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We present fast DD (domain decomposition) algorithms for systems of algebraic
equations, resulting from hp finite element discretizations of 2-nd order elliptic equa-
tions. Main attention is paid to the most time consuming component of such algo-
rithms, which is solving local Dirichlet problems on subdomains of decomposition.
Different types of hp discretizations, i.e., by means of hierarchical and Lagrange
(nodal) elements, including incomplete elements, are studied. We present DD-type
and multilevel almost optimal iterative solvers for these problems.

Introduction

In the last decade, DD (domain decomposition) hp finite element solvers for
second order elliptic equations have been in a focus of many studies. General
schemes of such solvers for discretizations, based on square and triangular refer-
ence elements, have much in common and were analyzed in many papers, see the
literature in [KFOF]. In this paper, we follow the approach of [IK,KJ2,K,KFOF],
where considerable attention was paid to optimization of the basic components
of DD algorithms. The interface component of DD solvers requires efficient
preconditioners for the Schur complement matrix, resulting from the condensa-
tion of internal unknowns for each element. For designing such preconditioners,
a number of techniques, similar for reference elements of the both geometries,
but different for coordinate functions of different types (Lagrange, hierarchical
etc.), were developed in [KJ2,KFOF]. Usually, the most time consuming and
the most difficult for optimization component of DD algorithms are solvers for
local Dirichlet problems on subdomains of decomposition, for which we use the
abbreviation LS. Only recently, the first almost optimal LS was obtained in [K1]
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for one the most popular type of hp discretizations. Finite elements, in general
curvilinear, of the discretization are images of the square reference element with
the hierarchical coordinate functions, defined by the tensor products of the inte-
grated Legendre polynomials. Some important properties of such discretizations
were established in [IK]. There, for use in LS, a spectrally equivalent precondi-
tioner in the form of finite-difference operator was suggested and analyzed, see
also [KJ1,KJ2]. Although the use of the preconditioner provided a significant
step in reducing the computational cost of LS and the DD algorithm in a whole,
the next step, which is designing a fast3 solution procedure for the precondi-
tioner4, still required an effort. This is for the reason of singularity of coefficients
in the finite-difference-type preconditioner. As it was mentioned above, this step
was completed in [K1], where an almost optimal solver was suggested, based on
a combination of DD and FDFT (fast discrete Fourier transform) techniques.
Later, multilevel solvers, based on the strengthened Cauchy inequality and other
approaches, appeared in [Be] and in [K2].

The cited results allow us to obtain fast highly parallelizable DD solvers,
which, to the best of the author’s knowledge, until now have not been presented
in the literature.

In this paper, we also suggest fast LS’s for discretizations with different from
the pointed out above types of reference elements. Incomplete and transition el-
ements are very important for adaptive computations. A remarkable fact, which
we establish in the paper, is that almost optimal LS’s for the case of such elements
may be not more complicated, than for complete elements. We present also fast
algorithms for solving Dirichlet problems, arising on subdomains of decomposi-
tion in the hp-version with Lagrange finite elements. Since other components of
DD algorithms have been thoroughly studied earlier, e.g., see [KJ2,KFOF], and
practically do not depend on the type of internal for elements coordinate func-
tions, we are able to come to fast DD solvers for hp discretizations by Lagrange
elements as well.

Let us note that we consider only the DD techniques, in which subdomains of
decomposition are the domains, occupied by finite elements. The reason for this
is the following. If subdomains with several elements were used, then, according

3By fast, we imply optimal and almost optimal, i.e., optimal up to multiplier (log p)k, p > 1, with fixed k,
solvers.

4Speaking about a solution procedure for some matrix, we mean the solution procedure for the system of
equations with this matrix.
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to our results, the most efficient solvers for such subdomains would be again
DD solvers with smaller subdomains of decomposition. In this way we come
to the algorithm, in which domains of finite elements taken for subdomains of
decomposition. Note also that in our estimates of computational work, we do
not count operations spent for multiplications of vectors by the finite element
stiffness matrix, unavoidable in every iteration process.

The paper is arranged as follows. In Section 1, we describe the reference
elements which generate the hp discretizations being considered in the paper.
Some basic features of DD substructuring are discussed in Section 2. In Section
3, we formulate some results, concerning the component of DD solvers, usually
termed as prolongation. The properties of prolongations as by means of iteration
solvers for local Dirichlet problems, so by means of special prolongation operators
in the polynomial spaces are discussed. Section 4 summarizes our earlier results
on the Schur complement preconditioning. Section 5 presents fast LS’s for the
discretizations with the hierearchical reference elements. We study the cases
of complete and incomplete reference elements and LS’s based on the DD and
multilevel approaches. Results of numerical experiments with some of these
solvers are also described in this section. LS for the discretizations with the
Lagrange (nodal) reference elements are described and analyzed in Section 6.

Let us describe some notations. Relations of the type A ≤ B for symmetric
positive matrices are understood in a sense of the scalar products, i.e., as in-
equalities vtAv ≤ vtBv with an arbitrary vector v; A+ is the pseudo-inverse
to the matrix A; c with different indices denotes positive constants independent
of p and the number of elements in a finite element assemblage; ≺ and � stand
for the inequalities and equalities, held up to constants independent of p and the
number of the finite elements; | · |k,Ω , || · ||k,Ω denote the seminorm and the norm
in the Sobolev space W k

2 (Ω). We deal with the preconditioning of symmetric,
positive or positive definite matrices. Therefore, the preconditioners possess the
same properties, which as a rule we do not mention specially.

As a rule, we use thick or special fonts for matrices and vectors.

1 Two types of hp-discretizations

We consider Dirichlet problem for Poisson equation in 2-d domain. The prob-
lem is discretized into an assemblage of, in general, curvilinear finite elements
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τr, r = 1, 2, . . . ,R, specified by nondegenerate mappings x = X (r)(y) : τ̄0 → τ̄r
with positive Jacobian’s, where τ0 is the reference square τ0 = (−1, 1) × (−1, 1).
We assume that the conditions, called the generalized conditions of the angular
quasiuniformity, are fulfilled for the mappings. If the mappings are bilinear, i.e.,
elements have straight edges, these conditions are equivalent to shape regular-
ity. In a more general case, they imply that the inequalities in the first line of
(4.3) in [KJ1] are fulfilled with h specific for each element, but with α(1) and θ

independent of an element and h. The domain occupied by the assemblage is
denoted Ω.

An hp discretization may be generated, e.g., by one of the two types of ref-
erence elements, equipped with the space Qp,x of all polynomials of the order
not greater p , p ≥ 1, in each variable. These reference elements are denoted as
EH and EL. For the bases in Qp,x, they have hierarchical and Lagrange interpo-
lation polynomials, respectively. Let us introduce the set M1,p = (Li(s) , i =
0, 1, . . . , p) of polynomials of one variable

L0(s) = 1
2(1 + s) , L1(s) = 1

2(1 − s) ,

Li(s) := βi

s∫
−1

Pi−1(t) dt = γi[Pi(s) − Pi−2(s)] , i ≥ 2 ,

where Pi are Legendre’s polynomials and γi = 0.5
√

(2i− 3)(2i+ 1)/(2i− 1) .
Thus, for i ≥ 2, up to the multipliers βi, Li are the integrated Legendre’s poly-
nomials. These multipliers are chosen such that ‖Li(s)‖0,(−1,1) = 1, for i ≥ 2.
With ω := (α = (α1, α2) : 0 ≤ α1, α2 ≤ p), the hierarchical basis in Qp,x is the
set

Mp =
(
Lα(x) = Lα

1
(x1)Lα

2
(x2) , α ∈ ω

)
.

For the description of the element EL, it is sufficient to specify the set of its
nodes. One popular choice is the set of the so called GLL nodes, introduced
by Gauss-Lobatto-Legendre quadrature. Another choice is the set of the GLC
nodes, i.e., having for coordinates the coordinates of Gauss-Lobatto-Chebyshev
quadrature nodes plus the ends of the interval: x = η(α) = (ηα1

, ηα2
), ηk =

cos(π(p− k)/p), α ∈ ω.
In computations, incomplete, also called serendipity elements are widely used

as well. The notations E=,H ,Q=,p,x,M=,p will stand for the incomplete refer-
ence element, the related polynomial space and the hierarchical basis in it, re-
spectively. Let ωo = (α : 2 ≤ α1, α2 ≤ p), ωΓ = ω r ωo, ω̂o = (α : 2 ≤
α1, α2, α1 + α2 ≤ p), and ω=,o is such that ω̂o ∈ ω=,o ∈ ωo. We define
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M=,p = (Lα(x), α ∈ ω=), where ω= = ωΓ ∪ ω=,o, and Q=,p,x as the space,
spanned over polynomials from M=,p. I.e., the set M=,p of coordinate functions
of the incomplete reference element is a subset of Mp, which at least contains
all coordinate functions Lα, which are not equal identically to zero on ∂τ0 and
all internal coordinate functions of the total degree not greater p. In adaptive
discretizations several incomplete as well as transition reference elements may be
used and the basis M=,p may be defined in a more complicated way.

