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ABSTRACT

Given a rational parametrization of an algebraic surface, we
try to reduce the degree by a suitable reparametrization.
We give an algorithm that produces a parametrization with
a degree that is at most twice the minimal degree. The prob-
lem is closely related to the simplification of linear systems
of plane curves by Cremona transformations.

1. INTRODUCTION

A rational surface is a surface that has a parametric rep-
resentation by rational functions in two parameters. The
parametrization is not unique. In this paper, we assume
that we have given a parametrization and ask the question
whether we can find a simpler parametrization for the same
surface. By “simple”, we mean that the degree of the poly-
nomials in the numerator or denominator of the rational
functions are small. There are several motivations for this
goal: first, parametrizations of smaller degree can be repre-
sented by less data. Second, implicitization is easier when
the degree is smaller. Third, a small parametrization makes
it easier to find rational curves of small degree on the given
surface.

Our main result is an algorithm that produces a repara-
metrization which is at most twice as large as the small-
est possible reparametrization. The computational cost is a
polynomial number of field operations and solutions of uni-
variate equations of polynomial degree, where the measure
for the input is the degree of the given parametrization. We
believe that the computation of the smallest possible para-
metrization would be too expensive for most applications,
e.g. in computer aided geometric design.

Unlike in other simplification algorithms (e.g. [14] or [6] con-
sidering improper curve parametrizations, or [5], considering
the equivalent Liiroth problem), we do not attempt to turn
an improper parametrization into a proper one. We assume
that the given parametrization is already proper (and we
also produce a proper reparametrization). We remark that

our problem does not make sense in the context of ratio-
nal curves, because all proper parametrizations of a rational
curve have the same degree (see [15]).

We also do not attempt to simplify the coefficient field of
the parametrization, as the authors in [1, 17, 2] do for the
curve case.

Our problem is similar to the reduction of linear systems
of plane curves by Cremona transformations. This problem
has been considered by the many authors, see [3, 4, 8]. The
main difference to our problem is that there, one attempts to
do a reduction by quadratic Cremona transformation, and
this gives in turn a proof of the classical result that the
Cremona transformations are generated by the quadratic
ones (see [16]). Unfortunately, the classical methods work
only for linear systems with genus less than or equal to 4
(this corresponds to the simplification of parametrizations of
surfaces of sectional genus less than or equal to 4.) Also, the
reduction algorithms are quite complicated, and we think
that the computational costs would be large.

For arbitrary genus, the first result bounding the degree of
the reduced form was given in [13], formulated in the ter-
minology of parametrizations. More precisely, theorem 4 in
that paper gives an upper bound for the smallest possible
parametrization in terms of the sectional genus. The same
paper contains also techniques for finding nontrivial lower
bounds for the degree of a parametrization (nontrivial means
not the bound that follows immediately by Bezout’s theo-
rem), which will be essential for proving the main statement
in this paper. However, the proofs in [13] are not construc-
tive.

The main idea for the simplification algorithm in this paper
is to simulate the parametrization algorithm [12]. Since we
already have a parametrization available, we do not need to
resolve the singularity of the surface, and this is the most ex-
pensive subtask in [12]. Essentially, the resolution of the sin-
gularities can be replaced by the analysis of the base points
of the parametrization.
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2. PROBLEM DESCRIPTION

Throughout the paper, we assume that k is an algebraically
closed field.



A parametrization of a projective algebraic surface is a map

p:PP 5 SCP" (s:t:u)— (Fo:--: F),
where Fy, ..., F, are homogeneous polynomials in k[s,t,u]
of the same degree d. We may assume that Fp, ..., F, do not

have a common divisor (otherwise we can cancel it without
changing the ratio). The integer d is called the degree of the
parametrization.

Let t : P2 — P? be a birational automorphism of the pro-
jective plane (also called Cremona transformation). As-
sume that the inverse of t is given by three polynomials
Go, G1, G2, homogeneous of the same degree, in the three
variables si1,t1,u1. The parameter change t gives rise to
a new parametrization p; := pot ! : P2 = S. It is
represented by the n + 1-tuple of polynomials arising from
(Fo(Go, G1,G2),. .., Fo(Go,G1,G2)) after cancellation of
common factors.

In the case of algebraic curves, the birational automorphisms
of the parameter space P! are precisely the Mbius transfor-
mations. They preserve the degree. In the surface case, the
degree is not preserved by Cremona transformations. For
any parametrization, we can find Cremona transformations
such that the degree of the transformed parametrization is
arbitrarily large. Our goal is to use Cremona transforma-
tions in order to reduce the degree of a given parametri-
zation. See the discussion in the introduction for the moti-
vation for this goal.

