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Abstract
The described algorithms enable to find all solutions of parameterized
linear difference equations of arbitrary order within a very general differ-
ence field setting, so called II3-fields. These algorithms not only allow to
simplify indefinite nested multisums, but can be also used to prove and
discover a huge class of definite multisums identities.

1. Introduction

M. Karr developed an algorithm for indefinite summation |[Kar81, Kar85| based
on the theory of difference fields [Coh65]. He introduced so called II¥-fields, in
which parameterized first order linear difference equations can be solved in full
generality. This algorithm cannot only deal with series of (q-)hypergeometric
terms [Gos78, PS95, PR97| or holonomic series [CS98] but with series of rational
terms consisting of arbitrary nested indefinite sums and products. Karr’s algo-
rithm is, in a sense, the summation counterpart of Risch’s algorithm [Ris70| for
indefinite integration. Based on results from [Kar81, Sch02a, Sch02b] and Bron-
stein’s denominator bound [Bro00] — a generalization of Abramov’s denominator
bound [Abr95| — in this work I streamline Karr’s ideas and develop a simplified
algorithm that allows to solve parameterized first order linear difference equa-
tions in I1>-fields. Furthermore I generalize the reduction techniques presented
in [Kar81] which enables to extend the above algorithm from solving first order
linear difference equations in a given IIX-field to searching for all solutions of
a linear difference equation with arbitrary order. Although there are still open
problems in this resulting algorithm, one finds all those solutions by increasing
step by step the range in which the solutions may exist. All those algorithms
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are available in form of a package called Sigma [Sch00, Sch01] in the computer
algebra system Mathematica.

In spite of exciting achievements [PWZ96]| over the last years, symbolic sum-
mation became a well-recognized subbranch of computer algebra only recently. In
particular by Zeilberger’s idea of creative telescoping [Zei90| one obtains a recipe
to compute recurrences that possess a given definite sum as solution. Hence one
can prove definite sum identities which has for a long time been considered as
algorithmically infeasible. I recognized in [Sch00] that creative telescoping is in
the scope of our algorithm by solving a specific parameterized first order linear
difference equation. By this observation one can compute recurrences for a huge
class of definite multisums in the general [1>-field setting that cannot be handled
with the approaches [PS95, PR97, CS98| for (q-)hypergeometric or holonomic
series. Moreover by solving linear difference equations with our proposed algo-
rithms, one can find solutions of recurrences and thus not only prove various
definite multisum identities, but even discover their closed form evaluations.

In [Bro00| M. Bronstein developed reduction techniques in an even more gen-
eral setting, namely o-derivations, by approaching the problem from the point
of view of differential fields. As already sketched above, in my approach one
comes directly from Karr’s reduction techniques which are specialized for the
113 -field situation. Contrary to [Bro00| I emphasize more algorithmic than the-
oretical aspects. In some sense the algorithms under discussion contain the al-
gorithms introduced in [Pet92, Pet94, APP98, vH99| from the point of view
of solving difference equations. But whereas in our approach one has to ex-
tend manually the underlying difference field by appropriate product extensions,
for their case of (¢-)hypergeometric series these extensions are found automati-
cally. Combining these algorithms with the approach under discussion leads to
a powerful tool to solve difference equations [Sch01, Chapter 1|. In particular in
[AP94, HS99, Sch01] one considers further extensions like d’Alembertian exten-
sion, a subclass of Liouvillian extensions, in order to find additional solutions for
a given difference equation. As it turns out in [Sch01, Chapter 1.3.4.2|, indefi-
nite summation for nested sums and therefore our summation algorithm play an
essential role to simplify those d’Alembertian solutions further.

In the next section it is illustrated how closed form evaluations of nested
indefinite and definite multisums can be found, by solving parameterized linear
difference equations in [1>-fields. Whereas in Section 3 this problem is specified
in the general difference field setting, in Section 4 the domain is concretized to
[T>-fields. In Section 5 the basic reduction strategies are explained which enables
to find all solutions of parameterized linear difference equations in a given 13-
field. Finally in Section 6 the incremental reduction strategy, the inner core of
the whole reduction process, is explored in more details. All these considerations
will lead to algorithms that are carefully analyzed in Section 7.
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2. Symbolic Summation in Difference Fields

Sigma [Sch00, Sch01]| is a summation package, implemented in the computer
algebra system Mathematica, that enables to discover and prove nested multisum
identities. Based on results of this article the package allows to find all solutions
of parameterized linear difference equations in a very general difference field
setting, so called I1X-fields. In the sequel we illustrate how one can discover closed
form evaluations of nested multisums in the difference field setting by using the
package Sigma. First some basic notions of difference fields are introduced.

Definition 2.1. A difference field (resp. ring) is a field (resp. ring) F together
with a field (resp. ring) automorphism o : F — F. In the sequel a difference field
(resp. ring) given by the field (resp. ring) F and automorphism o is denoted by
(F, o). Moreover the subset K := {k € F|o(k) = k} is called the constant field
of the difference field (I, o).

It is easy to see that the constant field K of a difference field (F, o) is a subfield
of F. In the sequel we will assume that all fields are of characteristic 0. Then it
is immediate that for any field automorphism ¢ : F — F we have o(q) = ¢ for
q € Q. Hence in any difference field, Q is a subfield of its constant field.

2.1. Indefinite Summation and First Order Linear Difference Equations

As M. Karr observed in [Kar81], a huge class of indefinite nested multisums
can be simplified by solving first order linear difference equations in 113 -fields.
I will demonstrate this approach by the following elementary problem: find a
closed form of > }_, kk!l. First one constructs a difference field for the given
summation problem. Let Q(¢1,t2) be the field of rational function, i.e. ti,ty
are indeterminates, and consider the field automorphism o : Q(t1,t2) — Q(t1, t2)
that is canonically defined by o(t;) = ¢, + 1 and o(t2) = (t1 + 1) t2. Note that
the automorphism acts on t; and ¢, like the shift operator NV on n and n! via
Nn = n+ 1 and Nn! = (n + 1)n!. Hence the summation problem can be
rephrased by a first order linear difference equation in terms of the difference
field (Q(t1,t2),0) as follows: find a solution g € Q(t4,t3) of

o(g) —g =t ta.

Our package Sigma can compute the solution g = ¢t (Example 3.1) from which
(k+ 1)! — k! = k k! immediately follows. Finally by telescoping one obtains the
closed form evaluation >}  kk! = (n+1)! —1.

2.2. Definite Summation and Parameterized Linear Difference Equations

In [Sch00, Sch02a] I observed that one can find closed form evaluations for a
huge class of definite nested multisums by solving parameterized linear difference
equations in II¥-fields. I will illustrate these ideas by finding a closed form of
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the two nested definite multisum SUM(n) := >} Hy (}) where H, = S :
denotes the k-th harmonic numbers.

Finding a recurrence: In a first step one can compute a recurrence
4 (1+n)SUM(n)—2 (34+2n) SUM(1+n)+(2+n) SUM(2+n)=1 (1)

for the definite sum SUM(n) by applying Zeilberger’s creative telescoping trick
[Zei90] in a difference field setting. First one constructs a difference field in which
the creative telescoping problem can be formalized. For this let Q(n)(t1,t2,t3)
be the field of rational functions over (Q and consider the field automorphism
o:Q(n)(ty,ta,t3) — Q(n)(ty1,ta,t3) canonically defined by

_n—t1

=, t) =t + 1, ty) =t =
on)=mn, o(t)=t+ o(ty) =ta + ]

o(ts)

— ts. (2
1 = 2

Note that the automorphism acts on ¢, 5 and t3 like the shift operator K on k,

Hy and (}) with Kk = k+1, KHy, = Hy 4+ 5 and K (}) = %= (}). Therefore

f(n, k) can be rephrased in terms of the difference field (Q(n)(t1,t2,t3),0) by

o) = () < tata = f

(n+1)H () (n+1tats
n—f—l—kk - n+1—1t =12 (3)
(n+D@+2)H () (D) (n+2)tats

m+1—-k)(n+2—-k) (n+1—t;))(n+2—1t1)

fln+1,k) =

flnt2.k) =

_

Then the creative telescoping problem is formulated in terms of the difference
field Q(n)(t1,t2,t3) as follows: find an element g € Q(n)(t,ts,t3) and a vector
(0,0,0) # (c1, ¢, c3) € Q(n)? such that

o(g) —g=c fitecafy+esfs (4)

