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Abstract
Given a convex lattice polygon, we compute a descending sequence of
lattice polygons obtained by repeatedly passing to the convex hull of the
interior lattice points. This process gives the idea for an algorithm that
simplifies a given parametric surface by reparametrization.

Introduction

A rational surface is a surface that has a parametric representation by ratio-
nal functions in two parameters. The parametrization is not unique. Given a
parametric surface, can we find a simpler parametrization for the same surface?
By “simple”, we mean that the degree of the polynomials in the numerator or
denominator of the rational functions are small. There are several motivations
for this question: first, parametrizations of smaller degree can be represented by
less data. Second, implicitization is easier when the degree is smaller. Third, a
small parametrization makes it easier to find rational curves of small degree on
the given surface.

In (Schicho, 2002), we gave an algorithm that produces a reparametrization
which is at most twice as large as the smallest possible reparametrization. The
input is assumed to be a proper parametrization. In this paper, we give an
interpretation of that algorithm in terms of toric geometry and lattice polygons.
More precisely, we specialize the algorithm to the case of toric surfaces, and
describe it for this case by operations on lattice polygons. There are several
motivations for such an interpretation: first, the lattice geometric algorithm and
its correctness proof is much easier to understand and more elementary than the
algebraic algorithm in (Schicho, 2002), and so the lattices make it possible to get
a better understanding for the general case. In fact, it is surprising to observe
that most ideas and difficulties in the general algorithm have a lattice-geometric
counterpart. Second, the lattice geometric algorithm gives some ideas how to
generalize the algorithm to three-folds. Third, the lattice geometric picture of the
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general algorithm is quite elegant and provides another nice connection between
algebraic geometry and lattice geometry.

It is not very hard to give a lattice description of adjoints (Theorem 3.1), which
is actually valid in any dimension: the m-adjoints correspond to the polygon
obtained by moving m units inward in each direction. This result is related to
the description of the canonical class of toric varieties (see Fulton (1993)). In the
surface case, however, we have another more useful description (Theorem 3.3):
taking m-adjoints corresponds to passing m times to the convex hull of the
interior lattice points.

The paper is written as if the toric case was the stepping stone for solving
the general case. In reality, it was the other way round: the general algorithm
was devised first. The toric interpretation was found later, inspired by discussions
with some colleagues. Among them, let me mention Rimas Krasauskas, who used
toric surfaces for constructing multi-sided patches for computer aided geometric
design (Krasauskas, 2001); and Gavin Brown, who used toric three-folds as main
examples for investigations on pluricanonical divisors (Brown, 1999). The idea
was presented at the ISSAC in Lille, but it was too late to mention it in the
paper version.

The author has been supported by the Austrian Science Fund (FWF) in the
frame of SKFB-project F13.

1. The Problem

A parametric surface is given by a map
p:C = SCP (s,t) = (Fy:---: F),

where Fy,..., F, are polynomials in Cl[s,t] We assume that the parametriza-
tion is proper (i.e. generically injective). The parametric degree is defined as the
maximum of the total degrees of Fy, ..., F,.

Let ¢ : C2 — C? be a birational automorphism of the plane (also called
Cremona transformation). Assume that ¢ is given by two rational functions S, T,
in the variables s',t'. The parameter change ¢ gives rise to a new parametrization
pr:=pot:C? — S.It is represented by the n + 1-tuple of polynomials arising
from (Fo(S,T),...,F,(S,T)) after clearing denominators and cancellation of
common factors.

In the case of algebraic curves, the birational automorphisms of the parameter
space C' are precisely the Mdbius transformations. They preserve the degree.
Hence the parametric degree is the same for all proper parametrizations; in fact,
it coincides with the implicit degree. In the surface case, the parametric degree
is not preserved by Cremona transformations. In general, we can find a Cremona
transformation that reduces the parametric degree.

ExAMPLE 1.1: Consider the parametric surface

( 254245 2t 5242515 4410442 1)

(a:, Ys Z) = 24255 4+t10 442417 6242585 +4104-42 417 5242554210442 41
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of parametric degree 10. Substituting the Cremona transformation
(s,t) = (s' — t°,1)

yields the parametrization

2s' 2t/ s+t 1
ST+ 1 P+ +17 7+t + 1

@)= (

of degree 2.

In (Schicho, 2002), we presented an algorithm that takes a parametric surface
and computes a Cremona transformation in order to reduce the degree. We
could not prove that the parametric degree of the computed reparametrization is
minimal. But it was shown that the parametric degree of the reparametrization
is at most twice as big as the minimal one. The algebraic complexity of the
algorithm is polynomial, and it performs well on test examples of moderate
degree.

