Computation and Validation of Root Clusters
for Univariate Polynomials

Petru Pau, Josef Schicho
Research Institute for Symbolic Computation RISC - LINZ, Austria

[ppau, jschicho]@risc.uni-linz.ac.at

ABSTRACT

The problem of computing and validating root clusters for
univariate polynomials has been considered by several au-
thors. In this paper, we solve this problem by giving ex-
plicit formulae for the radii of disks containing at least k
roots. The method is used in an algorithm for computing
polynomial roots in the frame of “exact real computation”.

1. INTRODUCTION

It is well-known that numerical root computation of univari-
ate polynomials is ill-conditioned when the given polynomial
has multiple zeroes, or when the given polynomial is close to
a polynomial with multiple zeroes. The situation cannot be
improved by making the input squarefree, because square-
free decomposition is in itself an ill-posed problem: an in-
finitesimally small change in the input causes a jump in the
output. As it is not possible to compute the roots and their
multiplicities individually (see [1]), several authors have sug-
gested algorithms to compute clusters instead (see [12, 13,
8, 15]). The standard approach is to use pseudo-squarefree
decompositions, which are a numerically stable variant of
squarefree decomposition. The given polynomial is written
as a product of powers of squarefree polynomials, plus a
small error term. KEach root of a squarefree pseudo-factor
with exponent r corresponds to a cluster of r roots.

The location of an r-fold root, and likewise the location of an
r-cluster of roots, depends Holder continuously on the coeffi-
cients: if the coefficients are known up to an error ¢, we may
compute the location of the cluster up to an error of order
€'/T. This error can be bound a priori (estimating the errors
that could be made by the algorithm) or a posteriori (using
the computed result). The main contribution of this paper
consists in two a posteriori bounds: Theorem 1 provides a
formula in the coefficients, and the bound in Theorem 2 in-
volves some combinatorial computation but is sharper. The
bounds may be considered as generalizations of a result in
[16] providing an infallible error bound for the error of a
single root.

Another method for a posteriori validation of clusters is con-
tained in [8]. This bound is usually tighter than ours (see the
statistics in section 2). On the other hand, our bound is eas-
ier to compute. It is also infallible, in contrast to [8] which is
just “highly confident” (as one has to estimate numerically
the convergency radius of an infinite Taylor series).

Section 3 contains a numerically stable algorithm for com-
puting clusters, similar to [13]. The main contribution in
this part is a proof that the algorithm computes arbitrarily
tight clusters as the accuracy approaches zero. This fact can
be used — together with the bound in section 2 — to compute
the roots of a polynomial in the sense of exact real number
arithmetic (see [3, 11]); this is explained in section 4.

This research has been supported by the Austrian science
fund (FWF) in the frame of the special research area “nu-
merical and symbolic scientific computing” (SFB013).

The authors wishes to thank to Christian Weixlbaumer for
his suggestions regarding the combinatorial properties of
some recursions that occur in subsection 2.2, and Werner
Krandick for useful remarks.

2. VALIDATION
Throughout this paper, we work with a polynomial p in R[z],

of coefficients po, . .., pn:

p=pn” +pp_12" " + -+ + po;
z will be a complex number, and the roots of p will be de-
noted by z1,..., 2.

In [16], A. Strzebonsky gives an estimate for the error of an

approximate of a root:

Lemma 1. Let z be a complex number, and assume that
|z —z1| < |z — 22| <--- < |z — zal.

Then

nlpz) |

(n —k)!p®)(2)

for all k such that p*®(z) # 0.

I

|z—zl|§‘

This lemma allows us to compute a bound for the distance
from z to the nearest exact root of p. Practically, it gives
the radius ¢, of a disk centered at z that contains at least
one exact root of p.