Theoretically, it is possible to find a parametrization of min-
imal degree by solving a big system of algebraic equations
in the indeterminate coefficients of the parametrizing poly-
nomials. This approach is, of course, in practice not feasible
even for very small examples. Clearly, we look for a more
efficient algorithm.

The algorithm that will be given here is fast: it is a poly-
nomial algorithm, and it performs well on test examples of
moderate degree. We could not prove that the degree of
the computed parametrization is minimal. (In the exam-
ples considered, this seems to be the case.) We will prove a
weaker result: the degree of the computed parametrization
is at most twice as big as the minimal degree.

3. BASE POINT ANALYSIS

In this section, we explain the concept of infinitely near base
points and give an algorithm for computing the forest (set
of trees) of base points.

Let
p:P’P 5 SCP (s:t:u)— (Fo:---: F,)

be a surface parametrization. The set of common intersec-
tions of Fy,...,F, is a finite subset of P2, called the base
locus of p. The points in the base locus are called plane base
points. If the minimum of the orders of Fy, ..., F), at the
base point a is equal to m, then m is called the multiplicity
of the base point a.

In order to get a nicer theory, infinitely near base points
have been introduced. Let a be a base point of multiplicity
m. Without loss of generality, assume that a has projective

coordinates (0 : 0 : 1). The blowing up of P? at a can be
described by three (overlapping) charts, namely:

1. the complement of {a} in P

2. the affine plane with coordinates s, (the second cor-
responds to the ratio t : s). Any point with s # 0 is
identified with the point (s : st : 1) in the first chart.
The line s = 0 is also called the ezceptional line;

3. the affine plane with coordinates ¢, § (the second corre-
sponds to the ratio s : t). Any point outside the excep-
tional line ¢ = 0 is identified with the point (5t :¢: 1)
in the first chart. Any point with § # 0 is identified
with the point (5¢,57!) in the second chart.

Since a is a base point of multiplicity m, the total transforms
F; := Fj(s, st,1) (or F;(st,t,1) in the second chart) are divis-
ible by s™ (or t™ in the second chart). The quotients s~ ™ F;
(or t™F;) are called reduced transforms, and are denoted
by F;'. The reduced transforms Fy',..., F,’ do not have a
common divisor, but they may have common intersection
points on the exceptional line. These are called infinitely
near base points. The multiplicity of an infinitely near base
point is defined as the minimum of the orders of the reduced
transforms. This process can be iterated, so that we may
have infinitely near points of the second generation, and so
on.

Exzample 1. Let p be the parametrization
(s:t:u)m (s" 3 + su)* : ¥ : stu(su+t7)%)
of degree 11. The equations
s =3t + su)t = 5%% = stu(su+ %)% =0

have only a single zero, namely a1 := (0 : 0 : 1). We have
ordg, (Fo) = 11, ord,, (F1) = 7, orde, (F2) = 11, ord,, (F3) =
7. Therefore m; = 7.

The reduced transforms in the first chart C; are s*'#*, (s +
t)*, s%*,5*(s 4+ t). The only zero on the exceptional line
t =0is a2 := (0,0)¢,. The smallest order is ord,, (F3) =
4, hence m2 = 4. The reduced transforms in the second
chart Cy are s*,t3(t%s + 1), s*>, (t>s + 1)3; there are no
zeroes on the exceptional line s = 0, hence the second chart
contributes nothing.

We blow up a» and get the reduced transforms s*'t'! (s +
1)*,s%%, s*3(s + 1) in the first chart C3. The only zero
on the exceptional line is as := (—1,0)¢,. Its multiplicity
is ms = ord.,(Fy) = 4. In the second chart C4, the re-
duced transforms read s''t*, (1 + t)*,s%t* s3(1 + t)3. The
only zero on the exceptional line is (0, —1), but we saw this
point already in the first chart Cs. Hence the second chart
contributes nothing new.

We move as to the origin and blow it up. In the first chart
Cs, we get the reduced transforms (st — 1)''¢7,s%, (st —
1)%t* s3t*(st — 1)3. The only zero on the exceptional line is
as := (0,0)c5. Its multiplicity is m4 = ord,, (Fy’) = 4. The
second chart contributes nothing.



The reduced transforms on the blowup of a4 do not intersect.
Therefore, we have the following base point forest:

(a1,7) — (a2,4) — (a3,4) — (a4,4).

In our complexity model, we assume that the costs of field
operations are constant, and the cost of factoring a uni-
variate polynomial is polynomial in the degree. In order to
compute the base points with polynomial cost, we need a
new definition and a lemma.

By construction, the base points come in a forest (set of
trees). The roots correspond to the plane base points. The
children of a node corresponding to the base point a are the
intersection points of the reduced transforms. The multi-
plicity depth of a plane base point a is defined as the largest
sum of the multiplicities in a single branch of the tree of
base points with root a.