2. The Theory of Adjoints

The algorithm in (Schicho, 2002) uses the concept of adjoints. In this section,
we recall the relevant facts from this theory.

Let X C P" be a projective variety. We assume that 7 : X — X is a resolution
of the singularities of X, i.e. 7 is a regular birational map and X is projective
and nonsingular. It is well-known that such a resolution exists, but it is not
unique in general.

Recall that for any effective class of divisors D on X, we get an associated
rational map mp : X — P", where r := dim(|D|). The map mp is determined
up to projective transformations of the image.

Let H € CI(X) be the pullback of the class of hyperplane sections. Let K €
CI(X) be the canonical class. Let b, : X — P" be the map associated to the
class nH + mK, if this class is effective. The adjoint map an,, : X — P is
defined as the composition a,,, o 7~'. We define the adjoint numbers v, ,, :=
dim(|nH + mK]|) + 1. If nH + mK is not effective, or equivalently if v, ,, = 0,
then a,,, is undefined. It can be shown that v, ,, and a,, do not depend on
the choice of the resolution 7.

For instance, the map a; o is the map associated to the complete linear system
of hyperplane sections. This map is birational. In the case that this system is
already complete (e.g. for nonsingular hypersurfaces), a; ¢ is the identity.

The maps ay,, are of special interest, because their image does not depend on
the projective embedding of X in P". Therefore, they are called “canonical” (or
sometimes “pluricanonical”) maps.

Unfortunately, we have vy, = 0 for all m if X is a rational variety, hence
we do not have canonical maps in this case. For rational surfaces, one can find
another adjoint map which gives a simple birational model.
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For an implicitly given rational surface, the parametrization algorithm (Schi-
cho, 1998) computes adjoint maps in order to reduce the general case to one of
the base cases in the classification above. In this situation, it is quite hard to
compute the adjoints, because one needs to resolve the singularities of the given
surface.

In our situation, we have given a parametric surface. By projectivization, we
obtain a rational map ¢ : P2 — S. By successively blowing up base points, we
obtain a map 8 : Y — P? and a resolution t : Y — S, £ = t o 3. We can use
this resolution to construct the maps b, ,, : Y — P". In fact, the rational maps
P P2 = P" prm i= bpm 0 B! may be considered as a parametric version of
adjoint maps; we do not need an implicit description of S in order to compute
them. An explicit algorithm for computing these maps is contained in (Schicho,
2002).

3. Toric Surfaces

A toric surface is a parametric surface parametrized by monomials:
(5,1) — (s%0t%0 1 ... 2 gongbn),

with ag,...,b, € Z. We assume that the parametrization is proper, or equiva-
lently that the lattice points (a;,b;), i = 0,...,n, generate the whole lattice Z?
by integral affine linear combinations. The convex hull of the lattice points is
called the lattice polygon of the toric surface.

Geometric properties of the surface correspond to combinatoric properties of
the lattice points. For instance, the degree d of the surface is equal to twice the
area of the lattice polygon; and the number p;, the genus of a generic hyperplane
section, is equal to the number of lattice points in the interior.

Remark: For arbitrary rational varieties with p; > 0, we have the inequality
d < 4p; + 5 (Schicho, 1999). Of course, it holds especially for toric surfaces with
p1 > 0. In terms of convex lattice polygons, this is assertion is equivalent to the
statement

2 - area < 4 - number of interior points + 5,
which has been proved in (Scott, 1976) by combinatorial methods.

Let I' be the lattice polygon corresponding to a toric surface. The parametric
degree e(I") is equal to the mixed volume of the lattice polygon I" and the triangle
A(o) (2).(9): Equivalently, it is the smallest number e, such that lattice polygon

0 0 1

is contained in a triangle of the form A(a) (+),(,2.)" We also call such triangles
b/°\ b /J\b+e

normal. For instance, the toric surfaces in Figure 1 has degree 4.
A toric Cremona transformation is one of the form

(5,1) = (5%, 592¢%2),
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Figure 1: A toric surface with parametric degree 4.

where a1by — asby = +1. This corresponds to expressing the lattice points in
another Z-basis of the lattice Z2. Translations of the lattice polygon correspond
to passing to a different coordinate representation of the same map to projective
space, so they are already absorbed in this setting.

The simplification problem for toric surfaces (using only toric Cremona trans-
formations, in order to preserve the toric structure) is therefore equivalent to the
following problem about lattice polygons.

Input: a convex lattice polygon I'.

Output: a unimodular transformation 7, such that the transformed polygon
7(I") is contained in a normal triangle of smallest possible size.