If the polynomial is known to be squarefree, after computing
some approximate values for its roots, we can use Strzebon-
sky’s formula to get estimates of the accuracies. The case of

overlapping disks corresponding to two distinct approximate
roots is not acceptable. If this happens, the approximate
roots must be computed more accurately, to be closer to the
exact roots. If the coefficients of p are real numbers, the
algorithm must also consider better approximates of these
coefficients.

We cannot use this formula for polynomials about which
we do not know whether they are squarefree or not. We
can try to find some approximate values of the roots, and
then produce a matching, a correspondence between exact
roots and approximations; but if we do so, it may happen
that two approximate roots, corresponding to two distinct
exact roots, are detected to be closer to one of the exact
roots, because their validity disks, with radii computed using
Strzebonsky’s formula, are not disjoint; thus they will be
considered, incorrectly, as approximations of a double root —
see Fig. 1. The second root will then be ignored completely.

@ exact roots
X root approximations

Figure 1: Although the approximate root zy 2 corre-
sponds to 23, it is closer to z1; z; will be (erroneously)
considered a double root.

Clearly, if we had a formula for estimating the distance to
the second nearest exact root, we would be able to handle
these cases more gracefully: instead of two overlapping disks
containing at least one root, we would produce one disk
containing at least two roots. In general, if we had a formula
for estimating the distance to the k’th nearest exact root,
we would be able to produce disks labelled by a positive
integer, which is greater than or equal to the number of
roots contained. The next two subsections do provide such
formulae.

It remains the question of how we could come up with rea-
sonable guesses for the midpoints and for the integer labels.
This will be the content of section 3.

2.1 Estimatingthedistancetothe#’'th nearest

root

In this subsection we assume that the roots of p are arranged
in the increasing order of their absolute values: |z1] < --- <
|zn|. We try first to find an estimate for the absolute value
of the k’th root, with 1 < k < n. In other words, we want
a (small) neighborhood of 0 that contains (at least) k exact
roots of p. For the moment, we assume that po is different
from 0.

In the following, we look for a positive value M with the
property that the assumption “only k — 1 roots of p have
absolute values smaller than M” leads to a contradiction.

We make this assumption, and rewrite the relations be-
tween coefficients and roots for the reciprocal polynomial
p = z"p(1/z). Denoting by y1,...,yn the roots of p, we

get |yal,-- o, |yk—1] > 27, |9kl |yn] < 77 We use the
following symbol for the sums of products of roots:
k
Sy = Z Yir Yiz - - - Yips (1)
st s<i; <t
0
Sy = 1
s,t
1
Sy = 0ifl=0o0rl>t—s+1.
s,t
Clearly,

i = — — .
ipo | \M
‘We claim that
i
Sy | < R;
1,k—1

for ¢ =0,...,k — 1. Indeed, by using the formula

pi i iy
i=|SyI=‘Z Sy Sy (2)
Po 1,n — 1,k—1k,n
Jj=0
and induction on %, we obtain
o< [2eSd Sl s S ()7
< B+ <21+ R (1)
1,kgi1 Po — l,kgilk,?i Po T\ M
j=0 j=0
v i-1 oil N\ imi
_ i 3| (9i—i
S A N A NG (—) < R;.
Do ;0 Do () M ’

k
Using formula 2 again, and taking into account that Sy =
1,k—1

0, we get
Dr k-1 nNkFt X i | no\k—i
5| < En(g) - Sl
ml < &0) =gl 0y
Ll on\ F
< == :
2 [nl i)

We are now in position to choose a value for M:

M :=2n- max k_'klpﬂ, (3)
055 <k Pk
which would then lead to the contradictory |2t | < |2k,

If we assume that only & — 1 roots of p have their absolute
values less than M, the few steps from above lead us to a
contradiction. Thus, we conclude the following Lemma.

Lemma 2. The polynomial p has at least k roots in the disk
centered at the origin, of radius M given by formula 3.

Observe that the final bound does not contain po in the
denominator. This allows us to get rid of the assumption
po #0. Let p:=ppa™ +--- + p1z, and let M be as defined
in 3. For small «, the polynomial p, := p+ « has at least k
roots in the disk with radius M around the origin. Because
the set of roots of a polynomial depends continuously on the
coefficients, the disk also contains at least k roots of p.