LEMMA 1. Let M be an upper bound for the multiplicity
depth. Then the base points in the tree with root a and their
multiplicities can be computed from the M-th order Taylor
expansion of the polynomials Fy, ..., F, around a.

ProOOF. We proceed by induction over the depth r of the
forest of base points.

If r = 1, then we have a plane base point. Thus, we only
need to compute the order of the F; at a, and we know that
this order is at most M. Obviously, this can be done using
only the M-th order Taylor expansions.

Assume r > 1. The multiplicity at a can be computed as
in the case r = 1; call it m. For each child base point a1,
the N-th order Taylor expansion of the reduced transforms
F;' around a1 depend only on the N + m-th order Taylor
expansion of the F;. Thus, we may compute the Taylor
expansions of the F;’ around each child base up to order M —
m. The parametrization given by the reduced transforms
has multiplicity depth at most M —m, thus we can compute
the base point trees with the children nodes as roots by
induction hypothesis. [

Algorithm 1 BasePointAnalysis

P :={(p,d>+1,{F,,...,F.}) | Fo(p) = --- = F,,(p) = 0};
while P # () do
translate p to the origin;
throw away all terms of the F; of order greater than M;
remove a (p, M, {Go,...,Grn}) from P;
m := min?_; ord,(G;);
make new node (p, m) to the output forest;
blowup p, and compute the reduced transforms;
compute common zeroes at exceptional line
for all g in the zero set do
add (g, M — m, set of reduced transforms) to P;
end for
end while

The algorithm 1 computes the base points and their multi-
plicities for a given parametrization Fy, ..., F,.. The correct-
ness follows from Bezout’s theorem, which implies that the

multiplicity depth is bound by d? + 1. The computational
cost is polynomial in the degree d of the parametrization.

We need to do the base point analysis in order to simplify
the parametrization. But it is also useful to compute other
interesting things:

o the degree of the surface S can be computed by the
Bezout formula

deg(‘s) = d2 - Zmzza
i=1

where the sum ranges over all base point indices;

o the genus of the generic plane section can be computed
by the genus formula

(d—1)(d-2) _i:mi(mi —1)_

p1(S) = 5 5

i=1

For instance, the surface in example 1 has degree 24, and
the genus of a generic section is 6.

See [4] for proofs and further discussions.

4. THE ADJOINT VECTORSPACES

The main idea for the simplification algorithm is to simulate
the parametrization algorithm [12] on S. There, the implicit
equation is used as an input. However, this implicit equation
is mainly used to compute the adjoint vectorspaces of S, and
this can be done also — and, in fact, much faster — if we have
not the implicit equation but a proper parametrization.

Let p be a proper surface parametrization of degree d. Let
a1, ..., ar be the base points and m, . .., m, the correspond-
ing multiplicities. Let n, m be non-negative integers. Then
we define the adjoint vectorspace Vi m(p) as the k-space of
all homogeneous polynomials of degree nd — 3m having or-
der at least nm; —m at each base point a; (if nm; —m < 0,
no condition is imposed for this base point). Here, the re-
duced transforms need to be computed by dividing out the
(nm; — m)-th power of the exceptional divisor.

The adjoint numbers are defined as

Un,m () := dim(Vp,m (p)).

If vp,m > 0, then we define the adjoint map as the rational
map

fr,m(p) :P? — pUnm Tt (s:t:u)— (Go: -+

where {Go,...,Gu, m—1} is a basis of Vj .

sl Gvn,m_1)1

Ezample 2. We compute V1,1(p), for p is in example 1.
This is the vectorspace of all polynomials of degree 8, van-
ishing with order 6 at a; and with order 3 at as,as,as.
A general polynomial with order at least 6 at ao is H =
aosSu’+- - +aet®u’+ars ut- - -+aiat’ utaiss®+- - +assts.

The reduced transform in C} is equal to H' = ags®+- - -+ae+
ars"t+- - -+aist+ai5sSt2+- - -+azst®. The order at az must



be at least 3, hence as = a5 = as = a13 = a14 = az3 = 0.
The reduced transform in Cs is equal to H” = aos®t3+- -+
ass® +arst®+ - +a128” +a158°t” +- - + ases. The order
at a3 must be at least 3, hence az = a12 = a22 = 2a2—a11 =
a2 —a21 = aio — a2 — a1 = 0. The reduced transform in
Cs is too long to be displayed; the condition that its order
at a4 is at least 3 leads to the equations as = a7 — ar =
010—201 =a18—08=a19—a0=ag—200=0.