Our package Sigma (Example 3.1) enables to handle exactly such kind of prob-
lems. In this example the solution

1 —241t — 281 — 212 + t1n)ta)t
e imd(14n), e im —2(342n), gi= ST (20 =N+ G0 =26 + )il g
03::2+n (17t1+n)(27t1+n),

is computed that can be rephrased in terms of k, Hy, and (}). Hence one obtains

.  (14n) (—2+k—n+(2k—2k2+kn) Hy) (})
with h(n, k) = (R ey oy 2

the creative telescoping equation

h(n,k+1) — h(n, k) =c1 f(n,k) +co f(n+ 1,k) + c3 f(n+ 2, k),

and summing the equation in k£ from 0 to n results in

h(n,n+1) —h(n,0) =c; Zf(n,k)+02 Zf(n—l—l,k)—i—cQ Zf(n+2,k).

k=0 k=0 k=0
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By SUM(n+1) =>"7_ f(n, k) + 2321 f(n+i,n+ j) for i € Ny recurrence (1)
follows.

Solving linear recurrences: In order to find a closed form of the definite sum
SUM(n), one solves recurrence (1) in terms of n and 2", H,, 37" | . As in the
previous examples, one first constructs a difference field" for the given problem.
Let Q(t1,t2,t3,t4) be the field of rational functions over Q and consider the field
automorphism o : Q(ty, o, t3,t4) — Q(t1,t2, t3,t4) canonically defined by

olt) =t 1 o(ts) = 2ts, o(ts) = ts+ —— o(ts) = ts+ . (6)

tl—i—l’ (t1+1)t2‘
Note that the automorphism acts on ti, to, t3 and ¢4 like the shift operator N
onn,2" H,and } ! | & with Nn=n+1, N2" =22", NH, = Hn—i—n%rl and
NY =304+ W Hence the problem of solving recurrence (1)
in terms of n and 2", H,, > " | Z%, can be rephrased by a linear difference
equation in terms of difference fields: find all g € Q(¢4,. .., t4) such that

a10%(9) + azo(g) + azas g = 1 (7)

where a; := 2+ t1, ag := —2(3+ 2t1) and a3 := 4 (1 + t1). With our algorithms
under discussion (Example 3.1) one computes two linearly independent solutions
over Q of the homogeneous version of the difference equation, namely ¢, := ¢
and ¢, := ty t3, and one particular solution of the inhomogeneous difference equa-
tion itself, namely g3 := —t5t,. Hence the set {k1 g1 + k292 + g3 | ki € Q} de-
scribes all solutions in Q(t1, ..., t4) of the difference equation (7). Consequently
in terms of the summation objects one obtains the complete solution in form
of the set {ki2"+k,2"H, —2" Y1 4| k; € Q} for recurrence (1). Finally

i=0 321
by comparing initial values of the original sum SUM(n) one finds the identity

ZZ:O Hy, (Z) =2" (Hn - Z?:l %)

3. The Solution Space for Difference Fields

The previous examples motivate us to solve parameterized linear difference equa-
tions in a difference field (F, o) with constant field K:

! Solving Parameterized Linear Difference Equations !

e Given a difference field (F, o) with constant field K, ay,...,a,, € F with m > 1 and
(a1...am) #(0,...,0) =:0and fy,..., [, € Fwithn > 1.

e Findallge Fand all ¢y,...,c, € Kwitha; 0™ Yg)+ - -+amg=ci fi+-+cnfn

The solutions of the above problem are described by a set. For its definition note
that in the difference field (F, o) with constant field K, F can be interpreted as
a vector space over K.

tActually this difference field can be constructed automatically for the given recurrence (1).
How this so called d’Alembertian extensions are computed, is explained in [AP94, HS99, Sch01].
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Definition 3.1. Let (F, o) be a difference field with constant field K and consider
a subspace V of I as a vector space over K. Let 0 # a = (ay,...,a,;) € F™ and
f=0(f1,..., fn) € F". We define the solution space for a, f in V by

V(a,f,V):{(cl,...,cn,g)GK”><V:alamfl(g)—i--w—kamg:clf1+~-—|—cnfn}.

It follows immediately that V(a, f,V) is a vector space over K. The next propo-
sition based on [Coh65, Theorem XII (page 272)| states that this vector space
has even finite dimension.

Proposition 3.1. Let (F,0) be a difference field with constant field K and as-
sume f € F" and 0 # a € F™. Let V be a subspace of F as a vector space over
K. Then V(a, f,V) is a vector space over K with mazimal dimension m+n— 1.

Proof: By [Coh65, Theorem XII (page 272)] V(a, (0),F) is a finite dimensional
vector space with maximal dimension m — 1. Since V(a, (0),V) is a subspace of
V(a, (0),F) over K, it follows that V(a, (0),V) has maximal dimension m — 1,
say d := dim V(a, (0),V) < m. Now assume that dim V(a, f,V) > n + d, say
there are (ci;,...,¢ni,9:)) € K" x V for 1 < i < n+d+ 1 which are linearly
independent over K and solutions of V(a, f,V). Then one can transform the

matrix
C11 Cnl g1
M = ( . . . . )
Cl,n+d+1 -+ Cnnt+d+1 In+d+1

by row operations over K to a matrix

/ / !
€11 Cn1 91
Ml R . . . .
v P L
1,n4+d+1 * Snontd+l Intdl

/ /
011 Cnl
C, J— . . .
o . . o .
1,n+d+1 = "n,nt+d+1

is in row reduced form and the rows in M’ and the rows in M are a basis of
the same vector space W. Since we assumed that the (ci4, ..., ¢n, g;) are linearly
independent over K, it follows that all rows in M’ have a nonzero entry and are
linearly independent over K. On the other side, only the first n rows in C’ can
have nonzero entries and therefore the last d + 1 columns in M’ must be of the
form (0,...,0,g;) where g/ # 0. Therefore we find d + 1 linearly independent
solutions over K with 0,g9; = 0 which contradicts to the assumption. O
In this article we develop algorithms that enable to find bases of solution spaces
V(a, f,F) in I1X-fields (F,o) that will be specified later. In particular these
algorithms under consideration (Remark 3.1) are available in form of a package
Sigma in the computer algebra system Mathematica.

where the submatrix
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Example 3.1. With our package Sigma one can solve algorithmically all the
difference equation problems in Section 2. After loading the package
1= << Sigma‘

in the computer algebra system Mathematica one is able to compute a ba-
sis of the solution space V((1,—1), (t1t2),Q(t1)(t2)) where the difference field
(Q(t1)(t2), o) is canonically defined by o(t1) = t; + 1 and o(t2) = (t1 + 1) ta.
Here {tw (07N ﬁz} stands for O'(tz) =qo;t; + ﬁz
cinp2:= SolveDifferenceVectorSpace[{1, —1}, {t; t2}, {{t1,1,1}, {t2,t1 +1,0}}]
out2l= {{0,1},{1,t2}}
This means that the elements in {(0, 1), (0,¢2)} form a basis of the solution space.
Similarly one computes a basis of V((1, —1), (f1, f3, f4), Q(¢1)(t2)(t3)) where the
parameters f/ are defined as in (3) and the difference field as in (2).
m(s:= SolveDifferenceVectorSpace[{1, -1},
(8,685 ({0 11 {1 o {t T O
oufz= {{0,0,0,1},{4 (1 +n),—6—4n,2+n, ((1+n) (—2+t,+
21t —2t % to+n (—1+tsto)) t3)/(1+n—t1) (2+n—1ty))}}
Hence {(0,0,0,1),(c1,co,c3,9)} forms a basis of this solution space where the
¢; € Q and g € Q(ty,1s,t3) are defined as in (5). Moreover one is capable of
computing a basis of the solution space V((ay, az,as), (1), Q(¢1)(t2)(ts5)(t4)) with
a; == 2+ ty, ag = —2(3 + 2t;) and ag := 4(1 + ¢;) in the difference field
(Q(t1)(t2)(t3)(t4), o) as it is defined in (6)
in[4]:= SolveDifferenceVectorSpace [{al, ag,as}, {1},

1 1
{{tla ]-a 1}3 {t27230}3 {t37 17 m}, {t47 17 7}}]

2 (1+4tq1) to
Out[4]= {{—1vt2 t4}7 {07t2}1 {OatQ t3}}
and one obtains the basis {(—1,t2 t4),(0,%2), (0,22 t3)} of the solution space.