Clearly, theorem 2 gives the optimal radius 0 if 0 happens
to be a k-fold root. If p is a polynomial with distance € to a
polynomial ¢ with a k-fold root, then Lemma 2 produces a
radius of order ¢!/*. Considering the polynomials p := z*—¢,
we see that this order is optimal.

In order to obtain a disk of center zp € C containing at
least k roots, we apply formula (3) to p(z + z0). By Taylor
expansion, we get the following theorem:

Theorem 1. Let p € R[z] of degree n, let k € N and z € C

such that p™®(2) # 0. Then there are at least k roots of p in
the disk centered at z of radius

M :=2n- max "7 71{;.]9!. pD(2)]

4
22 T w0 @

2.2 A tighter estimation

We use the same notations as in the previous subsection.
Again, we try to find a positive value M such that the as-
sumption “only k£ — 1 roots of p have absolute values smaller
than M” leads to a contradiction.

We have:
1 1 1
o Sy thus Sy = o Sy;
Po 1,n 1,k—1 Po km
2 2 1 1 2
&ZSy thus Sy =P Sy - Sy—Sy
Po 1,n 1,k—1 Po 1,k—1 k,n k,mn
1 1\ 2 2
=E+E8y+(5y> — Sy
Po PO k,n k,n k,n

The following general formula can be proved by induction:

!
Sy = (-1)*- (ﬂ+7ﬂD1+---+z—;DH+Dz>,

1,k—1 Po Po
where
1
Sy 1 0 0
k,n
1
Sy Sy 1 0
k,n k,n
Dy := det
-1 1-2 -3
Sy y Sy 1
k,n k,n k,n
i -1 1-2 1
Sy Sy Sy Sy
k,n k,n k,n k,n

Now, we can write:

Pr o [kel 1 1 k=1 &k
= =(-1) (Sy Sy+---+ Sy Sy+Sy>;
Po 1,k—1k,n

1,k—1 k,n k,n

also by induction, it can be proved that:

P (—1)k (p’“ Pe-lp 4. +&Dk,1+Dk>. (5)
Po Po Po

On the other hand, we put the condition that |y;| < 57, for

i =k, ...,n, therefore
n—k+1\ 1
< (! >W

For the determinants we have:

Sy

k,n

1
|Di] = |Sy|
k,n
n—k+1
M b
1, 2 1,
|D2| = |(Sy)” —Sy| < (Sy)” +1Sy|
k,n k,n k,n N
< m—k+1)? (n—k+1)(n-—k)
M?2 2M?2
_ (n—k+1)(3n—3k+2)
a 2M?2
and so on.

Now formula (5) becomes:

Pk pr—1|n—k+1 |ppg_2|(n—k+1)(3n—3k+2)
=< + +
Po Po M Do 2M
pr—3| (n—k+1)(13n? — (26k — 17)n + (13k* — 17k +6))
+
Po 6M3
Pr—a| 1 3 2
—k+1)(250° — —4
o | 507 (n—k+1) (25n° — (75k — 49)n

(75k — 98k + 34)n — (25k° + 49k> — 34k + 8)) +...,

the polynomials in n in the numerators becoming more and
more complicated. We denote these polynomials by P; x(n),
so that we get

Pk zk n)

—i

o<l

The authors are not aware of a closed form for the polyno-
mials P, € Z[n]. An algorithm for computing P; x(n) is
given below:

Algorithm P(i, k):

1. compute
Ry 1 0 . 0
Ry Ry 1 .. 0
dP := det ’
R; Ri_1 Ri_» . Ry

as a polynomial in Z[R1, Rs, ..., R;];
2. substitute all integer coefficients ¢ in dP by |c|,
3. substitute ("] MYM~I for R; in dP, for j =1,.