If to use the notations Lα(x) for coordinate functions of all these reference

elements, then coordinate functions p
(r)
α of any element τr are defined by the

equalities p
(r)
α (X (r)(y)) = Lα(y). We write the systems of finite element alge-

braic equations, resulting from the described discretizations in the form Ku = f .
For the reference element stiffness matrix we will use the notation A.

2 Basic features of DD algorithms

Let N be the number of unknowns and NI ,NII ,NIII be the numbers of the
internal for the elements, edge and vertex unknowns, respectively. The matrix
K may be represented in either of the block forms

K =

(
K(I) K(I,II)

K(II,I) K(II)

)
=




KI KI,II KI,III

KII,I KII KII,III

KIII,I KIII,II KIII


 ,

where K(I) = KI and KL are NL × NL sub-matrices, related to the introduced
groups of unknowns, L = I, II, III. Note that everywhere in the paper, we
use similar indexation of different matrices with one distinction: for blocks of
the matrices, related to reference elements, we use arabic numerals instead of
roman.

Often, at construction of DD algorithms, especially for hierarchical hp discre-
tizations, a formal splitting of the vertex unknowns from the rest is made. We
outline such algorithms first.

Lemma 1. Let Kv be obtained from K by putting zero blocks instead of
KL,III , L = I, II, and their transposed. Then cv(1 + log p)−1Kv ≤ K ≤ 2Kv

with cv ≥ 0 depending only on the constants from the generalized angular quasi-
uniformity conditions.
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The left inequality of lemma was proved in [IK], see also [KJ2]. In a slighter
form and with additional assumption of orthogonality of some subsets of co-
ordinate functions it was proved in [B]. Let K∧ be the block of K generated
by the internal and edge coordinate functions. Further steps are related to the
factorization

K∧ =

(
I 0

KII,IK
−1
I I

)(
KI 0

0 S

)(
I K−1

I KI,II

0 I

)
, S = KII − KII,IK

−1
I KI,II ,

(2.1)
with I denoting unity matrices. In general, taking into account (2.1), we may
define a DD preconditioner K∧ for K∧ through its inverse by setting K

−1
∧ =

K
+
I + PS

−1
Pt. Here, KI and S are preconditioners for KI and S, and the

(NI +NII)×NII matrix P is called the prolongation matrix. It will be discussed
in Section 3.

Evidently, KI = diag [KI,1,KI,2, ..,KI,R] , where KI,r are the internal stiff-
ness matrices of elements, and KI has the same block-diagonal structure. More
over, under the conditions of generalized angular quasyuniformity, we may take
all the blocks in KI the same, i.e., set KI = diag [KI,o,KI,o, ..,KI,o], where
KI,o is any good preconditioner for the reference element internal stiffness ma-
trix. Suppose, there are m different edges of elements inside Ω. Although the
structure of S is not block-diagonal, with some lost in condition, see Section 4,
we may accept S = diag [So,So, ..,So], where the same matrix So stands for
each of m edges. The prolongation PvII may be done element-wise and does not
require assembling. More over, if Pε is an appropriate prolongation matrix for
the reference element, than it may be accepted for the restriction of P to any
element τr.

We see, that the DD preconditioners under consideration require specification
of only 3 matrices KI,o , So and Pε for the reference element and provide a high
level of parallelization, i.e., element-wise and edge-wise.

Efficient DD preconditioners may be also associated with the similar to (2.1)
factorization

K =

(
I 0

K(II,I)K−1
I I

)(
KI 0

0 S

)(
I K−1

I K(I,II)

0 I

)
,

S = K(II) − K(II,I)K−1
I K(I,II) ,

(2.2)

where now Schur complement S has the dimension (NII +NIII)× (NII +NIII).
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Again we may define the DD preconditioner by the similar to the used above
formula K

−1 = K
+
I + PΨ−1Pt with the same as above preconditioner KI . The

restriction of P to any element is again specified by an appropriate prolongation
operator Pε for the reference element, which, for the same reference element, is
defined in quite similar to Pε ways. Indeed, Pε is the restriction of Pe to a more
narrow space of definition. The use of factorization (2.2) is more suitable for
Lagrange reference elements and assumes different approach for obtaining the
preconditioner Ψ for S, see [KJ2,KFOF].

3 Prolongations

Suppose that K∧ is an explicitly given preconditioner for K∧ with the blocks
KI and KII,I ,– KI not necessarily coinciding with KI ,– and that there is a fast
exact solver for KI . Evidently, a good choice is to set Pt = (−KII,IK

−1
I , I). When

we do not have such K∧, we are forced to use other options.
1) Special prolongation operators P may be effectively implemented, at least

in the case of complete reference elements. In hp-version, such algorithms were
introduced in [IK],– for more details see [KFOF],– following the approach for h-
version, presented, e.g., in [N]. By the generalized angular quasyuniformity con-
ditions, it is sufficient to define the prolongation operator Pε : Qp,x(∂τ0) → Qp,x

for the reference element, satisfying the inequalities

|v|1,τ0
≤ c|ψ|1/2,∂τ0

, ‖v‖1,τ0
≤ c‖ψ‖1/2,∂τ0

, ∀ψ ∈ Qp,x(∂τ0) := Qp,x|∂τ0
. (3.3)

Let Pε be the restriction of the matrix representation of the operator Pε to the
edge nodes. It is clear, that the matrix P is uniquely defined by its restrictions
Pr to the edge nodes of each finite element τr. As it was shown in the cited
papers, for all of them we can accept Pr = Pε at appropriate local orderings of
degrees of freedom. Suitable for the use in DD algorithms prolongation operators
were suggested in [BDM1,BDM2]. Their use provides considerable reduction of
operations in comparison with the condensation procedures, based on Gaussian
elimination, see [KFOF]. It may be also expected, that the cost of their computer
versions could be reduced, at a more elaborate arrangement of computations. It
is important, that if KI � KI , and S � S and the prolongation matrix P is
defined in the described way, then K∧ and K∧ are spectrally equivalent. In the
same way we define the prolongation matrix P by setting Pr ≡ Pε, where Pεis
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the matrix representation of Pε. This results in the spectral equivalence K � K

under conditions that KI � KI and S � Ψ.
2) Let A = {Ai,j}3

i,j=1 be the reference element stiffness matrix and A its
preconditioner A � A. For the blocks on diagonal, we always use one index
instead of two, e.g., the notation A1 instead of A1,1. It may be accepted Pt

ε =

(−AII,IÃ
−1
I , I), with

Ã−1
1 = [I −∏n

k=1(I − σkA
−1
1 A1)]A

−1
I ,

some n ≥ 1 and Chebyshev iteration parameters σk. Note that, if u(n) := K̃−1
I f ,

then u(n) is produced by n iterations
uk+1 = uk + σkA

−1
1 (A1u

k − f) , u0 = 0 .

In the case of the reference element EH , the following assertion is true.
If KI � KI , A1 � A1, S � S and n = O(log p), then K∧ � K∧. If S � Ψ,

then under same conditions on KI, A1 and n, we have K � K.
Although these facts are important, we omit the proof due to the restricted
volume of the paper.

For the discretizations with the reference element EL, the prolongation matri-
ces may be defined by the same iteration process, however, the necessary number
of iterations require special analysis.

4 Schur complement preconditioning

The Schur complement preconditioning is the most thoroughly studied compo-
nent of DD algorithms for hp discretizations of 2-d elliptic equations by complete
reference elements. As for other components, it requires to develop a precondi-
tioner only for the reference element. Well recognized facts serve the basement
for the Schur complement preconditioning. If, e.g., the matrix SA is spectrally
equivalent to SA := A(2) − A(2,1)A−1

1 A(1,2), then, by the trace and prolongation
theorems in complete polynomial spaces (see for these theorems [BDM1,BDM2])
it induces some discrete semi-norm, equivalent to | · |1/2,∂τo

on the space Qp,x|∂τo
.