3.1. Some Conventions for Vectors and Matrices

In the following some notations and conventions will be introduced that are
heavily used in the sequel. Let [F be a vector space over K and, more generally,
consider [F" as a vector space over K. Then a vector f € F" is considered either
as a row or as a column vector. It will be convenient not to distinguish between
these two types of presentations. This means that the vector f can be either

f1
interpreted as row vector (f1,..., f,) or as column vector ( . |- We will show
fn
that there cannot appear any ambiguous situations in the sequel. For the vector
multiplication of the vectors f and g = (¢1,...,g,) there cannot be confusion:

f1 91 91 f1
St figi=Ffg= () () = (fi,. s fn) ( ) = <> (g1,--.,9n)- Whereas a
fn 9n 9n fn

vector is always denoted by a small letter, matrices are denoted by capital letters,
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a1l ... QAin bll .. blm
like A = ( Do ) € ™" and B := ( Do > e F™™. Multiplying a
bui - bm
matriz A with the vector f from the right alwayslmeans that the vector f is inter-
preted as a column vector, whereas multiplying a matriz B with the vector f from

the left means always that the vector f is interpreted as a row vector, for instance
Yoo ati fe

f'B:(Z?obilfia-uaZ:‘LObimfi)andA‘f:( :
2?20 Ami fm'L

multiplication of a matrix with a vector is denoted by the operation symbol -.
The usual matrix multiplication is denoted by A B. Moreover the construction
fAg=(fi,..., [n,g) € F"L stands for the concatenation of f with g € F. Simi-

b11 ... bim fi b11 ... bim f1
larly, one uses the construction BAf = ( Do )/\ sl=1: : : .

For h € F we write h f = (h fi,...,h fs) € F% Furthermore if o : F — T is
a function, we write o(f) = (0(f1),...,0(fn)) € F". In the sequel we denote
0, :=(0,...,0) € K" as the zero-vector of length n; if the length is clear from the
context, we just write 0. Moreover we denote by 0,,xn, € K" the m X n-matrix
with only zero-entries.

aml .- Gmn

) . Furthermore the

3.2. The Solution Space and Its Representation

Finally it is described how the solution space is represented in matrix notation.
Let (F, o) be a difference field with constant field K, V be a subspace of ' over
K,0 # a = (a,...,ap) € F™, and f € F". For ¢ € F the notation o,g :=
a; 0™ Y(g) + -+ a,, g- is introduced. Hence one obtains a compact description
of the solution space, namely V(a, f,V) = {cAg € K" X V|o,9 = ¢ f}. Please
note that the solution space V(a, f,V) is a finite dimensional vector space of
K" x F over K. In the sequel it is convenient to describe a basis of V(a, f,V)
by a matrix. Let B = {b1,...,bq} C K" X F be a family of linearly independent
vectors over K with b; = (¢i1,. .., Cin, g;) € K" X IF such that

V(a, £,V) = {ki by + -+ kgbgq| k; € K}.
Often the basis B of V(a, f,V) will be represented by the basis matriz

b1 C11 ... Cln g1
Mb:<z>=(szss)
by Cd1 -+ Cdn 9n

i.e. one has V(a, f,V) = {k: Mg |k € Kd}. In particular for the special situa-
tion V(a, f,V) = {0p41} we define the basis matrix as Mg := 01x(n41)- If the
elements in B are not necessarily independent over K, we say that B is a set of
generators of V(a, f, V). In this situation Mp is just called generator matriz.
Example 3.2. According Example 3.1 () is a basis matrix of the solution
space V((1,—1), (t1t2),Q(t1)(t2)), (& & & 4) is a basis matrix of the solution
1t
space V((1,—1), (f1, f5, f5), Q(t1)(t2)(t3)) and ( 0 tit i;) is a basis matrix of the
2

solution space V((ay, az,az), (1), Q(t1)(t2)(t3)(t4)).
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4. 1I>-Fields and Some Properties

As mentioned in previous sections, this work restricts to so called I13-fields that
are introduced in [Kar81, Kar85] and further analyzed in [Bro00, Sch01, Sch02a).
In the following the basic definition and properties are introduced.

4.1. IIX-Extensions

In order to define 113 -fields, the notion of difference field extensions is needed.

Definition 4.1. Let (E,og), (IF, or) be difference fields. (E, og) is called a dif-
ference field extension of (F,op), if F C E and op(f) = og(f) for all f € F.

If (E, &) is a difference field extension of (F, o), we will not distinguish anymore
that o : F — F and ¢ : E — E are actually different automorphisms.
Later the following definitions are needed.

Definition 4.2. Let F[t] be a polynomial ring with coefficients in the field F, i.e.
t is transcendental over F, and let IF(¢) be the field of of rational functions over F,
this means [F(t) is the quotient field of F[¢]. £ € F(¢) is in reduced representation
if p, q € F[t], ged(p,q¢) = 1 and ¢ is monic.

In Section 2 all difference field extensions (F(¢), o) of (F, o) are of the following
type: F(t) is a field of rational functions and the automorphism o : F(t) — F(¢)
is canonically defined by o(t) = at+ 3 where « € F* and € F. In this work all
difference fields are constructed by exactly this type of difference field extensions.

Example 4.1. Let Q(¢) be the field of rational functions and consider the au-
tomorphism o : Q(¢) — Q(t) canonically defined by o(t) =t + 1. Now consider
the field of rational functions Q(¢)(k) and construct the difference field exten-
sion (Q(t)(k),o) of (Q(t), o) canonically defined by o(k) = k+ ¢ + 1. One can
easily check that for g := @ one has o(g) = g+t + 1. Since o acts on g and
t in the same way, the extension (IF(¢),0) does not produce anything new. In
particular one has o(g — k) = g — k and hence g —t € const,Q(t)(k). But since k

is transcendental over Q(t), g —t ¢ Q(¢) and thus const,Q(t)(k) # const,Q(¢).

This example motivates to consider only those extensions in which the constant
field remains the same. This restriction leads to IIX-extensions and I3 -fields.

Definition 4.3. (F(¢),0) is a II-extension of (F,0) if o(t) = at with o € F*, ¢
is transcendental over F and const,F(t) = const,[F.

According to |[Kar81| we introduce the notion of the homogeneous group which
plays an essential role in the theory of I3 -fields.

Definition 4.4. The homogeneous group of (F,o) is Hp ) 1= {% g € F*}.
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One can easily check that H ) forms a multiplicative group. With this notion
one obtains an equivalent description of a II-extension. This result can be found
in [Kar85, Theorem 2.2| or [Sch01, Theorem 2.2.2].

Theorem 4.1. Let (F(t),0) be a difference field extension of (F, o) with o(t) =
at where o € F* and t # 0. Then (F(t),0) is a ll-extension of (F, o) if and only
if there does not exist an n > 0 such that o € H ).

Next we define Y-extensions according to Karr’s notions.

Definition 4.5. (F(t),0) is a X-extension of (F, o) if
1. o(t) =at+ @ with o, € F* and t ¢ F,

2. there does not exists a g € F(¢) \ F with % € IF, and

3. for all n € Z* we have that o € Hr,) = a € Hp ).

Remark 4.1. Together with Remark 4.2 we explain and motivate the properties
given in the definition of »-extensions. Actually we are interested in extensions,
similarly to Il-extensions, where o(t) = at 4+ [ with «, 3 ¢ F*, ¢ transcendental
and const,F(t) = const,F. Under these aspects property (1.) fits to the desired
goal. Unfortunately condition (3.) seems to be quite technical, and indeed is
needed for computational aspects in [Sch02a, Sch02b| that are needed in The-
orem 7.4. But since in most cases we are just interested in situation o = 1,
property (3.) is obsolete by 1 € Hy ). Moreover the next result states that in a
Y-extension ¢ is transcendental and const,[F(t) = const,F.

