}) follows from the fact that R(x, f2, f1) and f1 = anc f5 are
true, and lt f5 is a Janet-divisor of lt (xf2) with respect to the set {f1, . . . f5}.
The reduction of the prolongation xf3 is avoided, because f4 = anc f3 and,
thus, C1(f3, f4, x

2y2t) holds. There is only one prolongation left, namely f6 :=
yf5 = x2y2z which is irreducible and thus added to the basis. All prolonga-
tions that have been considered before are again avoided by the same reasons
as above. The prolongation yf5 will not be reduced, because f5 = anc f6 and,
thus, C1(f5, f6, x

2y2z) holds. The prolongation zf4 reduces to zero by tf6, but
its reduction cannot be avoided by the Gerdt/Blinkov version of Buchberger’s
chain criterion, cf. [GB98]. Let s := x2y2zt = lt(zf4). Also C1(f4, f6, s) and
C2(f4, f6, s) are false. However, anc f4 = f3 and anc f6 = f1, and there is a
polynomial, namely f2, with [f1, f2] = x2yzt C s, [f3, f2] = xy2zt C s. There-
fore, C3(f4, f6, s, {f1, . . . , f6}) is true and the reduction of zf4 can be avoided.

Example 8.3 (Application of C4) Let us check the Janet basis property for
the polynomials f1 = xyz, f2 = yt, f3 = zt, f4 = xf2 = xyt and f5 = xf3 = xzt.
The Janet-multipliers are then {x, y, z, t}, {y, z, t}, {z, t}, {x, y, t}, and {x, z, t},
respectively. The prolongations yf3, xf3, xf2, all reduce to zero. Consider the
prolongations zf4 and yf5. Both are involutively top-reducible by f1. Now, for
f4 and f5 the only proper divisibility relations are f2 C f4 and f3 C f5, but for
any i > 1 we have [f1, fi] = xyzt. Therefore, neither of the criteria C1, C2, and
C3 is applicable for zf4 or for yf5. However, by application of criterion C4 we
need only reduce zf4 but not yf5.

9 Conclusion

In Theorem 3.1, we have presented a new characterisation of the involutive
basis property. From this theorem we extracted four criteria and applied them
in check and completion algorithms for involutive bases. We also showed that the
application of criteria even enforces a termination of Algorithm 3 independent
of the selection strategy that is used to choose the next prolongation. This opens
a new field for further investigation on connections to Buchberger’s algorithm.
In particular sugar strategy [GMN+91] should be revisited in the context of
involutive bases.
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[KRW90] A. Kandri-Rody and Volker Weispfenning. Non-Commutative
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