A similar problem has been considered before in lattice geometry: in (Arnold,
1980; Barany and Pach, 1992), the authors are interested to make the trans-
formed polygon be contained in a parallelogram of controllable size, in order to
give an estimate for the number of unimodular equivalence classes with certain
constraints. However, their method does not give any idea what to do in the
non-toric case. We like to think of another method that generalizes to arbitrary
rational surfaces. To this end, we translate the concept of adjoints into the lan-
guage of lattice polygons. We do this in two steps. The first step generalizes
to toric varieties of arbitrary dimension, and the second step is specific to the
surface case.

A nonzero vector (u,v) € Z? is called a direction iff gcd(u,v) = 1. The set of
all directions is denoted by R.

Let I' C R?. Let r be a direction. We set

M(L,r) = ink (r.p)

where (., .) is the usual scalar product. For the sake of convenience, we define the
infimum of R to be —oo and the infimum of () to +o00. Of course, if " is compact,
especially if I is a polygon, then the infimum is obtained; the points where the
infimum is obtained are called extremal.
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THEOREM 3.1 (FIRST TRANSLATION): Let p: C? — S be a toric surface with
lattice polygon I'. Let n, m be nonnegative integers. Then the parametric adjoint
map pnm : C* — P" — if exists — is toric, defined by all points in the convex set

Qpm(T) == ﬂ{p | (r,p) >nM(T,r)+m}.
TER

Proof: By definition, a function f is in the linear space defining a,, ,, if and only
if it pulls back to a function in £(nH +mK) on some resolution. This is the case
if and only if f - (wo)™ is in the V-module M, ,, generated by the products of
n-th powers of the s%t% and m-th powers of top degree differential forms of V/,
for every discrete valuation ring V. Here, wy is the unique top degree differential
form that is invariant under toric Cremona transformations, namely wq := %.
Because of the existence of toric resolutions, the linear space is generated by
monomials f = s%°, and we can restrict to toric valuations, i.e. valuations that
are determined by the values on the monomials. These valuations are in one-to-
one correspondence with the directions.

Let V' be the discrete toric valuation corresponding to the direction r = (u, v).
The value of a monomial f = 5% is equal to ua + vb. Let p, ¢ be integers such
that up + vg = 1. The top degree differential forms are generated by

d(s"t™™) A d(sPt9) = sPTUtT " wy.

The value of the scalar factor is u(p+v) +v(g —u) = 1. Hence f - (wo)™ € My m
if and only if its value is greater than or equal to nM (T, r) + m. a

Remark: From its definition, we only know the set €, ,,(I") is compact and con-
vex. One can show that it suffices to take only a finite number of directions into
a account. We do not use this fact here, so we omit the detailed proof.

Remark: By the preceding remark, €, ,,(I') is a polygon. We will see below that
it is in fact a lattice polygon. For higher dimension, this need not be the case. For
instance, let I be the tetrahedron with vertices (0,0,0)" (3,3, —3)*, (3, -3, 3),
(—3,3,3)". For n =m = 1, we have

91,1:{(£E,y,2)t‘$+y21,y+221,$+221,—,’E—y—22—2},

and this is the tetrahedron with vertices (3,1,%)%,(1,1,0)%, (1,0,1)",(0,1,1)".

Now, we will give a simpler geometric construction of 2, ,,. We start by ob-
serving that O o(I') =T, and €, ¢(I") = nI', the n-th multiple of I' in the sense
of Minkowski sums.

If T is a lattice polygon and r is a direction, then we say that r is an edge
direction of I' iff there are at least two extremal points with respect to r. The set
of all edge directions of I' is denoted by E(T'). Obviously, I is the intersection of
the half planes {p | (r,p) > M(T",r)} corresponding to its edge directions.

We define the repeated interiors of the lattice polygon I recursively by ' =T
and I'™*! is the convex hull of the interior of the lattice points of I'™. We will
also use I as a shorthand for I'!.
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LEMMA 3.1: Let T' be a lattice polygon with at least one interior lattice point.
Let r be a direction satisfying one of the following conditions:

a) M(T™,r)=MI",r)+m—1 for some m > 1;

b) r is an edge direction of T';

c¢) r is an edge direction of T.
Then we have

M(T',r) = M(T,r) + 1.

Proof: Clearly, M(I,r) > M(T',r) + 1 because all points p in the interior of I'
satisfy (r,p) > M ([, r). We want to show that equality holds.

Assume, indirectly, that there is a lattice point py in T such that (r,py) <
M(T',r) — 2. Let L be the line {p | (r,p) = M(I",r) — 1. Then L intersects the
interior of I' in a non-empty open line segment S, which must not contain any
lattice points.