Since | · |1/2,∂τo
practically does not depend on the form of τo, suggestions made

for the square in [IK,KJ1-KJ4] and for triangular reference elements in [KFOF]
are similar. More distinctions are related to types of traces on ∂τ

o
of coordinate

functions, e.g., hierarchical of different types, Lagrange etc.
In the case of the reference element EH , the matrix So may be defined in the

following way. Let S+ := WtΛW, where W is the explicitly given triangular
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matrix of the transformation from M1,p to the trigonometric basis M1,p,tr =
(arc k cos s, k = 0, 1, .., p) and Λ = diag[0, 1, .., p] is a diagonal matrix. If So is
obtained from S+ by deleting the two first rows and columns corresponding to
Lk, k = 0, 1, then S ≺ S ≺ (1 + log p)3S, see Section 3 in [KJ2]. Solving the
system with the matrix So requires O(p2) arithmetic operations. Though not
the cheapest, this is the simplest way of the Schur complement preconditioning,
introduced in [IK], which allow to obtain an almost optimal DD algorithm.

Now, we turn to the reference element EL and enumerate clockwise the edge
nodes η(α) ∈ ∂τ

o
. Let Dε denotes the cyclic 4p× 4p matrix having 2 on diagonal

and (-1) in the two adjacent diagonals and in the lower left and upper right
corners. Let also Dε be such that D

2
ε = Dε and ker Dε = ker Dε. The matrix

D is defined as the result of assembling R matrices Dε, considered as stiffness
matrices of elements τr, and deleting rows and columns for fixed nodes. Solving
the system with the matrix D by the preconditioned simple iteration process
with a fixed number n of iterations defines another matrix, which is denoted by
S

−1
� . Formally, this iteration process is equivalent to setting S

−1
� = [I−∏ns

k=1(I−
κkE

−1D)]D−1with Chebyshev iteration parameters κk, the diagonal matrix E,
which diagonal coincides with D, and ns = O(

√
p). As it was established in

[KJ1,KJ2], S� ≺ D ≺ S ≺ D ≺ S� and the cost of solving the system with the
matrix D is O(Rp√p log p), see Section 6 in [KJ4]. The important fact for this
estimate is that multiplications of vectors by D may be completed in parallel
element-wise by the 1-d FDFT’s.

Since in the case under consideration we have established that Schur comp-
lement preconditioning is made by similar with h-version preconditioners, the
further reduction of the computational cost of the interface problem may be also
achieved in similar ways: e.g., by applying the DD technique for solving the
system with the matrix D, by implementation of BPX preconditioners etc.

5 Fast solvers for Dirichlet problems on subdomains of

decomposition; hierarchical p-version

5.1. DD-like solver.

5.1.1. Definition of the preconditioner. Without lost of generality
we assume p = 2N + 1. The subset M0

p :=
(
Lα = Lα

1
Lα

2
, : 2 ≤ α1, α2 ≤ p

)
of

internal coordinate functions of the reference element may be rearranged in four
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groups, each having N 2 functions. The 1-st part contains Lα with even α1 and
α2, 2-nd – with even α1 and odd α2, 3-d – with odd and even, and 4-th – with odd
and odd. This rearranging splits the internal stiffness matrix A1 of the reference
element EH in four independent blocks, so that A1 = diag [Ae,e,Ae,o,Ao,e,Ao,o].
Since all the matrices Aa,b , a, b = e, o , are spectrally equivalent uniformly in p,
it is sufficient to derive the fast solver for one of them, say, Ae,e.

Let } = 1/(N + 1) , ηi = i} , ϕi = η2
i , Λe,e be the matrix of the system of

equations5

−2

(
ϕi
ui,j−1 − 2ui,j + ui,j−1

}2
+ ϕj

ui−1,j − 2ui,j + ui+1,j

}2

)
+ (

ϕi

ϕj
+
ϕj

ϕi
)ui,j = fi,j ,

1 ≤ i, j ≤ N ,

with ui,j = 0, if one of the indices is out of the pointed out range. Formally, this
is a finite-difference approximation to the deteriorating elliptic equation in the
unit square π1 = (ξ = (ξ1, ξ2) : 0 < ξ1, ξ2 < 1):

 Lu ≡ −2
(
ξ2
1∂

2u/∂ξ2
2 + ξ2

2∂
2u/∂ξ2

1

)
+(ξ2

1/ξ
2
2+ξ2

2/ξ
2
1)u = f(ξ) , u|∂π1

= 0 . (5.4)

As it was established in [IK,KJ1], Ae,e � Λe,e. By this reason, in order to get a
fast LS, it is sufficient to obtain a fast solver for the matrix Λe,e. The latter will
be designed as DD solver for the discretization of (5.4) on the uniform grid. In
order to distinguish this secondary decomposition and its main component from
the global DD, we will use for them the abbreviations DDl and LSl. The first
step will be approximation of (5.4) by the elliptic problem with the piece-wise
constant coefficients.

The square mesh of the size } will be termed the fine mesh. We introduce
the rectangular nonuniform mesh, termed the coarse or decomposition mesh,
which decomposes π1 in rectangular subdomains δk,l, such that the coefficients
of the equation (5.4) in either of them differ not too much from appropriate
constants. The mesh lines of the coarse mesh are denoted ξk,l = ζl, where
k = 1, 2, i = 0, 1, . . . , N + 1, l = 0, 1, . . . , l0, and numbers l0 and ζl are
specified below. Two parameters q > 1 and n0 ≥ 1 are used to generate the

5Do not confuse these ηi with the coordinates of the nodes of Gauss type quadratures, for which similar
notations were introduced in Section 1.
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coarse mesh as follows: ζ0 = 0 , ζl0−1 = 1 ,

ζl = ηi , for i := γ(l) := int (ql − 1)n0 , l = 1, 2, . . . , l0 − 2 ,
ζl0−1 = ηγ(l0−1), if ηγ(l0−1) = 1,
ζl0−1 = ηi, i = int 1

2(γ(l0 − 2) +N + 1), if ηγ(l0−1) > 1 .

If intbac is the closest to a positive integer not less than a, then we conclude that
l0 = int b(log( N

n0

+ 1))/ log qc.
There exist the piece-wise constant functions ψ(ζ) and b(ξ) of one and two

variables, which are constants on intervals ζ ∈ (ζk−1, ζk) , and subdomains ξ ∈
δk,l , respectively, and such that c1ψ(ζ) ≤ ζ2 ≤ c2ψ(ζ) and c1b(ξ) ≤ (ξ1/ξ2)

2 +
(ξ2/ξ1)

2 ≤ c2b(ξ) with positive constants independent of p. The functions ψ(ζ)
and b(ξ), are easily defined, e.g., as the arithmetic means of the maximal and
minimal values of ζ2 and (ξ1/ξ2)

2 + (ξ2/ξ1)
2 on the corresponding sets, see

[K1,K2].
It is convenient to define a new preconditioner as a finite element matrix. We

subdivide each nest of the fine mesh by one of the diagonals in two triangles
and introduce the space Ho(π1) of piece-wise linear functions continuous on π1

subordinate to the boundary condition (5.4). We define B = Be,e as the finite
element matrix, induced on this subspace by the bilinear form }

−2aπ1
(v, w),

aπ1
(v, w) = 2

∫

π1

(
ψ(ξ1)

∂v

∂ξ2

∂w

∂ξ2
+ ψ(ξ2)

∂v

∂ξ1

∂w

∂ξ1

)
dξ+}

2
N∑

i,j=1

bi,jv(ηi, ηj)w(ηi, ηj) ,

where bi,j = 1
4 [b(ηi−0, ηj−0)+b(ηi +0, ηj−0)+b(ηi−0, ηj +0)+b(ηi +0, ηj +0)].

Lemma 2. For ck > 0 depending only on n0 and q, we have c1B ≤ Λe,e ≤
c2B .

For the proof, see [K1]. The preconditioner Be,e is optimal in condition and
admits fast LSl’s on subdomains δk,l, such as FDFT and multigrid methods.

Similarly with the primal decomposition, we represent the space V := RN2

of vectors v = (vi,j , 1 ≤ i, j ≤ N), by the direct sum of the subspaces Vm, m =
1, 2, 3, of subvectors with the entries related to the internal for subdomains δk,l,
edge and vertex unknowns, respectively. For the restrictions of these spaces to
δk,l, we use notations U , Um. The above splitting of V , assumes the block forms
of B, such as

B = {B(i,j)}2
i,j=1 = {Bi,j}3

i,j , B(1) = B1 , B3,1 = B1,3 = 0 .
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Let Snod = B2 − B2,1B
−1
1 B1,2 , and BM = B3 − B3,2S

−1
nodB2,3 . Let also Snod

be such that cond[S−1
nodSnod] ≺ (1 + logN)ν and there exist an optimal solver

for the systems with this matrix. For solving systems with matrices KI,r by
PCG ( method of preconditioned conjugate gradients), we may use the DDl-
preconditioner KI,o := diag [Ko,Ko,Ko,Ko] with the matrix Ko, which factor-
ized form is Ko = PT

o DPo , where D = diag[B1,Snod,BM] , and

Po =




I1 B−1
1 B1,2

I2 S−1
nodB2,3

I3


 ,

assuming that systems with the matrix Snod are solved by O(log p) the simple
preconditioned iterations with the preconditioner Snod and Chebyshev iteration
parameters.