We solve this system of linear equations and plug the solu-
tion into H, obtaining H = aos*(su+1t?)* +ass’t(su+t>) +
a1 sSt(su + tz)2 + a736(su + t2) + a155% + a16s"t. Therefore,
Vi1 is the vectorspace generated by s*(su+t?)?, s*t(su+t?),
SSt(su+t%)2, s8(su+1t?), s8, s"t. There is a common divisor
s, which can be divided out if we are only interested in the
map fi,1.

Algorithm 2 AdjointVectorspace

H := a general polynomial of degree nd — 3m;

while base point forest is not empty do
remove a root (p,l) from the base point forest;
translate p to the origin;
force all coefficients of H of order less than nl —m to be
zero {this imposes linear conditions on the coefficients};
compute the reduced transform of H;

end while

Using algorithm 2, we can compute a basis for the the ad-
joint vectorspace Vj, . Since we only need to expand H up
to order m times the multiplicity depth, the computational
cost is polynomial in d, m, n.

Obviously, the adjoint number vy, is zero for m > 3d.
Also, v1,0 > 3 > 0 because V(p) is contained in V; o(p). The
smallest number p such that vi,,+1 = 0 is called the adjoint
depth of S.

4.1 Adjointsand Divisors

In this subsection, we develop a “proving environment”,
which will be used in most of the proofs. The setup is similar
as in [12] and [13]. The main purpose is to relate the ad-
joint vectorspaces defined above to the adjoint vectorspaces
in [12].

Let S be a rational surface, and let p be a proper para-
metrization of degree d. Let ai,...,a, be the base points,
and let mq, ..., m, be the corresponding multiplicities. Let
7w : Y — P? be the blowing up at all base points. Then
pom : Y — S is a desingularization of S. The pullback
of a plane section is H :=dL — Y ;_, m;A;, where L is the
pullback of a line in P? and A; is the exceptional divisor cor-
responding to a;. Because the canonical divisor is equal to
K = —-3L+A1+---+A,, the polynomials in the vectorspace
Va,m pull back to equations in the linear system |[nH +mK|
on Y. In other words, fy,m(p)ow:Y — P"m~! is the map
associated by the linear system |[nH +mK]|. By theorem A.1
in [12], it follows that vn,m is equal to the adjoint number
defined in [12]; especially, it is independent of the paramet-
rization. The adjoint map f, ., is equal to g, mop, where
Gn.m + S = PU»m~1 s the adjoint map defined in [12].

If we blow down all exceptional curves orthogonal to H, then

we get a surface Xo. Let Do € Div(Xp) be the direct image
of H. Then (Xo, Do) is a minimal pair in the sense of [12],
i.e. Xo has no exceptional curve that is orthogonal to Dp.

For 7« > 1, let X; be the blowing down of all exceptional
curves orthogonal to D;_1 + K(X;_1) on X;_1. Let D; the
direct image of D;_1 + K(X;_1). Then (X;, D;) is again a
minimal pair. By theorem A.4 in [12], the adjoint map fi ;
is equal to the composition of the map associated to D; with
the minimalization maps and the parametrization.

This allows us to figure out the fixed components of Vi ;
in many cases. Any such fixed component is also a fixed
component of |H + ¢K|. If it is known that |D;| has no
fixed components, then all the fixed components of |H + i K|
are exceptional divisors that are blown down in one of the
minimalization maps Y — Xo, Xo — X1, ..., X;—2 —
Xi—1. The multiplicity of the fixed component E in |H+iK|
is at most ¢ (see the proof of theorem A .4 in [12]).

5. SOME SPECIAL CASES

The algorithms described in this section produce reparamet-
rizations of special surfaces: surfaces with rational sections,
conical surfaces, and Del Pezzo surfaces. This special cases
are important because the general algorithm in the next
section uses these cases as subalgorithms. This explains why
we do not compute directly the simpler parametrization p’,
but the Cremona transformation ¢ such that p’ = pot~ 1.

5.1 Surfaceswith Rational Sections

We say that a rational surface has rational sections iff vi,1 =
0. One can show that this is equivalent to the vanishing of
the sectional genus (see [9]). More general, it holds that v1,1
is equal to the sectional genus. However, we will not use
these facts here.

The following classification theorem is useful for simplifying
the parametrization of a surface with rational sections.

THEOREM 1. Let S C P™ be a rational surface with ratio-
nal sections. Then one of the following is true.

1. w31 =0, and S = P2
2. va1 =1, and S is a quadric in P>,

3. va,1 > 2, v20 =0, S is a ruled surface, the image of
f2,1 18 a rational normal curve, and the lines of the
ruling are the fibers of fa1.

4. v2,1 =3, v22 =0, and f2,1 is a Cremona transforma-
tion.

PROOF. See [12] (applied for the case p =0). [

In subcase (1), the smallest parametrization is the identity
(s :t:u), which has degree 1.