4. return dP - M* as a polynomial in n.

A closer analysis shows that the leading coefficient of P; g
depends only on 4; in fact, it is A000670(: + 1)/:!, where

A000670 is the sequence of preferential arrangements (see
(7).

We can choose now a value for M:

M := max "7 kmpk—l,k(n)-
0<i<k [Pk

If we make the assumption that only £ — 1 roots of p have
absolute values smaller than M, the previous considerations

will lead us to a contradiction of the form % < %.

When we work with an arbitrary complex number z instead
of 0, an upper bound for the radius of a disk centered at z
which covers (at least) k roots of p is:

L k1], k! [pO(2)]
Note that if z approximates an exact root Z of p of multi-
plicity k, then M decreases as z converges to z. Also, if the
coefficients of p are only known with accuracy e, then the
bound given before, which is nothing else than an estimate
of the accuracy of the root, is O(e'/*).

We finalize this discussion with the theorem which, in fact,
we have just proved:

Theorem 2. Let p € Rz], let k € N and z € C such that
p™(2) # 0. Then there are at least k roots of p in the disk
centered at z of radius

K [p*0(2)|
i, Kk PYPTU(2)]
120k \/k(k—l)! () L)

2.3 Experimental comparison

between formulas

Next table contains lists of values obtained by implementing
in Maple the two formulas presented in this paper, and the
method of Hribernig and Stetter (H&S). The polynomials
were randomly chosen. Each polynomial has a cluster of &
roots around 0: its last k coefficients are very small. For
each polynomial, an approximate root close to 0 has been
considered. The number of digits of precision was chosen
randomly, ranging between 4 and 16. The “exact distance”,
in the last column, was computed by extracting the roots
with high accuracy (around 300 digits).

It can be seen that, in most of the cases, the formulas (4) and
(6) provide values which are one order of magnitude higher
than the values computed with the method of Hribernig and
Stetter. On the other hand, our formulas are much faster,
and also infallible.

There are two possible reasons for the failures reported by
the method of Hribernig and Stetter. First, their method in-
volves the computation of a Taylor series for a rational func-
tion. It may have happened that the criterion for stopping
the generation of its coefficients was not fulfilled after a rea-
sonable number of them had been computed. Secondly, this
Taylor series contributed to a polynomial equation, whose
smaller real positive solution is the value reported by the
algorithm. It may have happened that the equation did not
have any real (or positive) solution.

Degree | Multi- Formula Formula H&S Exact

plicity (4) (6) method | distance

12 7 3.5 .88 24e-1 .59%e-2
(17 msec) (0.3 sec) (0.6 sec)

10 5 .66e-1 .20e-1 .7Tle-3 .25e-3
(11 msec) (0.2 sec) (0.5 sec)

7 2 1le-6 .48e-7 .40e-8 .40e-8
(2 msec) (7 msec) | (90 msec)

9 4 49e-2 .16e-2 72e-4 34e-4
(14 msec) | (45 msec) (5.2 sec)

13 8 .18e3 41. failure .39
(0 msec) (0.4 sec) (0.2 sec)

10 5 94e-1 28e-1 .10e-2 .36e-3
(12 msec) | (71 msec) (0.6 sec)

7 2 .16e-4 .67e-5 .56e-6 .56e-6
(5 msec) | (10 msec) (1.8 sec)

10 5 .63e-1 .19e-1 .68e-3 .24e-3
(19 msec) | (80 msec) (7.6 sec)

14 9 6.7 1.9 failure .19
(0 msec) (0.7 sec) (0 msec)

8 3 .23e-2 .88e-3 49e-4 .28e-4
(3 msec) | (18 msec) (0.3 sec)

3. COMPUTATION

Let us turn now to the problem of computing estimations
for the roots and their multiplicities. For polynomials with
rational coefficients, we may compute squarefree decomposi-
tion by GCD computations. We will show that if we replace
the GCDs in this algorithm by pseudo-GCDs, we obtain a
pseudo-squarefree factorization (pseudo-SFF for short).