It is evident that B1 = diag [B
(k,l)
1 ]Nk,l=1 , where B

(k,l)
1 is the block of the matrix

B(k,l) which is induced by the bilinear form }
−2aδk,l

( , ),

aδk,l
(v, w) = 2

∫

δk,l

(
ψk

∂v

∂ξ2

∂w

∂ξ2
+ ψl

∂v

∂ξ1

∂w

∂ξ1

)
dξ + }

2
N∑

i,j=1

bk,lv(ηi, ηj)w(ηi, ηj) ,

on the space H(δk,l). Here, ψk, bk,l are the values of functions ψ, b on the
sets (ζk−1, ζk), δk,l, respectively, and the bilinear form and the space are the
restrictions of aπ1

(, ) and Ho(π1) to a subdomain δk,l. Each subsystem with the

matrix B
(k,l)
1 may be solved by FDFT, and the total cost for solving all subsystems

is O(N 2 logN).
Theorem 1. Suppose that the cost of the multiplication of a vector by Snod

is O(N 2) and the above assumptions hold. Then, except for multiplications by
KI,r, the total cost of solving the system KI,ruI,r = fI,r by the PCG with the
preconditioner KI,o is O(N 2(logN)0.5ν+3).

The additional implementation details and, in particular, the computation of
Snod are briefly discussed in Subsection 5.1.2.

The main term in the cost is due to the multiplications by Snod at calculation
of BM. By introducing an additional preconditioner for the interface component
with cheaper multiplications, we may reduce the computational cost. Suppose,
that there exists the matrix C(2), which is spectrally equivalent to the matrix
B

(2) with the blocks B2 = Snod and Bi,j = Bi,j for (i, j) = (2, 3), (3, 2), (3, 3),
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and such that the cost of the multiplication C(2)v(2) is O(N(logN)2). Then we
may set Ko = P

T
c DcPc , where Dc = diag[B1,C2,CM] , and

Pc =




I1 B−1
1 B1,2

I2 C−1
2 C2,3

I3


 , CM = C3 − C3,2C

−1
2 C2,3 .

We assume, that the systems with C2 are solved by O(log p) simple precondi-
tioned iterations with the preconditioner Snod and variable Chebyshev iteration
parameters. It was established in [K2], that the matrix C(2), – given explicitly
and satisfying the formulated conditions, – existed, the matrix Ko was spec-
trally equivalent to B and the system with the matrix Ko might be solved for
O(N 2 logN) arithmetic operations. We refer to this work also for definition of
C(2). In the proof, we essentially used the results of Maz’ya and Poborchi [MP]
on the boundary norms for harmonic H1-functions on the rectangular domains
with the large aspect ratio.

5.1.2. Additional implementation details. The matrices BM and CM

have the dimension l20 × l20, and the exact elimination procedures are cheap.
Therefore, in this subsection we touch only the solvers for the preconditioners
B1 and Snod.

As it was pointed out, the systems with the matrices B1 may be solved by
2-d FDFT’s, applied to independent subsystems with matrices B

(k,l)
1 and almost

optimal in the operation count. It is not straight forward to apply iterative solvers
to these systems. We see, that at one of the indices k, l, say k, approaching zero,
the ratio ψ(ξ2)/ψ(ξ1) , ξ ∈ δk,l, and the aspect ratio of the rectangle δk,l tend
to infinity, making Dirichlet problems on subdomains δk,l highly orthotropic.
However, some suggestions on anisotropic multigrid methods, made in [S,Pf,GO]
and [AV], may be well adapted to LSl-s. Thus, indeed, we may construct a variety

of asymptotically optimal multilevel solvers for the matrices B
(k,l)
1 . One of them,

formulated in [K2], is based on the spectrally equivalent to these matrices BPX-

like preconditioners, which are denoted by B
(k,l)
1 . They result from the multiscale

decomposition of the finite element spaces H(δk,l) on the special sequence of the
imbedded meshes, see Section 7 in [K2].

Let us turn to preconditioning of the Schur complement. To simplify the
presentation, here we use the notation Υ for Snod. The Schur complement Υ =
B2 − B2,1B

−1
1 B1,2 is the result of assembling of the local Schur complements

13



Υ(k,l) = B
(k,l)
2 − B

(k,l)
2,1 (B

(k,l)
1 )−1B

(k,l)
1,2 . The latter has the block form Υ(k,l) =

{Υ(k,l)
i,j }4

i,j=1, with each block Υ
(k,l)
i,i on diagonal corresponding to one of the edges

Ts,t, which are ordered, e.g., clockwise. The preconditioner Snod is assembled of

local matrices S
(k,l)
nod , which may be defined in one of the two ways: in Υ(k,l), we

place zero blocks instead of
1) the off-diagonal blocks Υ

(k,l)
i,j with i+ j = odd, or

2) all off-diagonal blocks.

By assembling so defined S
(k,l)
nod , we come to Snod. It was established in [K2], that

at the both choices we have

cond[S−1
nodΥ], cond[S−1

nodC2] ≺ (1 + log p)2 ,

see (7.5) and Lemma 7.3 in [K2].
In our algorithm, we do not need to calculate Snod and Υ. Instead we use the

matrices S
(k,l)
tr = P

t
SnodP and Υtr = P

tΥP , which are the result of the trans-
formation to the trigonometric basis in the space V 2. According to [K1],[K2],
the matrices Υtr and Str may be directly calculated for O(N 2) operations, the
system with the matrix S tr is solved by the direct methods for Q2 operations,
where Q2 = dimV2 and, thus, is O(N logN). By the operation Υ−1v(2) is im-

plied the following sequence: the transformation of v(2) → v
(2)
tr = P

−1v(2) to the

trigonometric basis by 1-d FDFT; solving the system Υtru = v
(2)
tr by the itera-

tive procedure with the preconditioner S tr. In the case of the operation C−1
2 v(2)

the matrix C2 is given, and the multiplication by it is cheap. Thus, we use the
evident alternative procedure. The computational cost of 1-d FDFT needed for
the transformation to the trigonometric basis and back is O(N(logN)2).

Now, we describe the arrangement of the trigonometric basis. Let us introduce
the notations Tj , j = 1, 2, .., l20 , for different sides Ts,t ∈ π1. The space V2 is the
direct sum of the subspaces V2,j, each corresponding to the nodes of one edge Ti.
The trigonometric basis in V2,j is formed by the vectors µ2,q,j = (sin(πqg/nj)) ,
q, g = 1, 2, .., nj, where nj = dim [V2,j]. Therefore, 1-d FDFT is completed for
each edge Tj independently in parallel. Let us also note, that at the choice 1),

S
(k,l)
tr is block-diagonal with 2(N + 1 − l0) independent blocks, every of which is

a three-diagonal matrix (l0 − 1) × (l0 − 1). At the choice 2), S tr is a diagonal
matrix.

5.2. Multilevel solvers, complete and incomplete reference elements

14



5.2.1. Algorithms. The algorithm, which is presented here, was suggested
for the reference element EH in [Be1]. We will see that, with necessary changes,
it is applicable to the case of the incomplete reference element E=,H . For the
completeness we consider below the both cases in parallel.

Let us subdivide each square nest of the fine mesh in the two triangles by
the diagonal passing through its left upper and the right lower vertices. Let also
H0(π1) be the space of the piece-wise linear functions on π1 vanishing on ∂π1,
Be,e be the matrix of the bilinear form

a(1)
π1

(u, v) :=

∫

Ω1

(y2uxvx + x2uyvy) for all u, v ∈ H(0)(π1) (5.5)

with the choice of the nodal basis in H0(π), and Λe,e be now the matrix, which is
obtained from Λe,e, introduced in Section 5.1, by subtracting the diagonal matrix
Dϕ = diag[ϕi/ϕj + ϕj/ϕi].

The multigrid method, which we describe here, seem to be adjustable to in-
complete, transition and orthotropic elements. However, in order to simplify
the presentation, we consider the incomplete reference element E=,H with ω=,o =
ω̂o. In this case, as in the case of the complete reference element, the stiffness
matrix may be represented in the form A1 = diag [Ae,e,Ae,o,Ao,e,Ao,o], but now
the blocks Aa,b have different dimensions. Nevertheless, they possess similar
properties and the solver of the same type, as for the block Ae,e, is applicable to
all of them with the same asymptotically computational cost.