The next theorem is a direct consequence of [Sch01, Theorem 2.2.3] which is a
corrected version of [Kar81, Theorem 3] or [Kar85, Theorem 2.3].

Theorem 4.2. Let (F(t),0) be a X-extension of (F, o). Then (F(t), o) is canon-
ically defined by o(t) = at + (8 for some «, 3 € F*, t is transcendental over F
and const,F(t) = const,F.

Similarly to [I-extensions an alternative description of ¥-extensions is given. This
result follows from [Kar81, Theorem 1| or [Kar85, Theorem 3| and is essentially
the same as [Sch01, Corollary 2.2.3].

Theorem 4.3. Let (F(t),0) be a difference field extension of (F, o) with o(t) =
at+ [ where o, € F*. Then (F(t),0) is a X-extension of (F,o) if and only
if there does not exist a g € F with o(g9) — ag = (3, and property (3.) from
Definition 4.5 holds.

Remark 4.2. Finally I want remark that condition (2.) does not restrict to
any subclass of extensions that possess the properties given in Theorem 4.2. In
order to show this, assume that we have an extension (F(¢),0) of (F,o) with
properties (1.) and (3.), ¢ transcendental over F and const,F(t) = const,F. In
addition suppose that condition (2.) does not hold, i.e. there exists a g € F(¢)\F
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with % ¢ F. Then by Theorem 4.3 it follows that there exists a ¢ € F such
that o(9) — g = (. But then we have o(t — g) = a(t — g). Furthermore
t — g is transcendental over F and const,F (¢t — g) = const,F. Hence by a change
of basis we can work in the Il-extension (F(t — g),0) of (IF,o). In some sense
property (2.) just avoids that - and Il-extensions have a common intersection.
On the other side condition (2.) is an essential property which is needed to find
degree and denominator bounds [Sch02a, Sch02b] of a given solution space that
will be introduced in Sections 5.2 and 5.3.

Now we are ready to define IIX-extensions.

Definition 4.6. (F(¢),0) is called a II¥-extension of (F, o), if (F(¢),0) is a II-
or a Y-extension of (IF, o).

4.2. II3-Extensions and the Field of Rational Functions

The next lemma will be used over and over again; it gives the link between I13-
extensions and its domain of rational functions. The proof is straightforward.
Lemma 4.1. Let (F(t),0) be a [1X-extension of (F,o). Then F(t) is a field of
rational functions over K. Furthermore, o is an automorphism of the polynomial
ring Flt], i.e. (F[t], o) is a difference ring extension of (F,o). Additionally, we
have for all f € F[t] that deg(a(f)) = deg(f).

In this work we need the following notions for such a polynomial ring F[¢] and
its quotient field F(t). For f = Y"" , fit; € F[t] the i-th coefficient f; of f will be
denoted by [f],, i.e. [f], = fi; if ¢ > n, we have [f], = 0. Furthermore we define
the rank function | | of F[t] by

=1 if f=0
|1 = deg(f) otherwise.

Moreover for f = (fi,..., fn) € F[t]" we introduce |f| := max; | f;|. With these
notations a simple but important fact is formulated.

Lemma 4.2. Let (F(t),0) be a IIX-extension of (F,0), 0 # a € F[t|™ and
f,g € F[t] such that o9 = f. Then | f| < |a|+ |9g]|-

Proof: If g = 0, we have f = 0,9 = 0 and hence —1 = | f| < |a| + |g| holds by
lgl = —1 and |a| > 0. Otherwise assume that g # 0, i.e. |g| > 0. Then

m—l(

I/l = loagl = lar o™ (g) + -+ + am gl < max(Jar o™ ()] -, lam gl)-

Please note that we have |a; c™ " (g)| < |a:| + o™ *(g)|, if a; = 0; otherwise,
if a; # 0, we even have equality. Moreover if a; = 0 and a; # 0 then |a;| +
lo™ " (g)] < laj]+ [e™ 7 (g)|. Since there exists an j with a; # 0, it follows that

max(Jai e ()], .-, [am g) = max(far] + Je™ " (g)], .- . law| + lgl)-
By Lemma 4.1 we have |o’(g)| = |g| for all i € Z and thus
max(Jai] + o™ (9], - .-, lam| + lgl) = max(far]., ..., Jan]) + || = |a] + |g]

which proves the lemma. O
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4.3. IIX-Fields and Some Properties
For the definition of II3-fields properties on the constant field are required.

Definition 4.7. A field K is called computable, if
e for any k € K one is able to decide, if k € Z,
e polynomials in the polynomial ring K[t1, ..., ¢,] can be factored over K and

e one knows how to compute for any (ci,...,¢,) € K" a basis of the submod-
ule {(n,...,ng) € Z*| - ik =1} of ZF over Z.

Please note that by the following lemma the constant fields of the difference
fields given in Section 2 are all computable.

Lemma 4.3. Any field of rational functions Q(xy,...,x,) is computable.

Finally 11> -fields are essentially defined by II¥-extensions. Unlike Karr’s defini-
tion in this work we force additionally that the constant fields are computable.

Definition 4.8. Let (F, o) be a difference field with constant field K. (F, o) is
called a I1¥-field over K, if K is computable, F := K(t;) ... (t,) for n > 0 and
(F(t1,...,ti1)(t;),0) is a [IX-extension* of (F(ty,...,t;_1),0) forall 1 <i < n.

Example 4.2. All difference fields in Section 2 are I1X-fields.

In [Sch02c, | Theorem 3.1 || it is shown that for each basis matrix of V(a, f,F) one

can define a canonical representation among all is basis matrices. This property
will play an important role in Subsection 7.3, more precisely in Theorem 7.8.

Theorem 4.4. Let (F,0) be a I1X-field over K, 0 # a € F" and f € F". Then
there is an algorithm based on gcd-computations and Gaussian elimination that
transforms a basis matriz of V(a, f,F) to a uniquely determined basis matriz.

Definition 4.9. Let (F, o) be a I1X-field over K, 0 # a € F" and f € F". Then
the uniquely defined basis matrix of V(a, f,F) obtained by the algorithm given
in Theorem 4.4 is called normalized.

In [Kar81] algorithms are developed that find for a given o € F* all n € Z with
a" € Hir »). Moreover by results from [Kar81] or Theorem 7.4, one can compute
a basis of the solution space V(a, f,F) for some 0 # a € F? and f € F".
Hence by Theorems 4.1 and 4.3 one can decide algorithmically, if a difference
field extension (IF(t), o) of (I, o) is a [I¥-extension. Starting from a computable
field K, this observation allows to construct algorithmically 13 -fields for a given
summation problem as it is carefully introduced in [Sch01, Chapter 2.2.5].

For the case i = 0 this means that (F(t1),0) is a [IX-extension of (F, o).
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5. Reduction Strategies in [[X-fields

In this section the main ideas are sketched that enable to search for parame-
terized linear difference equations in a [1¥-field (F(t),0). Given 0 # a € F(t)™
and f € F(¢)" one can apply the following reduction techniques to find a basis
matrix of V(a, f,F(t)).

V(a, f,F(t))
normalization by simplification
Via', f,F(t))
denominator elimination by denominator bounding (8)
V(a”, ", E[t])
degree elimination l by incremental reduction
V(a///,f”/, {0})
In the next subsections I explain in more details the methods for the different
reduction steps.

5.1. Simplifications and Some Special Cases

Let (F(t),0) be a IIX-extension of (F,0), 0 # a = (ay,...,ay,) € F(t)™ and
f € F(t)". Here I explain the reduction

Via, f,F(t))
normalization by simplification 9)

Via', f',F(t)),

i.e. how one reduces the problem V(a, f,F(t)) to V(a’, f’,F(t)) for some nor-
malized a’ = (a},...,a) ,) € F[t|™ and f’ € F[t]” such that m’ < m and

» m/

ay #0#a,. (10)
Then the subgoal is to find a basis of V(a’, f/,F(t)) for such a normalized a’
and f’ and to reconstruct a basis of the original solution space V(a, f,F(?)).