A standard technique in geometry is to choose a convenient coordinate system.
We are restricted because we need to respect the lattice, so that we can only
change the coordinate frame by unimodular transformations and integral trans-
lations. The group of unimodular transformations acts transitively on the direc-

tions, and the fixed group for the direction (1,0) is the set of matrices (ClL 381> ,

where a € Z. But by a suitable unimodular transformation and translation, we
may reduce to the following situation:

1. the line L has equation x = 1;

2. the line segment S is contained in {(;) |0 <y <1}

3. the point py has coordinates (23), with zq < yo < 0.
For any point p; € I, the line segment connecting py and p; intersects L in a
unique point py. Since py is a point in I and p; is a point in the interior of I,
p2 is also in the interior of S. Therefore, py = (;2), with 0 < yo < 1. It follows
that p; = (;11) with 0 < y; < 1 (see Figure 2). This shows that M (I,r;) > 1
and M(I",ry) > 1, where r := (0,1) and 75 := (1, —1). In other words, I' is
contained in the closed convex set

() nevse)

We distinguish the two cases (a) and (b).
Case (a): r is a direction satisfying M (I'™,r) = M(I",r)+m—1=m+1 for
some m > 1. Since I C A, I'™ is contained in the set

wso () mevee-n).

m+1

v ) We get m < y3 < 1, a contradiction.

On the other hand, it contains a point (
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Figure 2: The line pgp; must meet the line L between the marked points.

Figure 3: The lines p;p3 and psps must meet the line L between the marked points.

Case (b): r is a tangent direction of I''. Then we must have two lattice points
(;3), with 1 < y3 <1, which is also a contradiction.
In order to prove case (c), we define the line L as {p | (r,p) = M([,r) + 1}.
Let py, ps be extremal points of [' with respect to r such that the line segment
between them contains no other lattice point. Again, let S be the intersection of
L with the interior of I';, which is a non-empty open line segment without lattice

points. We choose coordinates such that

1. the line L has equation z = 1;

2. the line segment S is contained in {(;) |0<y <1}
3= () and ps = (9).

For any point p3 = (Zg) with 3 > 1, the line segment connecting p; and ps
intersects L in an interior point of I', hence in a point in S. Therefore, y3 > 0.
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Also, the line segment connecting ps and p3 intersects S, which implies y3 < 1. It
follows that there are no lattice points with z3 > 1 (see Figure 3). Hence I = (),
contradicting our assumption. O

LEMMA 3.2: Let T' be a lattice polygon, m > 0. Let r be an edge direction of
'™, Then we have

M({@T™,ry= M, r)+m.

Proof: We prove the statement by induction on m. For m = 0, the statement is
trivial. For m = 1, the statement follows from Lemma 3.1 (a).

Assume m > 1. By induction hypothesis, we have M ('™, r) = M (I",r)+m—1.
Therefore, we can apply Lemma 3.1 (b), and get M(I",r) = M(T,r) + 1. O

We introduce some notation. For [ > 1, m,n > 0, either m or n positive, O; 1, »,
denotes the polygon with vertices (8), (?), (“”0+ "), (Tl”) For m > 1, A,, denotes

the normal triangle of size m (with vertices (8), (), (7(7)1)) Note that O; 19 = A;.

THEOREM 3.2: Any lattice polygon without interior lattice points is unimodular
equivalent to Oy ., or to As.

Proof: We proceed similar as in the proof of case (c¢) in Lemma 3.1. Let r be an
edge direction of I". Let py, po be the two end points of the side of I' corresponding
to r. Let L be the line {p | (r,p) = M(I',r) + 1}. If L does not contain interior
points of ', then T fits between two parallel lines with distance one unit, and it
is easy to show that it can be transformed to a Oj ,,,. Otherwise, let S be the
set of all interior points of I' lying on L. This is an open line segment without
any lattice points. We choose coordinates such that

1. the line L has equation z = 1;

2. the line segment S is contained in {(;) |0 <y <1}

3. p1= (8) and py = (T?l), for some m > 1.
For any point lattice point p3 = (;Z‘) € I' with z3 > 2, the line segment connect-
ing p; and p3 intersects L in a point in the closure of S. Therefore, y3 > 0. Also,
the line segment connecting p, and p3 intersects the closure of S, which implies
(m — 1)z3 + y3 < m. We distinguish three cases.

If m =1, then 0 < y3 < 1. Hence I is contained in the set {(Z) |0<y<1}
Then I' can be transformed to a Oy ;.