We retain the notations Λe,e and B = Be,e for the preconditioners of the
matrix Ae,e. Let π2 be the half of π1, which is below the diagonal of the square

π1, joining upper left and lower right vertices, a
(1)
π2

( , ) be the restriction of the

bilinear form a
(1)
π1

( , ) to π2 and H0(π2) be the space of functions from H0(π1),
vanishing outside of π2. The matrix B is defined as induced by the bilinear form
a

(1)
π2

( , ) on the space H0(π2) with the nodal basis. By Λe,e is understood the
matrix, which is obtained from defined above Λe,e for the complete reference
element in the following way: we cross out the rows and columns, corresponding
to the coordinate functions Lα, α1 + α2 > p.

We will present the algorithm and the results on its properties for the both
reference elements EH and E=,H simultaneously, pointing out the distinctions,
when it is necessary.
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Lemma 3. For ck independent of p, there are hold the inequalities

c1B ≤ c3Λe,e ≤ Ae,e ≤ c2 log(1 + p)Λe,e ≤ c4 log(1 + p)B . (5.6)

It is sufficient to prove (5.6) for the element EH . In the case of this element,
the proof, is the consequence of the results of [KJ1] and [Be].

Without loss of generality, we assume that N + 1 = 2−l0 and introduce the
sequence of l0 imbedded orthogonal meshes of the sizes }l = 2−l. The sets of the
nodes x = }l(i, j) in πk of these meshes are denoted by Xl. To this sequence
correspond the sequences of the finite element spaces H0

l (πk) and finite element
matrices Bl, such that H0

l0
(πk) = H0(πk) and Bl0 = B.

We also will need the notations:
Wl(πk) := Hl(πk) 	 Hl−1(πk), and Bl,w is the block on the diagonal of the

matrix Bl corresponding to the subspace Wl(πk),
Ul and Wl are the spaces of vectors with the entries which are the nodal

values of functions from H0
l (πk) and from Wl(πk) at the nodes of the sets Xl and

Xl,w := Xl \Xl−1, respectively,
Pl−1 : Ul−1 → Ul is the interpolation matrix, such that, if v ∈ H0

l−1(πk) and
v(l−1) ∈ Ul−1 is its vector representation, then v(l) := Pl−1v

(l−1) is the vector
representation of v in Ul,

Rl : Ul → Wl is the matrix defining the restrictions v(l−1) := Rlv
(l) of the

vector v(l) to the set of nodes Xl,w.
Suppose, we have good preconditioners Bl,w for the matrices Bl,w. Then, one

multigrid itreration for the system

Blu = f , (5.7)

producing uk+1 := Mgm(l,uk, f) from a given approximation uk, is implemented
as follows.

• If l ≥ 1, then do

1. Presmoothing in the space Wl:
v := uk ;
do ν times v := v − τ−1

R
T
l B

−1
l,wRl(Blv − f) ;

2. Coarse grid correction in the space Vl−1:
dl−1 := P

T
l−1(f − Blv) ; w0 = 0 ;

do µl−1 iterations wk = Mgm(l − 1,wk−1,dl−1) ;
v := v + Pl−1w

µl−1 ;
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3. Postsmoothing in the space Wt:
do ν times v := v − τ−1

R
T
l B

−1
l,wRl(Blv − f) ;

ui+1 = v

• else

solve (5.7) by the exact method

• endif

Here τ are the iteration parameters, which in the simplest case are taken constant
and independent of l.

The choice of the preconditioner Bl,w is very important. The optimal pre-
conditioner, one of which is presented below, assumes the spectral equivalence
with the matrix Bl,w and existence of the optimal solver for Bl,w. We denote
by =i the line, which passes through the nodes max (α1, α2) = i. In the case of
the reference element EH , the line is composed of the two orthogonal segments
of equal length: the segment [0, i}l] on the line x2 = i}l and the segment [0, i}l]
on the line x1 = i}l. In the case of the reference element E=,H , it also contains
the two segments, which are the intersection of the line, defined above, with π2.
Evidently, for i > 2l−1 the segments are disjoint.

The matrix Bl,w may be represented in the block form

Bl,w = tridiag [B
(i,i−1)
l,w , B

(i)
l,w, B

(i,i+1)
l,w ]i=1,2,..,N , (5.8)

with each block B
(i)
l,w corresponding to the unknowns at the nodes on the line =i.

It is easy to note that the blocks B
(2k)
l,w with the even numbers are diagonal and

the blocks B
(2k+1)
l,w with the odd numbers are tridiagonal. Having set

Bl,w = diag [B
(i)
l,w] , (5.9)

we are able to prove that

c1Bl,w ≤ Bl,w ≤ c2Bl,w (5.10)

with the constants independent of p and l.
The important factor for convergence of the described multigrid is the strengthe-

ned Cauchy inequality

a(1)(u,w) ≤ c0

√
a(1)(u, u)a(1)(w,w) , ∀u ∈ Hl−1(π1) ∀w ∈ Wl(π1) . (5.11)
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which is fulfilled with c0 ≤ 1/2. For the case of the reference element EH , the
inequalities (5.10) and (5.11) were proved by Beuchler [Be]. These inequalities
retain for the reference element E=,H .

Theorem 2. Let τ = 2/(c1 + c2), µ ≥ 3 and ν be greater than some
νo(c0, c1, c2). Then the convergence factor

ρl,mult := sup uk∈Ul
‖uk+1 − u‖ Bl

/‖uk − u‖ Bl
(5.12)

is estimated by the constant ρ < 1 which does not depend on p, l and uk.
With assumptions that (5.10) and (5.11) hold, Theorem 2 was proved indepen-

dently by Schieweck [S] and Pflaum [Pf]. On the basis of easily obtained estimates
for the constants ck, k = 0, 1, 2, results of these works allow also to estimate ν.
Under conditions of Theorem 2, it is sufficient to take ν ≥ 3.

Let Mgµ,κ be the linear operator defined by a fixed number κ of multigrid
iterations, e.g., for κ = 2, Mgµ,κv = Mgm(l0,Mgm(l0,v, f)f).

Corollary 1. Let µ = 3 and ν ≥ 3. Then

c1Mg−1
µ,κ ≤ Ae,e ≤ c2(1 + log p)Mg−1

µ,κ , (5.13)

with the constants depending only on κ.
Counting the number of operations for solving the systems with the matrix

Ae,e by PCG with the preconditioner M−1
µ,κ, we conclude that we obtained an al-

most optimal solver for such systems, i.e., it requires O(N 2(logN)1/2) arithmetic
operatons.

The above results rest on the fact that coupling between the unknowns in-
side of each line =i is stronger, than between unknowns of different lines. This
basic fact allows to derive fast multilevel solvers in several other ways. In the
above multigrid solver we applied smoothings only in the subspaces Wl with the
smoother Tl,w = I−τB−1

l,wBl,w. A competing algorithm is obtained, if smoothing
in the space Wl is replaced by the smoothing in the space Ul with the smoother
Tl = I − τB−1

l Bl, where the preconditioner is defined in a way close to the
definition of Bl,w. Namely, we set

Bl = diag [B
(i)
l ]i=1,2,..,N , (5.14)

with the blocks B
(i)
l appearing in the representation

Bl = tridiag [B
(i,i−1)
l , B

(i)
l ,B

(i,i+1)
l ]i=1,2,..,N . (5.15)
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Let us note, that again each block B
(i)
l on diagonal corresponds to the unknowns

at the nodes of one line =i, but now all these blocks are tridiagonal. Our numer-
ical experiments, as experiments of [Be1,Be2] show that this smoother is even
more efficient.

Another alternative are the solvers for the systems (5.7), which are derived, if
we use the pointed out above basic property in the general framework of AMLI
(algebraic multilevel iterations) approach, see [AV]. We will briefly describe one
of such solvers, emphasizing that it may be applied to incomplete and orthotropic
elements. Let us introduce the matrix B̂w,l := c−1

2 Bw,l with the constant c2 from
(5.10) and the polynomial P2(t) = (1−2t/(1−α))2 with α defined as the smallest
positive solution of the polynomial equation

1 − γ = (
c2
c1

− 1)t+
1

4

(
(1 +

√
t)2 + (1 −

√
t)2

∑2
s=1(1 +

√
t)2−s(1 −

√
t)s−1

)2

.

Also, we represent the matrices Bl and Pl−1 in the block form, corresponding to
to the splitting Vl = Vl−1 ⊕Wl:

Bl =

(
Bv,l Bvw,l

Bwv,l Bw,l

)
, Pl−1 =

(
I

Pw,l−1

)
.

The AMLI-type preconditioner for the matrix Bl is defined as

Cl =

(
Bl(I − P2(C

−1
l−1Bl))

−1 Bvw,l + PT
w,l(Bw,l − B̂w,l)

0 B̂w,l

)
×

×
(

I 0

B̂
−1

w,l(Bwv,l + (Bw,l − B̂w,l)Pw,l) I

)
.