If a1 # 0, set | := 1, otherwise define [ with 1 < [ < m such that 0 =
ay = -+ = a;_1 # a;. Similarly, if a,, # 0, set k := m, otherwise define k& with
1 < k < m such that a # apy1 = -+ = a,, = 0. Then we have

cf=o0af =™ (g)+- - +ao"  g)=cf

& (@) o g) + o+ o ar) g = e T(F)

where o™ (q;) # 0 # 0¥~ (a). Therefore define
a = (c"""(a),...,0" ™(ax)) and f’:="""(f) (11)

with a’ € F(¢)*"*! and f’ € F(t)", and find a basis of V(a’, f/,F(t)). Then one
can compute a basis of V(a, f,F(t)) by the relation

V(a, f,F(t)) = {c/\am*k(g) leng € V(a', ', F (1))} (12)

Here the previous considerations are summarized.
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Theorem 5.1. Let (F,0) be a difference field, a € F™ and f € F", and define
[ and k as above. Define a’ = (a},...,al,) € F™ and f’ € F" as in (11). Then
ayal, # 0. If CAg is a basis matriz of V(a’, f',F) then C,o™ *(g) is a basis
matriz of V(a, f,F).

Therefore without loss of generality one may assume a with aya,, # 0. By
Theorem 5.2 one finally achieves the reduction as it is stated in (9). Here the
essential property (Lemma 4.1) is used that F[t] is a polynomial ring.

Theorem 5.2. Let (F(t),0) be a IIX-extension of (F,0), a = (a1,...,a,) €
F(t)™ and f = (f1,..., fn) € F(1)" where a; = 2 and fi= ;T are in reduced
representation. Let d = lem(ay g, ..., Gim, fo1,-- -, fon) € F[t]* and define the
vectors a’ := (a1 d, ... ,a,d) €

IlF[t]m and f' = (fid,..., fnd) € F[t]". Then we
have V(a, f,F(t)) = V(a', f',F(t)).

Hence by applying Theorems 5.1 and 5.2, one can compute a basis matrix of
V(a, f,F(t)) by computing a basis matrix of V(a’, f',F(t)) where a’ € F[t]™
and f’ € F[t]™ have properties as stated in (10)

A Special Reduction: In particular if a; = 0 for all 1 < ¢ < m one is able to
reduce the problem further to a first order linear difference equation problem.

Theorem 5.3. Let (F(t),0) be a I1X-field, f € F(t)” and a = (a4, ..., a,) € F™
with m > 1, aja, # 0 and a; = 0 for all 1 < i < m. Then (F(t),0™ ') is a

[IY-field and we have V(a, f, (F(t),0)) = V((ai, an), f, (F(t),c™1)).

Proof: By Theorem 4 in |[Kar85| it follows that (F(t),c™ ') is a IIX-field. The
equality of the two solution spaces follows immediately. [

Two Shortcuts: Moreover if (0) # a € F', one obtains a basis of V(a, f,F(t)).

Theorem 5.4. Let (F(t),0) be a difference field with constant field K, a € F*
and f = (f1,.-., fn) € F". Then IdnAf is a basis matriz of V((a), f,F(t)) where
Id,, is the identity matriz of length n.

Proof: Let e; € K™ be the i-th unit vector, i.e. e;Af; is the i-th row vector
in Id,Af. Clearly the elements in B := {el/\%, e 7en/\%"} are linearly inde-
pendent vectors over K with a% = e; f. Hence B is a basis of a subspace V
of V((a), f,F(t)) over K. Now assume that there is a cAg := (c¢1,...,¢,)Ag €
V((a), f,F@))\V.Thenag=cf = (3", cie)f =3 ciles f) = i, cigi
and hence cAg € V, a contradiction. |
Moreover by [Kar81, Proposition 10] there is a shortcut that can be heavily used.

Lemma 5.1. Let (F,0) be a difference field with constant field K and V be a
subspace of F over K. If VNK = K then the identity matriz Id,+1 of length
n+ 1, otherwise 1d,A0,, is a basis matriz of V((1,—1),0,,V).
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Proof: We have
V(a,0,,V)={(c1,...,¢n,9) EK"xV]o(g9) —g=c10+---+¢,0}.

If VNK = K then {g € V]o(g9) —g =0} = K and therefore it follows that
V((1,-1),0,,V) = K" x K. Hence Id,A0,, is a basis matrix of our solu-
tion space. Otherwise, we must have V. = {0} and therefore it follows that
V((1,-1),0,,V) = K" x {0}. Then clearly Id,A0,, is a basis matrix of the
solution space. O

5.2. The Denominator Bound Method for Denominator Eliminations

The denominator bound method was introduced by S. Abramov in [Abr89b,
Abr95] for one of the most simplest II1¥-fields (K(¢), o) over K with o(t) = ¢+ 1.
Based on a generalization by M. Bronstein in [Bro00]| the following denominator
elimination technique turns out to be essential to search for all solutions of linear
difference equations in the general setting of 113 -fields.

Let (F(t),0) be a II¥-extension of (F,0), 0 # a = (ay,...,a,) € F(t)™ with
aj a, # 0 and f € F(t)". Here I will give the main idea how one can achieve the
reduction

V(a, f.F(t))
denominator elimination by denominator bounding (13)
V(a', f'.F[t])

for some a’ € F[t|™ and f’ € F[t]". With this strategy one has to compute only a
basis of V(a’, f’, F[t]) in the polynomial ring F[¢] which then gives the possibility
to reconstruct a basis of V(a, f,F(t)) in its quotient field F(¢). In this reduction
the simple Lemma 5.2 gives the main idea.

Lemma 5.2. Let (F,0) be a difference field, a = (ay,...,ay,) € F™ and d € F*.

Im—1 am

Then for @' = ( 7w-rg o %) € F™ and g € F we have 0,9 = 0 (g d).

Proof: We have

0ag =a10™ Hg)+ -+ am10(g) + amyg
") s old) . d
—a1mo (g)++am_1ma(g)—l—aamg
. a m—1 . Am—1 CL_m — ,
_70m—1(d)0 (gd) + +a(d) o(gd) + y dg=og(gd).

O
The following proposition will lead to Theorem 5.5 which delivers the basic
reduction of the denominator bound method. Furthermore this proposition is
needed in Section 7.3, Theorem 7.7, to prove correctness of Algorithm 7.3.
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Proposition 5.1. Let (F,0) be a difference field with constant field K, 0 # a =
(a1, ... am) €EF™ and f € F". Let d € F(t)* and set @' := ( zwrgyatm 8 ) €
F™. If CNg is a basis matriz of a subspace of V(a', f,IF) over K then C\9 is a
basis matriz of a subspace of V(a, f,F) over K.

Proof: Let CAg be a basis matrix of a subspace of V(a’, f,F) over K for some
C € K™ and g € F*. Since the row vectors of CAg are linearly independent
over K, the row vectors of C,9 are also linearly independent over K. Moreover
for any k € K* we have k- (Cr9) € V(a, f,F) by Lemma 5.2. Hence C 9 is a
basis matrix of a subspace of V(a, f,F) over K. O

Next we introduce the subset F(¢)/"* of F(t) as

F(t)V .= {g € F(t) | £1is in reduced representation and deg(p) < deg(q)}.

Clearly F[t] and F(t)Y™ are subspaces of F(t) over K. By polynomial division
with remainder the following direct sum of vector spaces holds:

F(t) = F[t] @ F(t)™.

In the reduction indicated by (13), the basic idea is to compute a particular
d € F[t]* such that

Veng € V(a, £,F[t] @ F@)Y™)) . dg e Fli). (14)
It is immediate that such a specific d € F[¢]* bounds the denominator.

Definition 5.1. Let (F(¢),0) be a II¥-extension of (F,0), 0 # a € F[t|™ and
f € F[t]". Then d € F[t]* fulfilling condition (14) is called denominator bound of

V(a, f,F(t)).

Theorem 5.5. Let (F(t),0) be a lIX-extension of (F, o) with constant field K,
0+#a=(ay,...,an) € Fit]™ and f € F[t]". Let d € F[t]* be a denominator
bound of V(a, f,F(t)) and define @' := (7w s ) € F@t)™. If CAg is
a basis matriz of V(a', f,F[t]) then C/\d is a basis matriz of V(a, f,F(t)).