If m > 2, then
0<ys<m—az3(m—1)<m-—-2m—-1) <2—m,
which is only possible if m =2, z3 = 2, and y3 = 0. Then T" is equal to A,. O

LEMMA 3.3: Let I' be a lattice polygon, m > 0. Then Qy,,(I') =T™.
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Proof: For any direction r, the extremal points p are on the boundary. This
shows that M (A',r) > M(A,r) + 1 for any lattice polygon A. Consequently,
M(@™,r) > M(I') +r, and therefore I'"™ C €y ,.

Assume that '™ is a proper polygon with non-empty interior. By Lemma 3.2,
we have

"= () {ol|{rp=Mr",mn)}

rEE(l"m)
= () {pl{rp)>MI™1r)+m}
rEE(I‘m)
> (e | {rp) > ME™,7) +m} = Q.

reER

Now, we have to treat the three degenerate cases.

Assume that I'™ is a line segment, say connecting the points ¢; and ¢o. The
above argument shows that €2, ,, is contained in the line supporting through
¢1,q2. There are two edge directions 71,79 of [ !, such that ¢; is the only
extremal endpoint of €, ,, with respect to r;. By Lemma 3.2 and Lemma 3.1 (c),
we have

M(Qy 7)) =M(T,r)+m= M(mel,r) +1=M(T"r)

for r = r1,ry. Hence the same points are extremal on '™, which proves that
' = Q.

Assume that I'™ is a single point p. The same computation as in the line
segment, case shows that p is extremal with respect to any edge direction of
™1, This shows that p is the only point of Q1 p,.

The case that I'™ is empty splits into several subcases.

Assume that ™! is a proper polytope. By Theorem 3.2, '~! is unimodular
equivalent to O; 45 or to Ay. By Lemma 3.2, the set I'™ is contained in the set

(N el {rp)>ME™ " r)+1}.

reE(I'm—1)

But this set is empty by a case by case check.

The case where I'™~! is a line segment can be treated in the same way as the
previous case.

Assume that '™~ is a point p. In the proof of the case where I'™ is a point,
we saw that there are directions r with

(r,p) = M(IT™ ' r)= M(,r)+m— 1.

Hence p is not a point of € ,,. Since € ,, is a subset of Q4 ,,_1 = {p}, it follows
that p is empty.

Finally, assume that I'™~! is empty. If n < m is the smallest integer such that
' is not empty, then I'™*' = Q, .1 by one of the previous cases. Hence both
sets are empty, and €2, ,, is also empty because it is a subset of €2 1. O
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THEOREM 3.3: Let I be a lattice polygon. Then Q, ,(I') = (nI')™.

Proof: From the definition of €2, ,, and by Lemma 3.3, we get

Qi (T) = Q ju(n) = (nI)™.

4. Toric Simplification

The idea for our toric simplification algorithm is the following: instead of I’
(which may have a very complicated shape) we simplify I'™, where m is as large as
possible. As the process of adjunction strips away points in the various directions
in a uniform way, there is hope that the same unimodular transformation also
simplifies I'.

Passing from I' to I is not a reversible process, as the repeated interior op-
eration is neither surjective nor injective. But we will use an operation that is
close to an inverse operation. If T" is a convex polygon, then we set

T™T) := m {p | (r,p) > M(T',r) —m}.

reE(T)

By definition, this is a convex polygon, but its vertices need not be lattice points
in general.

LEMMA 4.1: Let ' be a lattice polygon, and assume m > 0.

a) If A is a lattice polygon such that A™ =T, then A C Y™(I).

b) If M(Y™(T),r) > M(L,r) —m for some direction r, then there is no A
such that A™ =T

Proof: Let r be an edge direction of I'. Let A be such that A™ = I'. Then
M(T,r) = M(A,r) +m by Lemma 3.2. Hence A C {p | (r,p) > M(T',r) — m},
and (a) follows because this subset relation holds for all r € E(T).

In order to prove (b), assume that M (Y™, r) > M(T',r)—m for some arbitrary
edge direction r, and assume indirectly that A™ = I' for some A. By the definition
of repeated interiors, we have M (T',7) > M (A, r)+m. On the other hand, we have
M(A,r) > M(Y™, r), because A C Y™ by (a). This contradicts our assumption
M(Y™ r)y> M(T,r) —m. O

It is necessary to classify the polygons that can appear at the end of the
adjunction process. For polygons without interior lattice polygons, we already
have the classification in Theorem 3.2.

We want to show that I' is already simplified if [ is. We start with the case
of Ay, which is the simplest.
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Figure 4: The inverse interiors of O; 3 5.

THEOREM 4.1: Let T be a lattice polygon, and let m € N. Assume that '™ = A,.
Then the following are true.

a) e(I') =3m+2.

b) For any lattice A unimodular equivalent to T', we have e(A) > 3m + 2.