Theorem 3. The matrices Bl and Cl are spectrally equivalent, i.e.,

c1Cl ≤ Bl ≤ Cl , (5.16)

with the constant independent of p.
This theorem is a direct consequence of the results of [AL] on convergence of

AMLI and the estimates for ck, k = 0, 1, 2.
In order to solve the system with the matrix C l, it is necessary to solve three

times the systems with the matrix B̂w,l and twice the systems with the matrix
C

(l) := Bl(I − P2(C
−1
l−1Bl))

−1. The computational costs of solving the systems

19



with the matrices B̂w,l and Bw,l are the same. Solving the system with the matrix
C

(l) requires, evidently, solving two systems with the matrix C l−1. Estimating
the number of arithmetic operations and taking into account Lemma 1, we come
to the conclusion that the preconditioner C l provides an almost optimal solver
for the system with the matrix A1.

5.2.2. Numerical results. Some of the algorithms were tested numeri-
cally and demonstrated very good agreement with a priori estimates. Indeed,
in many cases, the numerical results demonstrate a better performance, than it
was predicted theoretically. In this section, we describe the part of the results,
obtained by means of multigrid solvers6 and summarized in the table below.

The systems with the independent blocks Aa,b, a, b = e, o, of the stiffness
matrix AI of the reference element EH were solved by the PCG with the multigrid
preconditioner Mµ,κ with µ = 3, ν = 3. Instead of specifying κ, the stopping
criteria for multigrid iterations was reducing the preconditioned energy norm
(eTAe,eB

−1Ae,ee)1/2 of the error e in 109 times. The notations in the table are
the following:
p = 2N + 1 - the highest degree of polynomials in the hierarchical basis,
n = N 2 - the number of the unknowns of the systems with the matrices

Aa,b, a, b = e, o,
l - number of the fine grid, so that N = 2l,
i1,i2 and i3 - numbers of PCG-iterations for solving the systems with the

matrices Ae,e, Ae,oand Ao,o, respectively,
M - the volume of the computer dynamic memory in bytes, used at solution

of the system with one of the blocks Ae,e,
t1, t2 and t3 - times in seconds, spent for solving the systems Ae,e, Ae,oand

Ao,o, respectively. The computer codes were run on PENTIUM-III, 750MHz
with 256MB of operative memory.

6Computer codes and numerical experiments were completed by M. Nikitin
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l p n i1 i2 i3 M t1 t2 t3
2 7 9 6 9 6 448 0 0 0

3 15 49 15 14 12 2,032 0 0 0

4 31 225 18 17 14 8,768 0.01 0.01 0.01

5 63 961 21 18 15 36,560 0.05 0.05 0.04

6 127 3,969 22 20 17 149,472 0.37 0.34 0.29

7 255 16,129 23 21 18 604,656 1.92 1.76 1.52

8 511 65,025 24 22 19 2,432,512 10.26 9.47 8.22

9 1,023 261,121 24 22 20 9,758,224 47.69 43.98 40.57

10 2,047 1,046,529 24 23 21 39,089,696 210.07 202.23 185.79

11 4,095 4,190,209 25 23 21 156,472,880 1,162.64 1,068.26 971.366

We see that the rate of the growth from l = 2 to l = 3, – i.e., for the
rude fine grids evidently laying in the preasymptotic range, – of the number
of PCG iterations is faster than (logN)1/2. Then, from l = 4 it is becoming
slower, than (logN)1/2, predicted by the a priori estimates. In the asymptotic
range, the computer time is growing slower, than N 2(logN)1/2. The results
also clearly show, that all the blocks Ae,e, Ae,oand Ao,oand the preconditioner
Mµ,κ are indeed spectrally equivalent, although the chosen particular form B

seem to be a little more adapted to Ao,o, than to Ae,e. The performance of the
computer code seem to be improvable for the following reason. Practically, the
multigrid solver was used as an exact one, since the stopping criteria required
very high accuracy. Use of the appropriately chosen, e.g., optimized, κ for exit
from multigrid iterations may significantly reduce the computer time.

The results given above overlap with the results of numerical experiments,
presented in [Be,Be1] with a very good correspondence between the both.

6 Fast solvers for Dirichlet problems on Lagrange p-

version reference elements

6.1. DD-like solver.

The same ideas, as presented for the hierarchical hp-version, may be imple-
mented for derivation of LS’s in the case of the Lagrange reference elements with
GLC and GLL nodes, often used in the finite element and collocation methods. A
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nice property of such discretizations is that they may be efficiently preconditioned
by the finite element matrices, generated by the assemblage of linear triangular
elements with the same grids of vertices [P,KP]. Without loss of generality, we
may assume p = 2N , N = 2l0−1. The step sizes }k := ηk−ηk−1 of the GLC grid
ηk = cos((p− k)π/p), k = 0, 1, .., p , satisfy the relationship }k � k/p2, k ≤ N .
Since the step sizes of the GLL grid has the same asymptotic, we may cover the
both cases and many others, if we define the preconditioner on the grid

η0 = −1 , ηi = ηi−1 + }i , ηN = 0 , }i−1 ≤ }i ≤ iγ/ℵ , γ ≥ 0 , ℵ =
N∑

i=1

iγ ,

(6.17)
symmetrically continued on (0, 1).

Suppose, a grid xk = ηi, k = 1, 2, is given. We subdivide each rectangular
nest of this mesh in the two triangles by one of its diagonals and define the space
H(τo) of continuous piece-wise linear functions, vanishing on ∂τo. The notations
AG,A stand for the matrices, generated by the bilinear form

aτo
(u, v) =

∫
τo

Ou · Ov dx
on the spaces H(τo), corresponding to the GLL or GLC grid and the grid (6.17)
with γ = 1, respectively. Since, fast solvers for the matrices AG generated on
GLL and GLC grids are quite similar, for definiteness we relate our considerations
to GLL grids, more popular in the finite element method.

Lemma 4. Let A be the stiffness matrix for the Lagrange reference element
with the GLL grid of nodes. Then A � AG � A .

The relation A � AG may be found in [Cas], for the proof see also [BM, Can].
The relation AG � A is a direct consequence of the asymptotic equivalence of
the grids.

Properties of the matrix AI , which is the restriction of A to the set of internal
nodes, differ from properties of, e.g., the preconditioner Λe,e, used in the case of
the hierarchical reference element. Nevertheless, fast solvers for the both may be
derived in quite similar ways. Here, we briefly describe the domain decomposition
type almost optimal solver.

The mesh, defined by the numbers ηi, is termed fine mesh. The numbers,
denoted ζ0 = −1 , ζk , k = 1, 2, .., l0 , ζl

0
= 0, will introduce an imbedded coarse

mesh with the steps denoted %k = ζk − ζk−1. We use the notation i(k) for the
integers, which satisfy equalities ηi(k) = ζk.
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Proposition 1. For any fixed c0 and n1, there exist ζk, k = 1, 2, 3, .., l0, such
that ζ1 = −1 + n1ℵ−1, l0 ≤ γ(log c0) logN and

}i/}i−1 ≤ c0 , for all ik−1 < i ≤ ik , k = 1, 2, .., l0 .

Such a grid is easily defined and symmetrically continued on the whole interval
(-1,1). Nests of the corresponding tensor product grid are denoted as δk,l = (x :
ζk−1 < x1 < ζk , ζl−1 < x2 < ζl). Let nk = i(k) − i(k − 1). We introduce
the piece-wise uniform fine grid x1, x2 = ϑi, such that ϑi(k) = ηi(k) = ζk, and
ϑi = ϑi(k−1) + (i − i(k − 1))σi, σi = %k/nk for i(k − 1) < i ≤ i(k). The space of
piece-wise linear continuous functions H(τo), corresponding to this grid, induces
the finite element matrix, which is denoted by B. For the blocks of this and
other matrices, similar to introduced earlier indices are used.

We define the DDl preconditioner KI,o exactly by the same formula, which
introduced Ko in subsection 5.1.1, i.e., we set KI,o = PT

o DPo, but with newly
defined B. We also see that absolutely similar and with the same asymptotic
cost procedures my be used for solving the systems with this preconditioner KI,o.

Indeed, the matrices B
(k,l)
I are again such that for solving systems with these ma-

trices, we can use 2-d FDFT’s for the total for all subdomains δk,l cost O(p2 log p)

arithmetic operations. Optimal BPX-like preconditioners for B
(k,l)
I , which were

denoted B
(k,l)
I , are also constructed in the same way, as in subsection 5.1.2. The

Schur complement preconditioning and solving the interface problem implements
exactly the same, as in subsection 5.1.2, approach. It requires 1-d FDFT of the
vectors to the trigonometric basis and back and use of directly calculated ma-
trices Str and Str. The costs of FDFT, calculation of these matrices and solving
systems with the matrix S tr are O(p(log p)2) and p2 and O(p log p), respectively,
whereas cond [S−1

tr Str] ≺ (1 + log p)3. Thus, the estimate of Theorem 1 of the
total computational work remains also valid.