Proof: By Lemma 5.2 it follows that
chg € V(a, f,F(t) ©oa9g=cf < og(dg)=cf.
Since d g € F[t] by property (14), we have
cNg € V(a, f,F(t)) & en(dg) € V(a, f,F[t]). (15)

Let CAg be a basis matrix of V(a’, f,F[t]). Then by Proposition 5.1 C»9 is
a basis matrix of a subspace of V(a, f,F(t)). Therefore by (15) C ¥ is a ba51s
matrix of V(a, f,F(t)). O
Hence by applying Theorem 5.5 one obtains a’ € F(#)™ such that C 9 is a basis
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matrix of V(a, f,F(t)), if CAg is a basis matrix of V(a’, f,F[t]). So by clearing
denominators in @’ (Theorem 5.2) one succeeds in the reduction as stated in (13).

Remarks on the denominator bound problem in II>-fields: Using re-
sults from [Sch02a|, which are based on [Kar81, Kar85, Bro00|, there exists an
algorithm with Specification 7.3 that solves the following problem in a II3-
field (F(t),0). If (F(t),0) is a X-extension of (F, o), a denominator bound d of
V(a, f,F(t)) can be computed. Otherwise, if (F(¢), o) is a II-extension of (I, o),
one is able to compute a u € F[t]* such that t* u is a denominator bound for a big
enough chosen z € Ny. If in addition a € F[t]?, such an = € Ny can be also com-
puted. Consequently there exists an algorithm with Specification 7.1 that solves
the denominator bound problem for first order linear difference equations. This
will result in Section 7.2 to an algorithm that solves parameterized first order
linear difference equations in I1¥-fields in full generality. Moreover in [Sch02a]
there are several investigations to solve the denominator bound problem in II-
extensions; here one is capable of determining an x € Ny as described above for
further subclasses of linear difference equations.

5.3. The Incremental Reduction for Polynomial Degree Eliminations

Whereas in this subsection an “oversimplified” sketch is given how the incremen-
tal reduction method for the polynomial degree elimination works, in Section 6
this incremental reduction method will be further analyzed and explained.

Let (F(t), o) be a II¥-extension of (F, o), a = (ay,...,a,) € Flt]™ with a; a,,, # 0
and f € F[t]". In the degree elimination strategy the goal is to reduce the prob-
lem from computing a basis of V(a, f,F[t]) to computing a basis of V(a, f’, {0})

V(a, f,F[t])
degree elimination l by incremental reduction

V(a, f,{0})
for some f’ € F[t]*. Then in a second step one has to reconstruct the basis of
V(a, f,F[t]) by a lifting process.

Determination of a degree bound: In a first step one tries to find a bound
b € Ng U {—1} such that for all cAg € V(a, f,F[t]) one has deg(g) < b. Of
course, for any d € Ny U {—1},

Fltlg := {f € F[t]| deg(f) < d}

is a finite subspace of F[t] over K. In particular we have F[t]_; = {0}. In other
words, we try to find a b € Ny U {—1} such that

V(CL, f7 F[t]) = V(Cl,, fu F[t]b) (16)
Additionally we will assume that

b= max (=1, |f[ - [al) (17)
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which guarantees that f € F[t]|q)+s by Lemma 4.2. As it will be shown later this
is a necessary condition in order to proceed in the degree elimination technique.

Definition 5.2. Let (F(¢),0) be a [I¥-extension of (F,0), 0 # a € F[t|™ and
f eF[t]". b e Zis called degree bound of V(a, f,F[t]) if (16) and (17) hold.

In [Sch02b] one is focused to determine degree bounds for various subclasses of
linear difference equations. In particular this work enables to determine degree
bounds of V(a, f,F[t]), if (F(t),0) is a [I3-field and a € F[t]?; more precisely
there exists an algorithm that fulfills Specification 7.2. Together with the denom-
inator elimination method introduced in the previous subsection and the incre-
mental reduction technique that will be explained further this leads in Section 7.2
to algorithms that solve first order linear difference equations in II¥-fields.

Degree elimination: If one finds such a degree bound b of V(a, f,F[t]), one
tries to eliminate the degrees by an incremental reduction technique.

V(a’? f7]F[t]b)
vt
V(a, fo1, Fltlo-1) . V(a. fo.Fltl) (18)
vt
V(a, f-1,F[t]-1)
where fg € F[t]ﬁ‘;uw for —1 < d < b with A\; € N. This has to be read as follows:
First has to compute a basis matrix of V(a, fg_1,F[t]s_1) for a specific fg_; €

F[t]ﬁ‘iﬁ 41 which then allows to construct the basis matrix of V(a, fq,F[t]a).

How this reduction works in details will be explained in Section 6.

Example 5.1. Consider the I1X-field (Q(¢1,t2),0) over Q canonically defined

by o(t1) = t1 + 1 and o(t2) = t5 + ;7 and set F := Q(t). In order to find a

basis matrix of V((1,—1), (¢2) ,F(¢2)), one first computes a denominator bound
of V(a, f,F(t)), in this case 1. Hence V(a, f,F(t)) = V(a, f,F[t]). Then after
computing a degree bound b = 2 of V(a, f,F[t]) by algorithms given in [Sch02b]
one applies the incremental reduction technique.
V((lv _1)7 (tZ) aF(t2))

I
V((1,=1), (t2) . Flt2])

degree bound b=2

V((L_l)’(ti) 7F[t2]2)
\
V((1.-1), (=G 2 ), Flto)r) ——— V((1.-1), (—7¥—1), Flt2]o)
v !
V((l, _1)7 (07 O) ’F[tZ]fl)

In particular for the base case it follows that

V((l, _1)’ (an) >F[t2]—1) = {(Clac2vg) € Q2 X {O} ’ 0(9) —g=c0+ 020}
={c1 (1,0,0) + ¢2 (0,1,0) |1, 02 € Q}

and one obtains the basis matrix (}¢9) of V((1,-1),(0,0),F[ts]_1). Later the
reduction step, which reduces the problem from the solution range F[to]; to Fts]o,
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will be considered in more details in Example 6.4. Finally with these reduction
techniques one determines the basis matrix ( (ti,l)) of V((1,-1), (t2),F(t2)).

Example 5.2. Consider the ITX-field (Q(1,t2),0) over Q canonically defined
by o(t1) = t1 + 1 and o(t2) = (1 + 1) t2. In order to find the solution g := t,
of o(g) — g = t1 t5 in Section 2.1, the following incremental reduction process is

involved. V0=, 112,00
V((1,-1), (t1 t2), Q(tl)[tﬂl)degree boind b=1 V((1,-1), (t1t2), Q(t1)[t2])

vt
V((1,-1),(0), Q(t1)[t2)o) ———= V((1,-1),(0), Q(t1)[t2]-1)

The complete reduction process for all subproblems is given in Example 7.1.

5.4. The First Base Case

As can be seen in Section 5.3, one has to compute a basis matrix of V(a, f_1,{0})
in the end of the incremental reduction. Theorem 5.6 allows us to reduce this
problem to a nullspace problem of I as a vector space over K.

Definition 5.3. Let F be a vector space over K and consider F" as a vector
space over K. Let f € F". Then Nullspaceg(f) = {c € K" |c f = 0} is called
the nullspace of f over K.

If one considers I as a vector space over K, Nullspaceg (f) is clearly a subspace
of F™ over K. The next simple result relates V(a, f,{0}) with Nullspaceg (f).

Theorem 5.6. Let (F, o) be a difference field with constant field K and assume
0#acF™ and f € F*. Then V(a, f,{0}) = Nullspaceg (f) x {0}.

Proof: We have

chNgeV(a, f,{0}) cog=cf&g=0
Scf=0&g=0
< ¢ € Nullspaceg (f) &g =0
< c/Ag € Nullspaceg (f) x {0}.

O
Finally a basis matrix of Nullspacey (f) can be computed by linear algebra.

Lemma 5.3. Let (IF, 0) be a [IX-field over K and f € F". Then Nullspaceg (f) is
a finite dimensional subspace of K™ whose basis can be computed by linear algebra.