Proof: (a): Obviously, Y™(Ay) = Agy2. Hence the statement follows immedi-
ately from Lemma 4.1 (a).

(b): Let A be unimodular equivalent to I'. Then A C A,y by the definition
of the symbol e. Therefore, A™ C (Agx))™ = Ae(r)—3m- On the other hand, A™
is unimodular equivalent to Ay, therefore e(A) —3m > 2. O

In the case of O, 45, we can only prove some slightly weaker statement: the
polygon I" may not be of smallest possible one, but it is not much larger than
the smallest.

THEOREM 4.2: Let I' be a lattice polygon, and let m,a,b € N. Assume that
'™ =0y 4. Then the following are true.

a) If a > 1, then e(T') < (a + 2)m + a + b; otherwise, e(I') < 4m + b+ 1.

b) For any lattice A unimodular equivalent to T', we have

(a+2)m+a+b 4m+b+1>

e(A) > 3m + max(a,1) + b > max ( 5 : 5

c)b> (a—2)m.

Proof: We begin with the first inequality of (b). As in the proof of Theo-
rem 4.1 (b), we have A™ C A,a)—3m. On the other hand, A™ is unimodular
equivalent to Oy , 5. We conclude that e(A) —3m > a+b. If a = 0, then we also
conclude e(A) — 3m > b+ 1, because A, does not contain anything unimodular

equivalent to the rectangle O g .
Let

(—m) <b+m+a+am) (b+m—am)
D1 = y P2 1= yP3 = )
—-m —-m m—+1

—m —m
D4 = m+1 yP5 7= | atbtom |3
a
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these are the intersections of the support lines of I along the edge directions,
offset by m units. If b > (a—2)m, then Y™ is the trapezoid p;pspsps, a translation
of 014 2m,a,b+(2—a)ym- (In the subcase b = (a—2)m, this trapezoid degenerates into
a triangle because p3 = py = ps). If b < (a — 2)m, then Y™ is the triangle p;pops.
In this case, let 7 := (0, —1)}. We have

M(Y™ r)=(r,ps) = _a+b+2m >-m—1=M(,r)—m,
and by Lemma 4.1 (b), this is not possible. The situation is graphically ex-
plained in Figure 4. Hence (c) holds. The second inequality of (b) is a numerical
consequence of (c).
If @ > 1, then T = Oy 9y 4p+(2—a)m 1S contained in a normal triangle A,
where

n:=a(l+2m)+b+(2—-—aym=(a+2)m+a+b.

By Lemma 4.1 (a), [ is also contained in A,,. If ¢ = 0, then we need T is a
rectangle with side length 1+ 2m and b+ 2m, which is contained in a Agyipi1-
By Lemma 4.1 (a), ' is also contained in Ay, 4p41. This shows (a). O

Here is the classification of the lattice polygons with a line segment as the first
interior.

THEOREM 4.3: Let A be a lattice polygon such that A’ is a line segment with n
points (of course, n > 2). Then A is unimodular equivalent to a polygon with

00000

where 0 <a<b,0<c<d, b+d<2n+2,d<b, and the two points in square
brackets may or may not be there.

Proof: We transform the line segment [’ to be the line segment between (}) and
(1)- By Lemma 3.1 (b), I is contained in the set {(}) | 0 <y < 2}. There can be
at most two vertices on each of the lines y = 0, y = 1, and y = 2. Straightforward
case by case analysis shows that we can always reduce to the above situation. O

THEOREM 4.4: Let I' be a lattice polygon, and let m > 0,n > 2. Assume that
'™+ is a line segment with n points, and that I'™ is a lattice polygon of the type
described in Theorem 4.5. Then the following are true.

a) e(T') < max(4m +n + 3,2n + 2m + 2).

b) For any lattice A unimodular equivalent to T', we have e(A) > 3m +n + 2.
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Figure 5: The lattice polygons with one interior point.

Proof: We begin with the first inequality of (b). As in the proof of the theo-
rems 4.1 and 4.2, we have A™"" C Ax)_3p,—3. Hence e(A) —3m —3 >n — 1.
For the proof of (a), we have to compute Y™ (I'"™). A straightforward computa-
tion gives that Y™ C Oyyy0 0.9m4n+1 for b < n+1 —in this case, T™ C Aupminys
—and Y™ C Oopmi9p—n—1mnt2n+2m+2—mb—b f0r b > n 4+ 2. In this case, we know
also that mn +2n+ 2m + 2 —mb — b > 0. It follows that Y™ C A,p46 mn, and
mb+ b — mn < 2n + 2m + 2 because of the above inequality. O

The classification of lattice polygons with one interior point has been done in
Rabinowitz (1989). Here is the result.