In subcase (2), the smallest parametrization is the inverse
of a stereographic projection, and it has degree 2.



In subcase (4), the smallest parametrization is obtained by
applying the Cremona transformation f»1. Let p’ be the
transformed parametrization. Then the map f21(p’) is the
identity. No curve gets contracted, therefore V2 1(p') has no
common factors. Therefore V5 (p') is equal to the space of
all homogeneous polynomials of degree 4. Moreover, V2,0(p’)
has no double base points. It follows that p’ has degree 2
and no base points.

The subcase (3) is more complicated. In analogy with the
parametrization algorithm [12], subalgorithm FiberIsLine,
we can produce a parametrization of degree m with a base
point of multiplicity m — 1 (and maybe other base points),
for some m > 2. Note that this is the largest possible mul-
tiplicity. We need a little lemma.

LEMMA 2. Let V be a vectorspace of polynomials of de-
gree d, defining a rational map f : P2 — C C P, such that
the image is a rational normal curve. Assume that the poly-

nomials in V' do not have a common factor. Let ay,...,a, be
the base points of f, and let m1,. .., m, be the corresponding
multiplicities.

Then d = nd', and m; = nm;' for all i, where d', m1’, ...,
m,’ are suitable integers; the vectorspace V' of polynomials
of degree d’ with order at least m;' at each base point a; has
dimension 2 and defines a map f : P> — P!, and f is the
composition of f with the n-uple embedding.

PROOF. Let s : C — P! be an isomorphism of C to the
projective line. Let V" be the defining vectorspace of the
map so f : P2 — P!, The composition g with the n-uple
embedding of P! is defined by V"'™. Because f and g have
the same image and the set of fibers is the same, they differ
only by a projective automorphism of the image. It follows
that the defining vectorspaces are equal, ie. V'™ = V.
Therefore V' =V’'. O

Let W := Va1 (maybe after removing common factors),
and let W’ be vectorspace constructed as in lemma 2. Let
{Ho, H1} be a basis of W’. The fibers of f,; are the plane
curves with equation A1 Ho — Mo Hi, (Ao : A1) € P'. We in-
tersect the generic fiber with the preimage of the hyperplane
aFy(s,t,u) — Fi(s,t,u) in P*, where (Fp : --- : F},) is the
parametrization and « is a generic constant. Because the
fibers are mapped to lines, there is precisely one intersec-
tion point outside the base locus of W’. (There could be a
degenerate case, in which this point lies in the base locus of
{Fo, F1}; this can be avoided by replacing Fi by F;, ¢ > 1
— see [12] for a more details.) In general, there is a unique
common intersection point is outside the base locus of both
vectorspaces. This implies that the rational map

Fy(s,t,u) Hi(s,t,u)
Fo(s,t,u)’ Ho(s,t,u)

t0:P2—>A2,(s:t:u)r—)(

is birational (see [10]). The homogenization of to is the
Cremona transformation (F1Hy : FoHi : FoHp). We apply
it to p; let p’ be the transform. The map f»,1(p’) is equal
to the map (¢ : u') composed with the N-uple embedding
(where N = vy,1 —1). By theorem 7 in [13], the linear system
|2D; + K| has no fixed components. So, any common divisor

of V2,1(p') must be a line through a := (1 : 0 : 0). The
degree of V2,0(p’) is equal to the multiplicity of V2,0(p’) at a
plus 2. It follows that the degree of V7 0(p’) is equal to the
multiplicity of Vi1,0(p') at a plus 1, as desired.

Ezample 8. The map fi,1 from example 2 is a paramet-
rization of a surface with rational sections in P®. After re-
ducing the common divisor, its degree is 5. The base point
forest is

(a1’3) - (a272) — (a3’2) - (a472)'

The vectorspace V3,1 is the vectorspace of all polynomials
of degree 7 with order 5 at a1 and order 3 at a»,as,as.
Using algorithm AdjointVectorspace, we can compute the
basis {s%(su + %)%, s%(su +t?),s"}. Thus, vi,1 = 3, and we
have either subcase (3) or subcase (4).

We cancel the common factor s* and get degree 4 and base
point forest

(a1,2) = (a2,2) — (as,2) — (a4, 2).

The self-intersection number is zero, therefore the image is
a quadric curve in P?, and we have subcase (3). The vec-
torspace V' is the space of all polynomials of degree 2 pass-
ing simply through the base points. A basis is {Ho, H1} =
{s?, su+t*}.

Finally, we apply the Cremona transformation (Fy1Ho:FoH: :
FoHp) = (s*t(su+t2) : s(su+1%)° : s3(su +t?)?) = (55 :
(su+t?)? : s?(su + t?)). The result is the parametrization

12 12

(st :u) = (t"u o

sSEP S S
of degree 4. It has a base point (1 : 0 : 0) of maximal
multiplicity 3.