Proof: Let f = (f1,...,fs) € F". Since F is a [IX-field, it follows that F :=
K(t1,...,t.) can be written as the quotient field of a polynomial ring K[t, .. ., t.].
We can find a d € K[ty,...,t.]* such that

g = (917-",971) = (fld,,fnd) GK[tl,...,te].
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For ¢ € K" we have ¢ f = 0 if and only if cg = 0 and therefore
Nullspaceg (f) = Nullspaceg (g).
Let cq,...,c, be indeterminates and make the ansatz
c1g1+--+cpg, =0.

Then the coeflicients of each monomial t‘fl o tﬁfe in ¢y g1+ - - +¢, g, Must vanish.
Therefore we get a linear system of equations

c1pi1+ ... +cnpin =0
: (19)

Crpri+ ... +Cnprn =0

where each equation corresponds to a coefficient of a monomial which must
vanish. Since p;; € K, finding all (c1,...,c,) € K" which are a solution of (19)
is a simple linear algebra problem. In particular applying Gaussian elimination
we get immediately a basis for the vector space

{c € K" | c is a solution of (19)},

thus for Nullspaceg(g) and consequently also for Nullspaceg (f). O

6. The Incremental Reduction

In this section the incremental reduction method will be considered in details
which enables to eliminate the polynomial degrees of the possible solutions as
it was already illustrated in Section 5.3. More precisely one is concerned in
computing a basis of V(a, f,F[t]4) for 0 # a € F[t]™ with [ := |a| and f €
F[t],, for some d € Ny U {—1}. In particular if d = —1, one knows how to
compute a basis matrix by linear algebra as it is described in Subsection 5.4. So
in the sequel we assume that d € Ny.

6.1. A First Closer Look
In the sequel consider F[t], ; as a subspace of F[t]; over K and
t'F = {ft'| f € F}
as a subspace of F[t]; over K. Then the following direct sum
F[t]q = Fltla—1 & t'F (20)

follows immediately. In diagram (18) of Section 5.3 it was already indicated to
achieve the degree elimination

V(CL, fv F[t]d)
vt (21)
V(a, fa—1,F[t]a1)
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for some f € F[t]) 11 With A > 1. As will be explained in the sequel one first tries
to solve some kind of difference equation problem in t¢F, say I(a, f,t?F), which
will be introduced in Definition 6.1. Having this solution in hands, one computes
an f € F[t]),,_, for some A > 1 and tries to solve the problem V(a, f,F[t]s_1).
Then finally one can derive a solution for the original problem V(a, f,F[t]q)
by using the solutions of V(a, f,F[t]s_1) and I(a, f,t*F). In other words the
solution in F[t]; is obtained by combining solutions in t?F and F[t];_; from
specific subproblems. This is intuitively reflected by equation (20).

Finally the incremental solution space is introduced.

Definition 6.1. Let (F(t),0) be a [I¥-extension of (F, o) with constant field K.
Let 0 # a € F[t|™ with | := |a| and let f € F[t];,,; for some d € Ny. We define
the incremental solution space by

I(a, f,t°F) := {cAg € K" x t'F | 049 — cf € F[t]gs1-1}.

Clearly the incremental solution space I(a, f,t?F) is a vector space over K. In
the next subsection it is shown that the incremental solution space is a finite
dimensional vector space over K, and it is explained how one can obtain a basis
by solving parameterized linear difference equations in the difference field (F, o).
Having this in mind, the degree elimination (21) is done as follows:

V(a’ f»g[t]d)\l\g
I L 1(a, f,t'F) (22)

V(aa fa ]F[t]dfl) 2.
1. First one attempts to compute a basis matrix of I(a, f,t?TF).

2. With this basis matrix a specific f € Flt]3.,_1, A > 1, is computed which is
explained later. Now one tries to compute a basis matrix of V(a, f, F[t]4_1).

3. Given the basis matrices of V(a, f,F[t]_1) and I(a, f,t*F) one finally can
compute a basis matrix of the solution space V(a, f,F[t],).

Finally we try to motivate how this specific f is computed. If ¢ € tF, by
Lemma 4.2 it follows that |o.g| < |a|+ |g| = [+ d. Furthermore for any ¢ € K"
we have |c f| < [+d. In other words, the incremental solution space I(a, f,t¢F)
delivers us all ¢ € K" and all elements g € tF such that the [ + d-th coefficient,
the coefficient of highest possible degree, of the polynomial 0,9 — cf € F[t];1q-1
vanishes. This will be exactly the key-property for the reduction. Namely, if the
set {€1/Ag1,...,caAgy} is a basis of I(a, f,t?F), define f := (hy,...,hy) with

hi == 0ag; — ¢ f € Flt]iya—1-

Then computing a basis of the solution space V(a, f. F[t]4—1) will allow us to lift
the problem to V(a, f,F[t];) as it will be described further in Section 6.4.
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6.2. An Algebraic Context: Filtrations and Graduations

As already described above, the problem V(a, f,F[t];) is reduced to subproblems
I(a, f,t*F) and V(a, f,F[t]s_1). Then computing those basis matrices allows us
to reconstruct a basis matrix V(a, f,F[t],). Looking closer at (20) one obtains
the direct sum F[t], = @L, t'F of F[t]s. More generally there is the direct sum
F[t] = @,cn, t' F where ¢'IF is interpreted a subspace of F[t] over K. Since

(t'F)(#'F) =t F.

for any i,j € Ny the sequence (t'F)cy, is a graduation of F[t]. Furthermore we
have that

Vi, j € NoF[t]; F[t]; = Flt]iy; and | i) = F,

1€Np

and consequently (F[t];)ien, is a filtration of F[t]. If one goes on in the reduction
(22), see also Section 6.5, one actually computes the solution space V(a, f,F[t];)
by computing incremental solution spaces in the filtration (¢ F),cy, of F[t] and
obtains step by step solution spaces in the graduation (F[t];);en, of F[t].

6.3. The Incremental Solution Space

In the sequel we will explore some properties of the incremental solution space
I(a, f,t?F), namely that it is a finite vector space over the constant field K, and
how one can find a basis matrix of I(a, f,t*F).

Example 6.1. Consider the I1X-field (Q(¢1,t2),0) over Q canonically defined

by o(t) =t + 1 and o(ty) =t + ﬁ For ¢, ¢, € Q and w € Q(¢;) we have

(c1, e, t2w) € I((1,-1), ( %,h ), t2Q(t1))
d=1,1=0 —1—2ty — 2ty

& g 0+0)° +eaty — ((o(taw) | —taw) € Q(t1)
<~ C1 (— (t1—|1-1)2 - tlilt2)+62t2—( (t2+t1+1)0'(11)) —th) EQ(tl)
—201 —2
& PR +e—(o(w)—w)=0 < (c1,c0,w) € V((1,—1), (m, 1) ,Q(t1)).

This observation enables to compute a basis matrix of I(( 1.-1), ( gz:1), Q(¢1)):

1. Computed a basis matrix (9 ) of V((1.-1), (gimz:1), Q(t1))-
2. Then ({9, ) is a basis matrix of V((1.-1), ( gipz!), Q(t1)).

Example 6.2. Consider the [1¥-field (Q(¢1,%2), o) defined by o(t1) = ¢t; 4+ 1 and
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o(ta) = (t1 + 1) te; let f == (14+ (B +3t1 +3)ta+ (6+10t1 + 682 +13)t3) = (f)
and a := (tg, 1, —ta,t2). Then for ¢ € Q and w € Q(¢1) we have

(c,taw) € I(a, f,t2Q(t1)) ==t ootz w) € Q(t1)[ta)y

=2 cf — (tg 03(wt2) +02(t2 w) — 12 O’(tz w) —‘rt% w) S Q(tl)[tg]l

& cof = (to] (b1 +3)(t1 +2)(t1 + V) ty 03 (w) [+
(t1 +2)(t1 + 1) ta 0% (w) — ta (t1 + 1) tao(w) + t2w) € Q(t1)[t2)r

& c(6+10t+685+13) — (L1 +3)(t1 +2)(t1 + 1) 0 (w) — (b1 + 1) o(w) + w) =0

& (e,w) € V(@ f,Q(t))

where f = (6+10t; + 62 +3) and @ := ((t1 +3)(t1 + 2)(t1 + 1),0,— (¢, + 1), 1).

The last example motivates us to define the so called o-factorial, a generalization
of the usual factorials.