THEOREM 4.5: Let I' be a lattice polygon with one interior point. Then T' is
unimodular equivalent to one of the polygons in Figure 5.

THEOREM 4.6: Let ' be a lattice polygon, and let m > 0. Assume that T™*! is
a single point, and that T'™ is one of the lattice polygons in Figure 5. Then the
following are true.
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Figure 6: In case of one interior point, the inverse interior is similar.

a) If T'™ is the polygon number 2 or 3, then e(I') < 4m + 4; otherwise, e(I') <
3m + 3.
b) For any lattice A unimodular equivalent to T', we have e(A) > 3m + 3.

Proof: For any A unimodular equivalent to I', we have A™*! C Ag(A)—3m—3-
Hence e(A) — 3m — 3 > 0, which shows (b).

For all polygons IT in Figure 5, we have Y™ (II) = (m + 1)II (see Figure 6). (In
fact, this can be shown from Lemma 3.1 (c) directly, without using Theorem 4.5).
Two polygons in Figure 5 are contained in A4, and all the other are contained
in Aj. Hence we get that Y™ is contained in Ay, 4 in case I'™ is the polygon
number 2 or 3, and it is contained in Ag,,,3 in all other cases. By Lemma 4.1,
(a) follows. O

For a polygon without interior lattice points, we say that it is in good position
iff it is equal to Oy ,,, or Ay (up to translation). For a polygon with several
interior lattice points, but all on a line, we say that it is in good position iff it
is equal to a polygon as described in Theorem 4.3. For a polygon with exactly
one interior lattice point, we say that it is in good position iff it is equal to one
of the polygons in Figure 5.

Here is our toric simplification algorithm.

1. Compute the smallest m such that ™! is not a proper polygon.
2. Bring I'™ into good position by a suitable unimodular transformation 7.
3. Apply 7 to T'.

EXAMPLE 4.1: The polygon I' in Figure 7 has parametric degree e(I') = 17.
Since I'* is a line segment, we get m = 2, and we have to bring the white
polygon I'? into good position. As it can be seen in Figure 8, the transformed I'
has parametric degree 8.
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Figure 7: Simplification of a lattice polygon.

THEOREM 4.7: Let T' be a lattice polygon, 3 the result of the simplification al-
gorithm applied to ', and A another lattice polygon unimodular equivalent to T'.

Then e(A) > e(X)/2.

Proof: Because the operation “repeated interior” is respected by unimodular
transformations, X fulfills the assumption of Theorem 4.2, Theorem 4.4, or The-
orem 4.6. The statement follows then from these three theorems. O

5. Arbitrary Parametric Surfaces

The toric simplification algorithm can be easily generalized to arbitrary paramet-
ric surfaces, because it uses only operations that generalize. Here is a straight-
forward generalization.

1. Given a parametric surface p : C2 — S, compute the smallest m such that
the parametric adjoint map pi 1 either does not exist, or its image is not
a surface.

2. Find a Cremona transformation ¢ such that p;,, ot : C? — P’ has smallest
possible parametric degree.

3. Return pot.
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Figure 8: The result of the simplification.

The straightforward generalization does not work in general, because the gen-
eral theory of adjoints does not give enough structural information about pi p,,
with m chosen as above. What is known (Schicho, 1998) is the following.

THEOREM 5.1: Let p: C?2 — S be a parametric surface, properly parametrized.
Let m be the largest number such that vy, > 0, or equivalently such that the
adjoint map py,m does exist. Then one of the following cases is true.

1. pim 1s birational onto the image. This image is either the projective plane,
or a quadric surface in P2, or a rational scroll, or a Veronese surface.

2. p1m maps to a rational normal curve. Then psom—1 s birational onto a
conical surface, i.e. a surface generated by a pencil of conics.

3. pim maps to a point, or equivalently vy, = 1. If viym_1 > 4, then pipm_1 s
birational to a Del Pezzo surface. If vy 4—1 = 3, then psom—2 s birational
to a Del Pezzo surface. Otherwise, Vi m—1 = 2, and ps3m—3 s birational to
a Del Pezzo surface.

Remark: In case (1), p1,, is toric: the projective plane corresponds to Aj, the
nonsingular quadric corresponds to O; ¢, the singular quadric corresponds to
Oi,2,0, the rational scrolls to Oy 4, and the Veronese surface to A,.

In case (2), p1,, is also toric, corresponding to a line segment. The toric conical
surfaces are precisely those with a line segment as the first interior.
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In case (3), p1,m is trivially toric, corresponding to a point. The toric Del
Pezzo surfaces correspond to the lattice polygons with one interior lattice points
in Figure 5. There are also non-toric Del Pezzo surfaces, but their implicit degree
is bounded by 9, as in the toric case.