The parametrization constructed above can still have quite
large degree. We need to simplify it further.

First, we observe that a parametrization with a base point
a1 of maximal multiplicity d — 1 has no other base points
of multiplicity greater than 1. Otherwise there would be a
line intersecting a generic curve in the defining vectorspace
in more than d points, contradicting Bezout’s theorem.

Second, we observe that the number of base points on the
exceptional line of the blowing up at a; is at most d — 1.
Otherwise, all polynomials in the defining vectorspace would
have order larger than d — 1 at the point a1, which contra-
dicts the definition of multiplicity.

Here is a lemma that allows to control the degree of a para-
metrization with a base point of maximal multiplicity.

LEMMA 3. Let p be a parametrization of degree d, with a
d — 1-fold base point a1 and simple base points as,...,ar.
Let d' be the smallest number such that the vectorspace V'
of all polynomials of degree d' with order at least d' — 1 at
a1 and order at least one at az,...,a, defines a paramet-
rization. Let b1, ...,bagi_,_1 be generic points in P2. Let
W be the vectorspace of all polynomials in V' wvanishing at
bi,...,bag—r_1.



Then W defines a Cremona transformation. The trans-
formed parametrization has degree d +d' — r, a base point
b1 of multiplicity d +d —r — 1, and 2d' — r simple base
points. Either 2d' —r = 1 or all simple base points lie on
the exceptional line of the blowup at by .

PROOF. The degree of the transformed parametrization
is equal to the intersection product of the divisors defining
p and W, and it is therefore dd' — (d—1)(d' —1)— (r —1) =
d+d — r. The Cremona transformation transforms the
lines through a; to a pencil of lines, and the common point
of these lines is b;. Because these lines intersect the trans-
formed linear system in a single point, b; must have maximal
multiplicity d +d' —r — 1. The number of simple points can
be inferred from the fact that Cremona transformations do
not change the self-intersection number.

The surface Xo (see subsection 4.1) is a ruled surface S.
for some e > 0. If e > 1, the vectorspace W corresponds
to the map contracting the unique cross section with self-
intersection —e. All other irreducible curves have nonnega-
tive self-intersection. Therefore, all divisors on Y with nega-
tive self-intersection are going to be contracted by the trans-
formed parametrization, and this is only possible if all simple
base points lie on the exceptional line. If e = 0, then the
second ruling is transformed to another pencil of lines inter-
secting the transform of V in d+d’ —r — 1 points, so we get
a second plane base point. [

Remark 1. The generic points can be chosen randomly,
but by bad luck we could pick points that leads to a map
which is not birational. In this case, the image of the map
is a rational normal curve. To be on the safe side, we can
recompute the base points and see if the system W has self-
intersection zero. If this is not the case, then W defines a
Cremona transformation, and the above lemma holds.

Ezample 4. Let p be the parametrization
(s:t:u) > (2w’ st®: tu® : stu:u’ : stu?)
from example 3. The base point forest looks like

(a1,3) = (a2,1) (a3, 1) = (as,1).

There is no line passing through the three simple base points.
The conics through all four base points do not define a map
to a curve. The cubics with double point at a; and simple
points at a2, as,as define a parametrization, so d' = 3. We
assign another simple base point b1, infinitely near to a4 on
the line through as, a4. This defines the Cremona transfor-
mation

(s:t:u) > (st stu:u®).
We apply it and get the parametrization
(st :u) (s'2u' c8 st s t's)

of degree 3, with a double base point and a simple base
point.

Algorithm 3 ReparametrizeRationalSections

compute the base point forest with BasePoint Analysis;
compute W := V51 and vq,1 with AdjointVectorspace;
if v2,1 =0 then
return the input p;
else if v2,; =1 then
m:= a stereographic projection;
return 7 o p;
else if v2,1 = 3 and f»,1 is birational then
return fo1;
else
compute the base point forest of W
divide each multiplicity and the degree by v2,1 — 1;
Hy, Hq1:= a basis for the result vectorspace;
to:= the map (s:t:u) > (F1Ho: FoH: : FoHy);
pi=potyh
compute the new base point forest {there is a point a:
of maximal multiplicity and some simple base points};
d:=1; q := idpo;
while Image(q) is two-dimensional do
Qoid :=q; d :=d+ 1
W := the vectorspace of polynomials of degree d with
order d — 1 at ai passing through the simple base
points;
q:= the map defined by W;
end while
compose ¢,14 With projections from generic points, until
the image is P?;
return g,;q © to;

end if

Algorithm 3 takes a parametrization of a surface with ra-
tional sections, and computes a reparametrizing Cremona
transformation. The computational cost of algorithm 3 is
polynomial in the degree of the given parametrization.