Theorem 4. Let KI,r be the internal stiffness matrix of an element of hp-
discretization with Lagrange reference element, which nodes be defined by the
numbers (5.2). Then, the total cost of solving the system KI,ruI,r = fI,r by the
PCG with the preconditioner KI,o is O(N 2(logN)0.5ν+3).

The extension of the more efficient solver, described in 5.1.2, requires adjusting
of the preconditioner C, which we do not discuss in this paper.

6.2. Multigrid solver.

Without loss of generality, we may assume p = 2N, N = 2m−1 , and introduce

23



the sequence of m imbedded orthogonal meshes with the sets of nodes, denoted
by Xl = (xl,i,j = (x1,l,i, x2,l,j) , i, j = 0, 1, .., 2l) and the set Xm = (x = (ηi, ηj))
defined by the numbers (6.17). We assume that xk,l,n > xk,l,n−1 and that between
each pair of mesh lines xk = xk,l,n, xk,l,n−1 there is a mesh line xk = xk,l+1,2n−1.
This sequence induces the sequences of the spaces Hl(τo) and matrices Bl, where
Hl(τo) is the space of continuous piece-wise bilinear functions on the mesh Xl,
which vanish on ∂τo, and Bl is the corresponding (2l − 1)2 × (2l − 1)2 finite
element matrix. The nodal basis function in Hl(τo), which is equal unity at the

node xl,i,j, is denoted as φ
(l)
ij . Evidently, Hm(τo) = H(τo) and Bm = A.

We also introduce similar to the used in Section 5.2 notations:
Vl and Wl are the spaces of vectors with the entries, specified on the sets of

nodes Xl and Xw,l := XlrXl−1 , so that Vl = Vl−1⊕Wl = Wl⊕Wl−1⊕...⊕W2⊕V1

;
Pl−1 : Vl−1 → Vl is the interpolation matrix, such that, if v ∈ Hl−1(τo)

and vl−1 ∈ Vl−1 is its vector representation, then vl = Pl−1vl−1 is the vector
representation of v in Vl;

Rl : Vl → Wl is the restriction matrix such that vl−1 := Rlvl contains the
entries of vl for the nodes of Xw,l;

Bv,l, Bw,l and Bw,l are the blocks on the diagonal of Bl, corresponding to the
subspaces Vl and Wl, and the preconditioner for Bw,l, respectively.

One multigrid itreration for the system Blu = F producing uk+1,l := Mgm(l,
Bl,F,u

k,l) from a given approximation uk,l is described as follows:
If l ≥ 1, then do

1. Presmoothing in the space Wl:
v := uk,l ;
do ν times v := v − τ−1Rt

lB
−1
w,lRl(Blv − F) ;

2. Coarse grid correction in the space Vl−1:
dl−1 := Pt

l−1(F − Blv) ; w = 0 ;
do µl−1 iterations w = Mgm(l − 1,Bl−1,dl−1,w) ;
v := v + Pl−1w ;

3. Postsmoothing in the space Wl:
do ν times v := v − τ−1Rt

lB
−1
w,lRl(Blv − F) ;

uk+1,l = v

else

solve Blu = F by the exact method
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endif

Here, τ is the iteration parameter, which in a simplest case may be taken con-
stant. We may assume also that τ = 2/(λmin + λmax), where λmin and λmax are
minimal nonzero and maximal eigenvalues of the generalized eigenvalue problem
Bl,wv = λB−1

w,lv or sufficiently good bounds for them from below and above,
respectively. We see that in the accepted notations the algorithm is similar to
the introduced in Section 5.2.1. However, essential difference of the discrete
problems evinces in considerable differences in algorithms and in the results on
convergence.

Again, the strengthened Cauchy inequality is in the base of the convergence
analysis. We will show that there exists γ ∈ [0, 1) such, that

(
vt

l−1Blvw,l

)2 ≤ γ2
(
vt

l−1Bl−1vl−1

) (
vt

w,lBw,lvw,l

)
(6.18)

holds for all vl−1 ∈ Vl−1 and vw,l ∈ Wl with γ independent of p and l.
For bounding γ from above, we introduce the so called two-level hierarchical

basis element stiffness matrices, which are denoted Cl,T . Let T be a rectangular
nest of the mesh Xl−1 and aT ( , ) is the restriction of the bilinear form aτ0

( , ) to
T . If to represent Cl,T in the block form

Cl,T =

(
Cl,T ;1 Cl,T ;12

Cl,T ;21 Cl,T ;2

)
,

then
Cl,T ;1 =

{
aT (φ

(l)
ij , φ

(l)
kn)
}

xl,i,j , xl,k,n∈Xw,l∩T
,

Cl,T ;2 =
{
aT (φ

(l−1)
ij , φ

(l−1)
kn )

}
xl,i,j , xl,k,n∈Xl−1∩T

,

Cl,T ;12 = Ct
l,T ;21 =

{
aT (φ

(l)
ij , φ

(l−1)
kn )

}
xl,i,j∈Xw,l∩T, xl,k,n∈Xl−1∩T

.

Note, that Cl,T ;1 is a 5× 5 matrix, Cl,T ;12 is a 5× 4 and Cl,T ;2 = Cl−1,T is a 4× 4
matrices for all T , such that T ∩∂τ0 = ∅. We introduce the notations γl and γl,T

for the constant γ in the strengthened Cauchy inequality for a fixed l and for
fixed l and T , respectively. Let λl,T be the minimal nonzero eigenvalue of the gen-
eralized problem Sl,Tvl,T = λCl,T ;2vl,T , where Sl,T = Cl,T ;2 − Cl,T ;21C

−1
l,T ;1Cl,T ;12,

then γ2
l,T = 1 − λl,T (see Theorem 4.3 in [EV]). Simple application of Cauchy

unequality results in γ2
l ≤ max γ2

l;T , where maximum is taken over all elements
T , that belong to the mesh Xl−1.

25



Fig. 1 Fig. 2

We calculated γ2
l,T for sufficiently large m and all m imbedded meshes nu-

merically. Due to the symmetry of the meshes on τ0, it is sufficient to calculate
γ2

m,T only on the quarter of τ0, say for x1 < 0 and x2 < 0. Numerical experiments
indicate, that maximal value of γ2

l,T is obtained on the mesh Xm−1. Values of γ2
m,T

on Xm−1, corresponding to m = 6, are presented on Fig. 1, and Fig. 2 contains
the dependence of γ2

m on m. The behavior of γ2
m evidently shows, that γ2

m is a
monotonically growing function of m with lim γ2

m = 0.75. Therefore, γ2
m < 0.75

for any fixed m.
Now we describe the preconditioner Bw,l for pre- and postsmoothing iterations.

Let us consider the quater [−1, 0] × [−1, 0] of the square τo. For each l-th mesh,
we denote by =l,κ the mesh line, passing through the nodes with the indices
satisfying max(i, j) = κ , κ = 1, 2.., 2l−1. For instance, for the m-th mesh the
line =l,κ consists of the two parts: the segment −1 ≤ x1 ≤ ηκ of the line x2 = ηκ

and the segment −1 ≤ x2 ≤ ηκ of the line x2 = ηκ. On the rest three subsquares
of τ0 we arrange similar systems of lines by symmetry, so that indeed each line
=l,κ for κ = 1, 2, .., 2l−1 consists of four disjoint parts in four quarters of the
coordinate system. For all l, the lines =l,Nl

with Nl = 2l−1 coincide with the
intersection of the axes with τ0.

We reorder the rows and columns, crossing the block Bw,l, in such a way

that we have sub-blocks B
(κ)
w,l on diagonal, each related to the nodes on the line

=l,κ. Having in mind the block structure, corresponding to the blocks B
(κ)
w,l on

diagonal, the preconditioner Bw,l is obtained from Bw,l by making zero all off-

diagonal blocks. For the blocks on diagonal of Bw,l, we set B
(κ)
w,l = B

(κ)
w,l. It is easy

26



to see, that for even numbers κ, the blocks B
(κ)
w,l are diagonal. In the blocks B

(κ)
w,l

with odd κ, only the neighbouring nodes on the line =l,κ are coupled, so that
these blocks are tridiagonal. Indeed these blocks, which are defined for κ < Nl,
contain four independent subblocks, each related to one connected part of the
line =l,κ.