There are various concepts of pseudo-GCDs available in the
literature [14, 5, 6, 4, 9]. Most of these functions (in fact all
except [9]) depend on numerical tests for zero and are there-
fore nondeterministic: there is a certain gray zone where the
function value is not unique.

We call a nondeterministic function continuous iff the in-
verse image of any open set is open. If f is a continuous
nondeterministic function, then we may compute one value
y € f(x) approximately when we know z approximately.

A very simple continuous nondeterministic function is the
pseudo-zerotest, defined as

1 if |z| <€

pseudo-ZT, (z) = { 0 ifxz#0.

The argument of the nondeterministic function is x, and
€ > 0 is considered a parameter. To compute one value of
pseudo-ZT (z), it suffices to know z up to an accuracy of e.

Let fe : A — B be a family of nondeterministic function
parametrized by positive reals. Then we say that f con-
verges to a deterministic function f: A — B iff
lim fe(z') = f(z)
z! —z,e—0

for all z € A. For instance, the family of pseudo-zerotests
given above converges to the zero test (which is 1 for z =0
and 0 otherwise).

Lemma 3. The composition of two continuous nondeter-
ministic functions is again continuous.

The composition family of two convergent nondeterministic
function families is again convergent. Moreover, the limit
of the composition is the composition of the limits of the
components.

Proof. Obvious. O

We denote by M,, the space of all monic polynomials of
degree n with real coefficients, with the natural topology.
Furthermore, we define M := (72, My (the space of all
monic polynomials), setting the distance between elements
from different subsets to co. The GCD is now a function

from M x M to M.

Lemma 4. There is a family of continuous nondeterminis-
tic functions from M x M to M that converges strongly to
the GCD.

Proof. We follow the construction [5]. Suppose that the de-
grees of p, ¢ are n, m, respectively. First, we estimate the
rank of the Sylvester matrix by pseudo-zerotesting its singu-
lar values. Suppose this rank guess is m +n — k. Second, we
compute polynomials u,v,r of degree m —k — 1, n —k —1,
k, with r monic, such that ||pu + gv — r||2 is minimal. We
return the monic polynomial 7.

By properties of the pseudo-zerotest, the rank guess may
be too low but it cannot be higher than the actual rank.
Therefore, the second step is a least square problem with
a matrix of maximal rank, which is continuous. As the
pseudo-zerotest and the computation of the singular values
are also continuous, we see that the whole construction is a
composition of continuous nondeterministic functions, and
therefore itself continuous.

The family of pseudo-zerotests is convergent, therefore the
whole construction is a convergent family by lemma 3. To
see what the limit is, we have to replace all pseudo-zerotests
by zerotests. Then the rank guess is correct, and the least
squares problem has exactly one solution which makes the
norm zero; the component r is then the exact GCD. O

Let us call the above construction pseudo-GCD.

For n =0,1,2,..., the function SFF" (squarefree factoriza-
tion) is a function from M, to M™, mapping t1t3-- -t to
the tuple (¢1,...,tn). Here is a recursive algorithm for com-

puting a family of nondeterministic functions converging to
SFF, also called pseudo-SFF.

Algorithm pseudo-GCD(n, ¢, p):
if n <1 return the n-tuple (p,1,...,1) and exit;

p' := derivative of p;
q := pseudo-GCD(¢,p, 2p');
m := deg(q);

7 := pseudo-SFF(m,e, q);
for ¢ from 1 to m

p := quotient(p, rz:'H);
return (p,r) (filled up with 1-components at the end)

Theorem 3. The above algorithm is correct.

Proof. 1t is easy to see that the degree of the pseudo-GCD
is less than or equal to the degree of each of the arguments.
Since taking derivative reduces the degree by one, the recur-
sion is finite, and we may proceed by induction on n. For
n = 0, the assertion is trivial.