5.2 Conical Surfaces

We say that a rational surface is conical iff the image of
fi,1(p) is a rational normal curve. It follows from [12],
lemma 5.4, that p maps the fibers of fi; to conics.

In analogy with the parametrization algorithm [12], subal-
gorithm FiberIsConic, we can produce a parametrization of
degree m with a base point a1 of multiplicity m — 2, for
some m > 4. There may be other base points, but their
multiplicities is at most 2. If there is more than one double
base point, then all double base points lie on the exceptional
divisor of the blowup at ai.

The method is similar to the one used in subcase (3) for sur-
faces with rational sections. Because of space restriction, we
cannot present the algorithm completely in this paper. The
main ideas have already appeared in [12] or in the previous
section. In brief, the method works as follows:

1. factor fi,1 into a map p : P> — P! followed by an
N-uple embedding;

2. let g : P? — P? be defined by three suitable compo-
nents of p, such that the map (p,q) : P? — P! x P? is
birational;



3. the image of (p, q) is a of degree 2 in the second block
of coordinates. Compute its equation;

4. use the algorithm FindPoint in [12] to construct a so-
lution of this equation, depending on the first block of
coordinates;

5. parametrize the generic conic section of the image by
projecting from this solution (see [12] or [11]);

6. together with p, the above parametrization gives rise
to a Cremona transformation, similar to subcase (3)
in the previous subsection. Apply it. The result is a
degree d parametrization with a base point of multi-
plicity d — 2.

7. reduce the double base points with a method analogu-
ous to the one described in lemma 3.

Full details will appear in a forthcoming paper.

5.3 Dd Pezzo Surfaces

We say that a rational surface is Del Pezzo iff vi,1 = 1. It
is possible to adapt the parametrization algorithm in [9] for
the Del Pezzo case to the situation where we have no implicit
equation but a parametric representation given. The main
idea there is to project from a tangent plane, and the tan-
gent plane can also be computed when the surface is given
parametrically. The details will appear in the forthcoming
paper announced above.

Alternatively, one can also achieve polynomial complexity
by the idea to implicitize and compute a parametrization
from the implicit equations. The reason is that the degree
of Del Pezzo surfaces is bounded (at most 9), and the degree
of a minimal parametrization is also bounded (at most 4).
For a proof of these bounds, see [4, 7].

6. THE GENERAL CASE

In this section, we present the main algorithm for simplify-
ing arbitrary proper parametrizations, and state the main
result: the computed parametrization is at most twice as
big as the smallest possible one.

Recall that p is the smallest number such that vi,,4+1 = 0.
the adjoint depth of S. According to [12], lemmas 5.2-5.7,
we have one of the following cases.

1. The map fi,, is a parametrization of a surface with
rational sections.

2. The image of the map fi1,, is a rational normal curve,
and the map f2,2,—1 is a parametrization of a conical
surface.

3. We have v1,, = 1, and the map fi,, degenerates to
the constant function to P° (the one-point space). The
map f1,;,,_1 (OI‘ f2,2y,_2 in case Vi,pu—1 = 3, or f1,3,,,,_3
in case v1,,—1 = 2) is a parametrization of a Del Pezzo
surface.

In order to tell case (2) from case (3), it is not needed to
compute the image of fi,,. According to lemmas 5.2-5.5
in [12], we have case (1) iff v2,2441 > 0 or (v1,, = 3 and
v2,2, = 6).

Algorithm 4 SimplifyParametrization

compute the base point forest with BasePoint Analysis;
p=0; W := Vp,o;
repeat
V.=W;
pi=p+1
W= Vi
until W = {0}
pi=p—1
if v1,, =1 then
if v1,,-1 > 4 then
Vi=Vip-1;
else if v1 ,_1 =3 then
V= V2,2,,,,_2;
else if v; ,—1 = 2 then
V= Va3u-3;
end if
compute t with ReparametrizeDelPezzo applied to V;
else if v2,2,41 = 0 and (v1,, # 3 or v2,2, # 6) then
compute t with ReparametrizeConical applied to
Va,2u—1;
else
compute ¢ with ReparametrizeRationalSections applied
to Vi3
end if
return pot !;

We propose algorithm 4 for simplifying a given parametri-
zation. Its complexity is polynomial in the degree of the
parametrization. The above classification shows that the al-
gorithm computes indeed a reparametrization. Its degree is
estimated in the following theorem.

THEOREM 2. Let d be the degree of the parametrization
computed by algorithm 4.

In case (1), we have d < 4p + v1,, — 2.

In cases (2) and (8), we have d < 4p + 2v1,, — 2.

PRrOOF. Let p’ be the parametrization computed by algo-
rithm 4.