We already know how to parametrize rational scrolls and the Veronese sur-
face minimally. For conical surfaces and Del Pezzo surfaces, one can also find
a minimal parametrization (see Schicho (2002)). Therefore, the above theorem
suggests the following modified generalization to the non-toric case.

1. Compute the smallest m such that the parametric adjoint map pi 41 either
does not exist.

2. If py , is birational, set p' := pq .
If p1,,» maps to a rational normal curve, set p' := ps opm1.
If v1,, =1 and vy m—1 > 4, set p' := p1m—1-
If Ui,m = 1 and VUi,m—1 = 3, set p' = P2,2m—2-
Otherwise (namely if vy, = 1 and vy ,,—1 = 2), set p' := p3 3m—3-

3. Find a Cremona transformation ¢ such that p' ot : C> — P" has smallest
possible parametric degree.

4. Return pot.
This is precisely the algorithm described in (Schicho, 2002).

Remark: The above algorithm may be restricted to toric surfaces and trans-
lated again to the language of lattice polygons. Let us compare this second toric
algorithm with the first one in the previous section.

In the cases where p ,, is birational or (v, =1 and vy ,—1 > 4), we have to
bring the same polygon into good position (namely I'™ or '*~!, depending on the
case). The case vy, = 1 and vy,,,—1 < 4 does not occur for toric surfaces, because
every polygon with one interior lattice point has at least 4 lattice points. In the
case where I'™ is a line segment, the polygons really differ. The first algorithm
simplifies A; := ™!  and the second algorithm simplifies A, := (2I')>™~!. We
claim that Ay = (2A;)". It suffices to show (2I')*" 2 = 2A;. To do this, we
compute

(20)*™ 2 = Qy9m 2(T) = (|{p | (r,p) = 2M(T,7) + 2m — 2}
= m{Qp | (r,p) > M(T,7r) +m —1} = 2Qy 1 ([) = 2A;.

A geometric analysis shows that E(Ay) = E(A;) U E(I'™) (see Figure 9). It
follows that A; and A, are brought into good position by the same unimodular
transformations.

The parametric degree of the result can be estimated using the following quan-
titative result from (Schicho, 1999).
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Figure 9: Comparison of the two toric simplification algorithms.

THEOREM 5.2: Let S be a rational surface. Let m be the largest number such
that vi,m > 0. such that the adjoint map a,, does exist. Let d, be the “intrin-
sic parametric degree”, i.e. the smallest possible parametric degree of a proper
parametrization. Then the following are true.

1. If a1, 1s birational, then we distinguish three cases, depending on its image.
(a) If the image is a Veronese surface, then d, = 3m + 2.
(b) If the image is the projective plane, then d, = 3m + 1.

(c¢) If the image is a quadric surface or a rational scroll, then
3m 4+ 1m=l < d, < Am A+ vy, — 2.

2. If a1, maps to a rational normal curves, then
3m+vi,—1<d, <4dm+ 20, — 2.

3. If vi;m =1, then 3m < d, < 4m.

Proof: See (Schicho, 1999), Theorem 8, Lemma 9, Theorem 9, and Proposition 1
(the cases (2) and (3) above are subsumed to one case there). O

Theorem 5.2 contains an implicit existence statement, namely it states the
existence of a parametrization of degree less than or equal to the given upper
bound for d,. It is important to note that such a parametrization is actually
constructed by the simplification algorithm (see Schicho (2002) for a proof). As
in the toric case, we can conclude that the computed parametrization is at most
twice as big as the smallest possible parametrization.

Remark: In (Schicho, 1999), we can also find some statements bounding d, in
terms of the implicit degree d or the sectional genus p; = vy ;. In the toric case,
these bounds can be improved significantly, because we have vg 511 < v4p — 3 for
all a,b € N such that v,p41 > 0. The reason is that vep — v,+1 is equal to the
number of all lattice points in the boundary of €,,(I'), and this number is at
least 3. It follows that d, < 6m + 2v;,, < vy, and vy (the number of all lattice

points in I') is equal to d — p; + 2 by Pick’s theorem.
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Some of the statements in Lemma 3.1 can also be given an algebraic interpre-
tation. For instance, the statement of case (c¢) is equivalent to stating that if the
vectorspace of 1-adjoints is not zero, then it generates the sheaf of 1-adjoints.
This statement turns out to be wrong for some non-toric examples (e.g. the
classical case of a Del Pezzo surface of degree 1).

For toric surfaces, we have seen that “passing to the m-adjoint surface” is
the same as “m times passing to the 1-adjoint surface”. This also fails in the
non-toric case.
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