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Abstract

We give an upper bound for the area of a lattice polygon in terms of
the number of interior points. Together with Pick’s formula, we obtain
necessary and sufficient conditions for a triple of numbers to be the area,
the interior, and the perimeter of a lattice polygon.

Introduction

Toric geometry is a powerful link connecting discrete and algebraic geometry.
It was invented by Demazure [3] in order to study algebraic subgroups of the
Cremona, group in algebraic geometry. Stanley used it to prove the Dehn-
Sommerville equations for convex polytopes [12]. Today, we have many appli-
cations in algebraic and discrete geometry (e.g. [7, 13, 10]). A quite surprising
new application in computer-aided design has been found in [8].

From the algebraic geometry point of view, toric varieties are useful because
most cohomological concepts have a concrete combinatorial interpretation. For
instance, the Euler characteristic of a toric variety defined by a polyhedron is
equal to the number of vertices of the polyhedron (see [5], p 59).

The main benefit for discrete geometers is that toric varieties provide a new
way of proving theorems. Pick’s theorem, giving the a formula for the area of a
convex lattice polygon, has an elementary proof (for instance, see [4]); but the
toric approach has lead to generalizations in higher dimension, for instance [1].

In this paper, we give necessary and sufficient conditions for three integers
a, i, p to be the area, the number of interior points, and the number of boundary
points (also: the perimeter) of a convex lattice polygon. Pick’s theorem provides
an equational constraint. A new inequality constraint bounds the area in terms
of the number of interior points, if this number is not zero (there are lattice
polygons with arbitrary large area and without interior points). This inequality
is proven by toric geometry. The author tried to come up with an elementary
proof, without success. The sufficiency of our conditions is proven by elementary
methods.
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Figure 1: a polygon with perimeter 3.
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Figure 2: a polygon with zero interior.
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1 Lattice polygons

We consider convex polygons in R? with vertices in Z?2, also called lattice poly-
gons. The perimeter of a lattice polytope is the number of lattice points on the
boundary. The area is defined as usual. The interior is the number of lattice
points in the interior. There is the following well-known relation between these
numbers.

Theorem 1.1 (Pick). For any lattice polygon A, we have
1
Area(A) = Int(A) + 3 Per(A) — 1.

Our main goal is to try to find other relations between these three parame-
ters, especially inequalities.

Unlike in the continuous case, there is no isoperimetric inequality: there are
lattice polygons with perimeter 3 with arbitrary large area. An example is the
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Figure 3: a polygon with Per(A) = 2 Int(A) + 6.

family of polygons spanned by {(0,0), (1,2), (n,1)}, n > 2, with an area of n— 1

and an interior of n — 2 (see figure 1). In the other direction, we have
Per(A) < 2 Area(A) + 2

as an obvious consequence of Pick’s theorem. A bound of the perimeter in terms
of the interior would be more interesting, but these seems impossible, too. The
family of polygons spanned by {(0,0), (0,1),(n,0)}, n > 1, have zero interior
and a perimeter of n+2 (see figure 2). Restricting to the case of positive interior,
we can say something positive.

Theorem 1.2. For any lattice polygon A with positive interior, we have the
inequality

Per(A) <2 Int(A) + 7.

If Int(A) > 1, then the right hand side can be improved to 2 Int(A) + 6.

The proof will be given in section2, because it requires some non-elementary
facts about toric varieties.

The improved inequality is sharp for all values of interior greater than one.
This follows from the family of polygons spanned by {(0,0), (0, 2), (n,0), (n,2)},
n > 3 (see figure 3). An example with interior equal to 1 and perimeter equal to
9 is the polygon spanned by {(0, 0), (0,3), (3,0)} (see figure 4). In fact, this is the
only lattice polygon with these parameters up to unimodular transformations.
(This will be clear later from the proof of theorem 1.2.)

Let us now ask the question whether there are relations between area, inte-
rior, and perimeter, other than the theorems 1.1 and 1.2. The answer is no, as
stated in the next theorem.

Theorem 1.3. Let a € %N, i,p € N be numbers fulfilling the following condi-
tions:

1. p>3;
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Figure 4: a polygon with Per(A) =9 and Int(A) = 1.
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Figure 5: a polygon with Per(A) = p and Int(A) = i.

2. a=i+3p—1;
3. ifi>0,thenp<2i+47;
4. ifi>1, thenp<2i+6.
Then there is a lattice polygon A with Area(A) = a, Int(A) = i, and Per(A) = p.

Proof. Assume that 4 < p < 2¢ + 6, in addition to the conditions above. Then
the polygon A spanned by {(0,0),(0,2), (i + 1,1),(p — 4,0)} has Area(A) = a,
Int(A) =i, and Per(A) = p (see figureb).

It remains to find polygons for the following cases:

1. p=3;
2. 1=0;
3.i=1land p=09.

But for these cases, we already have seen examples (see figure 1, figure 2, and
figure 4). O



2 Toric Surfaces

In the following introduction of toric varieties, we follow [5] as a basic reference.
Other introductions to toric varieties are [6, 9].

Let A be a lattice polygon contained in the positive quadrant. Let v = (z,y)
be a pair of variables. For any lattice point p = (4,5) in the positive quadrant,
we write tP as a shorthand for 2% x 47. Let n := Per 4+ Int — 1. We define a map
fa:C2 - PR by

(thtz) = (tpo : "-:tp")7

where po, . . ., p, are the lattice points of A. The projective closure of the image
is a projective algebraic surface denoted by X (A). The surfaces constructed in
this ways are called toric.

Example 2.1. ..

Obviously, any toric surface is rational. In some sense, the toric varieties are
the simplest possible rational surfaces: they have a parametrization by mono-
mials.

There is a close relation between the numerical characters of the lattice poly-
gon — area, interior, perimeter — and some numerical characters of its associated
toric surface. For instance, we have that the embedding dimension of the sur-
face is equal to Int +Par — 1, as an immediate consequence of the construction.
Here are some more well-known facts.

Theorem 2.2. Let A be a lattice polygon, with associated toric surface X.
Then the following hold.

1. The degree of X is equal to deg(X) = 2 Area(A).

2. The interior of A is equal to the genus of the generic plane section, also
called the sectional genus p1(X).

Proof. See [5], p 111 and p 91. O
Proof of theorem 1.2. By theorem 2.2, the assertion is equivalent to

deg(X) < 4P1 +47 lfpl > 27

deg(X) <9, if p1 =1,

where X := X(A). The first statement has been proven in [11] (theorem 6), for
arbitrary rational surfaces. For the second statement, recall that the rational
surfaces with sectional genus one are precisely the Del Pezzo surfaces, and that
the degree of a Del Pezzo surface is less than or equal to 9 (see [2]). O

Remark 2.3. The only Del Pezzo surface of degree 9 is the 3-uple embedding
of P? in P°. This is a toric surface, and the corresponding lattice polygon is
the one in figure 4. Hence our earlier statement on the uniqueness of a lattice
polygon with interior equal to 1 and perimeter equal to 9 follows.
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