Pseudo-GCD is a continuous family converging to GCD.
By induction hypothesis, pseudo-SFF is a continuous family
converging to SFF. Computing derivative, degree (of monic

polynomials), power, and quotients are all continuous. By
lemma 3, the whole construction is continuous and converges
to the function obtained by replacing pseudo-GCD by GCD
and pseudo-SFF by SFF (using the induction hypothesis
again). But this is obviously the SFF. O

Remark 1. With similar techniques, one could also prove
a stmilar result for the stabilized square-free decomposition
algorithm in [13].

Once we have proved the correctness by induction, we may
as well remove n from the input parameters, as it can be
inferred from the input polynomial.

Having a continuous algorithm converging to squarefree fac-
torization, we may compute clusters by computing the roots
of the pseudo-factors, in the following way. The algorithm
returns a list of triples (z,7,i), z € C, r € Ry, ¢ € Z4, rep-
resenting a disk with midpoint z with radius r containing %
roots.

Algorithm clusters(e, p):
CLUSTERS := empty list of disks;
(t1,...,tn) := pseudo-SFF (e, p);
for ¢ from 1 to n do
for each root z of ¢; do
if pseudo-ZT(p'(z)) then
exit with error;
r := an upper bound for the ¢-th next root,
computed by theorem 2
if the disk C(z,r) overlaps with disks
in CLUSTERS then exit with error;
add (z,7,1) to CLUSTERS;
return CLUSTERS

The algorithm is correct: by theorem 2, the number of roots
inside the disk C(z,r) contains at least ¢ roots; the disks
are disjoint, and by counting it is clear that this minimum
is always obtained. The algorithm may return an error at
two steps, corresponding to a situation where the numerical
insecurity is critical for the clustering process. In this case,
the easiest way to obtain a result is to re-run the algorithm
with a different parameter e.

The clustering algorithm above forms again a family of con-
tinuous non-deterministic functions. It is easy to find its
limit (up to the order of the roots): when we replace all
pseudo-operations by their exact counterparts, then the radii
of all disks have the value zero. Therefore, the limit function
is the computation of all roots together with their multiplic-
ities.

4. AN IMPLEMENTATION FOR EXACT
REALS

In exact real computation, a real number is represented by
a program producing arbitrarily accurate approximations.
An approximation is given by a pair of floating point num-
bers, the value and the accuracy. The distance between the
approximated real and the value must not be greater than
the accuracy.

The set of all representable real numbers is the set of all
computable reals. 1t is well-known that the complex roots
of a monic polynomial with computable real coefficients are

again computable, or in other words, that the fundamental
theorem of algebra is constructive (see [2]). In this section,
we present an efficient algorithm for computing the roots of
a monic polynomial with exact real coefficients.

It is necessary to mention two features of our implementa-
tion of exact reals [3]. First, for every real number, we keep
the best approximation computed so far. Second, whenever
a real number is constructed, we compute an initial approx-
imation (possibly with quite low accuracy). Both features
turned out to be useful; see [3] for details.

Complex numbers are represented analogously to real num-
bers, by a best known approximation and a program that
computes arbitrarily accurate approximations. (We could
have also represented a complex number as a pair of reals,
but this would have been less compact.)

Here is the input-output specification for root computation
in the frame of exact real computation.

Input: n real numbers, denoting the coefficients of a monic
polynomial p of degree n;

Output: n complex numbers, denoting the roots of p. Mul-
tiple roots occur multiply in this list.

As we will compute the approximations for the complex
roots by clusters, we will always have the situation that
the approximation disks — centered at the value with the
accuracy as the radius — for two roots in the list are either
identical or disjoint. The refinements of the individual roots
are therefore not independent: any refinement will affect all
roots simultaneously.