It may be shown that Bw,l and Bw,l are spectrally equivalent, i.e., that κm,l :=
c2/c1 is bounded independently of m and l, where c1, c2 appear in the inequalities
(5.10) for the defined above Bw,l and Bw,l . Note that Bw,l is the result of
assembling of the matrices Bw,l,T = Cl,T,2 over all nests T of the grid l. Let
the respective preconditioning matrices, assembling of which renders Bw,l, be
denoted Bw,l,T . We have κm,l ≤ supT κm,l,T := cond[B−1

w,l,TBw,l,T ]. Then, we
prove that supT κm,l,T is always reached for one of square nests T . One diagonal
of such a nest is always on the diagonal of τo. Another useful relationship is

lim
m→∞

x1,1,1 − x1,1,0

x1,1,2 − x1,1,1
= lim

m→∞
x2,1,1 − x2,1,0

x2,1,2 − x2,1,1
=

1

3
.

Let us consider the meshlines, deviding the square nest T of the mesh l − 1 in
four nests of the mesh l. From the above relationship, we conclude that in the
coarsening procedure they may be shifted from the center of T not more, than
1/4-th of the size of T . From the pointed out facts, it follows that sup κm,l,T

is bounded. Now it is obvious, that the system of algebraic equations with
the matrix Bw,l may be solved by PCG with the preconditioner Bw,l for cN 2

l

arithmetic operations with c independent of m and l.
Also, we studied condition numbers κm,l,T numerically. For all initial finest

grids Xm, the condition numbers κm,l increase with grid coarsening and reaches
its peak value κm,1 on X1. Fig. 3 illustrates the dependence of κm,1 on m for
rather wide range of m.

27



Fig.3 Fig.4

We can introduce the coarsest mesh X1 , corresponding to the limit case m =
∞. In the square [−1, 0] × [−1, 0] this mesh consists of the lines x1,1,0 = x2,1,0 =
−1, x1,1,1 = x2,1,1 = −3/4, x1,1,2 = x2,1,2 = 0. Denote by κ∞,1 the generalized
condition number of Bw,l and Bw,l with respect to this mesh. We find, that
κ∞,1 ≈ 5, 7566, see Fig. 3.

Convergence factors ρm,1 of the pre- or postsmoothing iterations and the upper
bound for them ρ∞,1 ≈ 0.7040 were calculated in a similar way. Results are
plotted on the Fig. 4.

With upper bounds for γ and ρm,1, we are able to estimate the convergence
rate of the multigrid method and its major parameters. Let for simplicity, µl ≡ µ,

‖ uk+1,l − ul ‖≤ δl ‖ uk,l − ul ‖ ,
uk+1,l is obtained from the given approximation uk,l by one multigrid iteration
uk+1,l := Mgm(l,Bl,F,u

k,l) and ul is the exact solution on the mesh Xl. Then
(see Theorem 3.1 [S]), the numbers δl satisfy the recurrent sequence

δ1 = 0, δl = δµ
l−1 + (1 − δµ

l−1)(σ + (1 − σ)γ)2, l = 1, 2, . . . ,

where σ is the convergence factor for ν pre- or postsmoothing iterations, i.e., in
our case σ ≤ ρν

∞,1. We can consider sufficiently large l irrespective of m, because
the sequence is monotonically growing and the estimates, obtained for γ and ρm,1

are uniform in m. Therefore, having introduced the notation δ = liml→∞ δl, we
need to find such µ and ν, that the equation

δ = δµ + (1 − δµ)(ρν
∞,1 + (1 − ρν

∞,1)γ)2 (6.20)
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has a solution δ ∈ [0, 1). Since infν

{
(ρν

∞,1 + (1 − ρν
∞,1)γ)2

}
is obtained for ν = ∞

and is equal to γ2, by Lemma 3.2 of [S] we have δ∈[0, 1) for µ = 1, 2, 3. Numerical
study of (6.20) for µ = 4 shows that there is no δ ∈ [0, 1) even for sufficiently
large ν as well. However, for µ ≥ 5 convergence of the multigrid iterations may
be guaranteed. Dependence of δ on ν for several µ is plotted on Fig. 5. A more
precise analysis of the convergence of the multigrid method is still possible, in
particular, on the basis of the results of [Pf].

Fig.5
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C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 333–338 (in French).

[BDM2] C. B e r n a r d i, M. D a u g e, Y. M a d a y. Polynomials in weighted Sobolev spaces: Basics
and trace liftings. Publications du Laboratoire d’Analyse Numerique, R92039. Universite Pierre et
Marie Curie, Paris, 1993.

[BM] C. B e r n a r d i, Y. M a d a y. Approximations spectrales de problemes aux limites elliptiques.
Math. Appl., 10, Springer-Verlag, France, Paris, 1992.

[Be] S. B e u c h l e r. A preconditioner for solving the inner problem for the p-version of the FEM,
Part II – algebraic multigrid proof. Technische Universität Chemnitz, Preprint SFB393/01 -07 (2001),
1–56.

29



[Be1] S. B e u c h l e r. MTS-BPX-preconditioner for the p-Version of the fem. Technische Universität
Chemnitz, Preprint SFB393/01-16 (2001), 1–7.

[Can] C. C a n u t o. Stabilization of spectral methods by finite element bubble functions. Comput.
Methods Appl. Mech. Engrg., 116 (1994), 13–26.

[Cas] M. C a s a r i n. Quasi-optimal Scharz methods for the conforming spectral element discretiza-
tions. SIAM J. Numer. Anal., 34, N6 (1997), 2482–2502.

[GO] M. G r i e b e l and P. O s w a l d. Tensor product type subspace splittings and multilevel iterative
methods for anisothropic problems. Advances Comput. Math. 4 (1995), 171–201.

[IK] S.A. I v a n o v and V.G. K o r n e e v. Preconditioning in the domain decomposition methods for
the p-version with the hierarchical bases. Matematicheskoe modelirovanie, 8, 1996, 63–73.

[KP] S. K i m and S. P a r t e r. Preconditioning Chebyshev spectral collocation by finite-difference
operators. SIAM J. Numer. Anal., 34, N3 (1997), 939–958.

[K1] V. K o r n e e v. Almost optimal solving procedure for Dirichlet problems on subdomains of
decomposition in hierarchical hp-version. Differentsialnye uravnenia, 37, N7, 2001, 958-969.

[K2] V.G. K o r n e e v. Local Dirichlet problems on subdomains of decomposition in hp discretiza-
tions, and optimal algorithms for their solution. Matematicheskoie modelirovanie, 14, N5, 2202, 61–94.

[KJ1] V.G. K o r n e e v and S. J e n s e n. Preconditioning of the p-version of the finite element
method. Comput. Methods Appl. Mech. Engrg., 150 (1997), 215–238.

[KJ2] V.G. K o r n e e v and S. J e n s e n. Domain decomposition preconditioning in the hierarchical
p-version of the finite element method. Applied Numerical Mathematics, 29 (1999), 479–518.

[KJ3] V. K o r n e e v and S. J e n s e n. Efficient preconditioning by domain decomposition method
for hp-version with hierarchical basis, I. Izvestia VUZ’ov, Math., N 5 (444), 1999, 37-56. (In Russian)

[KJ4] V. K o r n e e v and S. J e n s e n. Efficient preconditioning by domain decomposition method
for hp-version with hierarchical basis, II. Izvestia VUZ’ov, Math., N 11 (450), 1999, 24-40.

[KFOF] V. K o r n e e v, J.E. F l a h e r t y, T. Od e n and J. Fish. Hp-Version Additive Schwarz Algo-
rithms on Triangular Meshes. Matematicheskoie modelirovanie, 14, N2 (2202), 61–94.

[N] S.V. N e p o m n y a s c h i k h. Method of splitting into subspaces for solving elliptic boundary
value problems in complex–form domains. Russian (cont. Sov.) J. Numer. Anal. & Math. Model. 6:2
(1991) 151–168.

[MP] V. M a z’ y a and S. P o b o r c h i. Differentiable functions on bad domains. Singapore-New
Jersy- London-Hong Kong: World Scientific, 1998, 504 p.

[P] S. P a r t e r. Preconditioning Legendre spectral collocation methods for elliptic problems II: finite
element operators. SIAM J. Numer. Anal., 39, N1 (2001), 348–362.

[Pf] Ch. P f l a u m. Robust confergence of multilevel algorithms for convection-difusion equations.
SIAM J. Num. Anal., 37(2) (2000), 443–469.

[S] N. S c h i e w e c k. A multigrid convergence proof by a strengthened Caushy inequality for sym-
metric elliptic boundary value problems. In: Second multigrid seminar, Garzau 1985 , G. Telschow, ed.,
49–62.

30