Case (1): By lemma A.8 in [12], |D,| has no fixed compo-
nents and no base points. We distinguish the four subcases
arising in theorem 1.

Subcase (1): fi,,(p') is the identity. No curve gets con-
tracted, so V1,,(p’) has no fixed components. It follows
d=3pu+1<4p+1=4p+v1, —2.

Subcase (2): f1,.(p') is a degree 2 parametrization of a
quadric surface. Then f1,,(p") has two simple base points,
call them b1, b2. There is a unique contracted curve, namely
the line L through b1, bs. This line is the only fixed compo-
nent of V1 ,(p'), and its exponent in the common divisor is
less than or equal to p. It follows d < 4p+2 = 4p+v1,, —2.

Subcase (3): fi1,,(p") is of degree do with a base point by of
multiplicity do — 1 and simple base points b, ...,b,,, where



ro = 2do — v1,, + 2; and we have either ro =2 or ba,..., b,
lie on the exceptional divisor of the blowup at b;.

The only curves that are contracted by fi1,,.(p’) are the lines
through b; and b;, 4 = 2,...,79. These lines are the possible
fixed components of V1, (p’). Their exponent is less than
or equal to p. It follows that d = 3u + do + f, where f is
the number of fixed components counted with multiplicity,
and f < (ro — 1)u. Moreover, p' has b1 as a base point of
multiplicity do — 1+ g+ f, and the sum of the multiplicities
at ba,...,br, is equal to (ro — 1)p+1ro — 1+ f. Because the
multiplicity at b; is greater than or equal to the sum of the
multiplicities at ba, ..., by, we have (ro —1)p < do + p — ro.
Hence d < 4p +2do —ro = 4p+v1,, — 2.

Subcase (4): fi,,(p') is the 2-uple embedding of P2. No
curve gets contracted, so V1 ,(p") has no fixed components.
It follows d =3u+2 <4p+4=4p+v1,, — 2.

Case (2): f1,.(p") is the projection from the point a1 followed
by the (v1,, — 1)-uple embedding of P, and fa2,-1(p') is
a parametrization of degree do, with aq being a do — 2-fold
base point, double base points as, ..., a,,, where ro = do —
v1,, — 1, and maybe simple base points; if o > 3, the double
base points are on the exceptional divisor of the blowpup at
a1. The system |D,| does not have base points or fixed
components. Therefore the possible fixed components of
Vi,,(p') are the lines through a1 and a;, i = 2,...,79, With
exponent at most . It follows that d = 3p + v1,, — 1+ f,
where f is the number of fixed components, counted with
multiplicity, f < (ro — 1)u. Moreover p' has b1 as a base
point of multiplicity p + v1,, —1+ f, and this number must
be greater then or equal to the sum of the multiplicities at
b2, ...,bry, which is (ro —1)u+ f. Therefore f < (ro—1)p <
p4+v, —1land d <4p+2v1, —2.

Case (3): fi,,—1(p’) has degree 3 and only simple base
points, or degree 4 and two double base points. In the
first subcase, there is no -1-curve contracted by fi,,—1(p").
Therefore d = 3u. In the second case, there is a unique such
curve, namely the line through the two base points. Its ex-
ponent is u, and therefore d = 4p. In both cases, we have
d<4p+2v1, —2, because v1,, = 1. O

In order to show that the degree of the computed paramet-
rization is at most twice as large as the minimal degree, we
recall the following well-known bounds [13].

THEOREM 3. Let do be the minimal degree of a proper
parametrization.
In case (1), we have do > 3p + 1(v1,, — 2).
In cases (2) and (8), we have do > 3p +v1,, — 1.
Especially, we have d < 2dg in every case.

Ezample 5. Let p be the parametrization from example 1,
of degree 11 with a 7-fold base point and three 4-fold base

points. We have already computed V;; in example 2. The
vectorspace V1,2 is the zero space, hance we have y = 1, and

case (1) holds. The reparametrization of fi 1 has been done
in examples 3 and 4. The reparametrizing Cremona trans-
formation is the composite of the Cremona transformations
in example 3 and example 4, namely

(s:t:u) > (t(su+t):s7t:s%).
The result is the parametrization

(s":t )= (t'4u'3 s T (s =)
of degree 7. As vi,, = 6, there is no parametrization of
degree less than 5.

Remark 2. In principle, algorithm 4 can also be applied to
improper parametrizations. However, the result is then not
necessarily close to the smallest possible reparametrization.
Since we reparametrize by composing with Cremona trans-
formations, the computed parametrization will then again
be improper, while the smallest possible parametrization is
likely to be proper. What can be positively said is that the
computed parametrization is at most twice as large as the
smallest reparametrization by a Cremona transformation.
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