The j-th exact complex number in the output list consists
then of a program that computes arbitrarily fine approxi-
mations to the j-th root. As input information it takes the
known approximations for all roots. If the list of known ap-
proximations is (z1,...,2,), we assume that z3 = --- = z;,,
Zig4+1 = Zig42 = y Bip_14+1 = Zip_142 = Ziy,
ir = n, and that zi,, 2i,, ..., 2, are distinct (and therefore
disjoint approximation disks).

= Zigy .-

1. The first and largest step is to compute clusters for p
with radii as small as demanded. This can be done
using the algorithm “clusters”.

2. For each j = 1,...,n compute the unique ! such that
-1 <J <4 (setting 9 = 0)
3. Compute the clusters that intersect the approxima-

tion disk of z;,. Suppose they are (wi,r1,k1), ---,
(Wm, Tm, km). We necessarily must have k1+- - -+km =

2 ——1.
4. Compute s such that k1 + -+ + ks—1 < j —4-1 <
kit o+ k.

5. Return the value ws with the accuracy rs.

The steps 2-5 ensure that the approximations after a single
refinement are again either disjoint or identical. Moreover,
the number of identical approximations corresponds to the
number of roots in the corresponding cluster.

As initial approximation for all roots of 2™ + p,_12""* +

-+ + po, we take the value 0 and the accuracy
B=2 max |p]|"" .
0<i<n—1

It is well-known that B is a bound for the absolute value of
any root (see [10], theorem 3).

5. REFERENCES

[1] ABERTH, O. Precise numerical methods using C++.
Academic Press Inc., San Diego, CA, 1998.

[2] BisHOP, E. Foundations of constructive analysis.
McGraw-Hill, 1967.

[3] BoDNAR, G., PAu, P., AND SCHICHO, J. Exact real
computation in computer algebra. Tech. Rep. 00-33,
RISC-Linz, Univ. Linz, A-4040 Linz, 2000.

[4] CorLEss, R., CHIN, P., AND CoRLISS, G.
Optimization strategies for the approximate GCD
problem. In Proc. ISSAC’98 (1998), ACM Press,
pp- 228-235.

[6] CorLESS, R., GIANNI, P., TRAGER, B., AND WATT,
S. The singular value decomposition for polynomial
systems. In Proc. ISSAC’95 (1995), ACM Press,
pp. 195-207.

[6] EmIRrIS, I. Z., GALLIGO, A., AND LOMBARDI, H.
Certified approximate univariate GCDs. J. Pure Appl.
Alg. 117/118 (1997), 229-251.

[7] Gross, O. A. Preferential arrangements. Amer.
Math. Monthly 69 (1962), 4-8.

[8] HRIBERNIG, V., AND STETTER, H.-J. Detection and
validation of clusters of polynomial zeroes. J. Symb.
Comp. 24 (1997), 667—-682.

[9] KAMARKAR, N. K., AND LAKSHMAN, Y. N. On
approximate GCDs of univariate polynomials. J.
Symb. Comp. 26 (1998), 653—666.

[10] KrRANDICK, W. Isolierung reeller Nullstellen von
Polynomen. In Wissenschaftliches Rechnen,
J. Herzberger, Ed. Akademie Verlag, Berlin, 1995,
pp. 105-154.

[11] MENISSIER-MORAIN, V. Arbitrary precision real
arithmetic: design and algorithms. J. Symb. Comp.
(2001). to appear.

[12] NEUMAIER, A. An existence test for root clusters and
multiple roots. ZAMM 68 (1988), 257-259.

[13] Nopa, M. T., AND Sasakl, T. Approximate
square-free decomposition and rootfinding for
ill-conditioned algebraic equations. J. Inf. Proc. 12
(1989), 159-168.

[14] SCHONHAGE, A. Quasi-gcd computations. J.
Complexity 1 (1985), 118-137.

[15] STETTER, H.-J. Condition analysis of overdetermined
algebraic problems. In Proc. CASC 2000 (2000),
pp- 345-365.

[16] STRZEBONSKI, A. Computing in thr field of complex
algebraic numbers. J. Symb. Comp. 24 (1997),
647-656.