Definition 6.2. Let (IF, o) be a difference field. Then we define the o-factorial
of f € F shifted with k € Ny by (f), = [T/= o*(f).

Example 6.3. Let (F(¢), o) be a Il-extension of (IF, o) with o(¢) = at. Then for
k > 0 we have o*(t) = (a), t.

Lemma 6.1 summarizes the observations from the previous Examples 6.1 and 6.2

Lemma 6.1. Let (F(t),0) be a IIX-extension of (F, o) canonically defined by
o(t) = at+ [ for some a € F*, 3 € F. Let 0 # a = (ay,...,a,) € F[t]™ with
I :=|a| and f € F[t]},, for some d € Ny. Then

cANwt?) € I(a, f,tF) & cAw € V(a, f. F)

where 0 # @ := ([a1], (@ 1, lam); (a)g) eF™ and f = [f]gp € F™.

m—1"

Proof: We have
cANwt?) € I(a, f,t*F)

)

Oa(w td) —cf € Flt]gri

0

a1 o™ Hwt) + -+ apwt! — e f € Flt]a

0

a1 o™ (w) (@)t 4 apg o(w) ot + apwt? — e f € Ft]g

m—1
)
[al o™ (w) (a)fn_l th b o o(w) ot a, wt? — cf] =0
d+l
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0

[al]z Um_l(w) (O‘)fn—l +oet [am—l]l o(w) al + [am]l w—==cC [f]d-i-l =0
—
f

ogW = Cf

chw € V(a, f,F)

where a and f as from above. |
The next theorem is a generalization of Theorem 16 in [Kar81] which is extended
from the first order case to the higher order case of linear difference equations.

Theorem 6.1. Let (F(t),0) be a II1X-extension of (F, o) with constant field K
canonically defined by o(t) = at + § for some a € F*, f € F. Let 0 # a =
(ar,...,am) € Fit]™ with | := |a|, f € F[t]},, for some d € Ny and let 0 # a :=
(la), (@)% s lam), (@)3) € F™ and f = [f],,, € F". Then I(a, f,t’F) is a
finite dimensional vector space over K, and CA\w is a basis matriz of V(a, f, F)
if and only if C(wt?) is a basis matriz of I(a, f,t*F).

Proof: By Proposition 3.1 V(a, f ,IF) is a finite dimensional vector space over
K. Hence there is a basis {¢;Aw; |1 < i <r} C K" x F for V(a, f,F). Then by
Lemma 6.1 {¢;Aw; t*|1 < i < r} spans the incremental vector space I(a, f,*F)
over K. Hence I(a, f,t?F) is a finite dimensional vector space over K. Con-
trary let {c;Aw;t?|1 <i<r} C K" x (tF) be a basis for I(a, f,F). Then by
Lemma 6.1 the set {c;Aw; |1 < i <r} spans the vector space V(a, f. F) over K.
Moreover the set {c;Aw; € K*" x F|1 <i <r} is linearly independent over K if
and only if {¢;Aw;t? € K" x (tYF)|[1 <i < r} is linearly independent over K.
Hence the theorem is proven. |
The reduction motivated in Example 6.1 and formalized in Theorem 6.1 is rep-
resented by

I(a, f,t*F)
o 2f
V(a, f,F).

6.4. The Incremental Reduction Theorem

The whole incremental reduction method (22) is based on Theorem 6.2 that will
be considered in the following. As one can see in (22) or in the structure of
Theorem 6.2, in a first step one is faced to compute a basis of I(a, f,t¢TF).

If it turns out that the incremental solution space consists only of the trivial
solution

I(G,, f: td IF) = {On-i-l}a (23)
the following proposition tells us how to obtain a basis of V(a, f,F[t]4) by com-
puting a basis of V(a, (0),F[t]s-1).
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Proposition 6.1. Let (F(t),0) be a 11X-extension of (IF, o) with constant field
K, 0 # a € F[t|™ with | := |a| and f € F[t]},, for some d € Ny. Then
V(a, f,Flt]ls) 2 V(a,0,,F[t]s1) N ({0,} X Flt]q—1). If additionally (23) holds
then we even have equality.

Proof: Define W := V(a, 0, F[t]s—1) N (0, x F[t];—1) and let cAg € W. Then
c =0, and g € F[t]q_; with 0,9 = cf = 0, and hence cAg € V(a, f,F[t]).
Now assume that (23) but also W C V(a, f,F[t];) holds. We will prove that this
leads to a contradiction. Take any cAg € V(a, f,F[t]q) \W. Clearly cAg # 0y,41.
First suppose g € F[t]; ;. Hence |o,9| < d + | by Lemma 4.2 and therefore
0 = [0agly = leflye = ¢ [f]y Consequently eAO € I(a, f,t*F) and thus
¢ = 0, by (23). Then cAg = 0,Ag € W, a contradiction. Otherwise assume g €
F[t]4\ F[t]q_; and write g = wt? +r with r € F[t];_; and w € F*. Clearly 0,9 =
oa(wt?)+o,r. By Lemma 4.2 it follows o,r € F[t]; 141 and thus ¢ f —og(wt?) €
F[t];+q-1. But then cA(wt?) € I(a, f,t?F), a contradiction by (23). O
Now assume that (23) holds. Then note that we may write

V(a, Ol,F[t]d_1> =KxW

for the subspace W = {h € F[t]4_1 |0ah = 0} of F[t];_, over K. Hence by Propo-
sition 6.1 it follows that V(a, f,F[t]s) = {0,} x W. In other words, if W = {0},
01x(n+1) is a basis matrix of V(a, f,F[t];). Otherwise, if {h),... h;} with [ >1
forms a basis of W then O;x,AR’ with b’ = (h},...,h)) € F[t],_, is a basis
matrix of V(a, f,F[t]4).

Hence what remains is to extract a basis of the subspace {0} x W of the solution
space V(a, 01, F[t]4—1). More generally let DAh with D € K, and h € F[t]|_,
be a basis matrix of a subspace of V(a,01,F[t];—1). Then by linear algebra we
obtain easily a basis of dimension at most y — 1 that generates a subspace of W.

! Determine a basis that generates a subspace of W !

1. Transform DAh by at most p — 1 row operations to a basis matrix of V(a, 01, F[t]4—1)

of the form 1 w )
0 R 0 M
V' withweFor |..... . (24)
....... Y
0 h’;,b—l H

2. If (1,w) is the first row and u = 1 then set h’ = (0). Otherwise set b’ := (h,...,h,)
with o — 1 < /' < u respectively.

Clearly 0,/ xn/\R’ is a basis matrix of a subspace of V(a, f,F|t];) over K. More-
over the entries in h’ form a basis of a subspace of W, if b’ # (0). Furthermore, if
DAh is a basis matrix of V(a, f,F[t],—1), the entries in h’ constitute a basis of W
itself. Hence by the above remarks 0, x»/AhR’ is a basis matrix of V(a, f,F[t]s), if
additionally (23) holds. These aspects are summarized in the following corollary.

Corollary 6.1. Let (F(t),0) be a IIX-extension of (F, o) with constant field K,
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0 # a € F[t]™ with | :== |a| and f € F[t]},, for some d € Ny. Furthermore
let DAh with D € K, x,, and h € F[t]5_, be a basis matriz of a subspace of
V(a,01,F[t]q_1) and take h’' € Ft ] _, as described in (24). Then 0, xn AR’ is a
basis matriz of a subspace of V(a, f,F[t]a). Moreover if (23) holds and DAh is a
basis matriz of V(a, f,F[t]4—1) then 0,y xn R’ is a basis matriz of V(a, f,F[t]q).

Finally we state the incremental reduction theorem which is a generalization of
|[Kar81, Theorem 12| from the first to the higher order case of linear difference
equations. In particular this result includes the special case (23) in step 3b.

Theorem 6.2 (Incremental Reduction Theorem). Let (F(t),0) be a I1X-
extension of (F,o) with constant field K, canonically defined by o(t) = at+
for some o € F*, B € F. Let 0 # a € F[t|" with | := |a| and f € F[t]},, for
some d € Ng. Then one can carry out the following reduction:

1. Let CAg be a basis matriz of a subspace of I(a, f,t?F) over K with C € K™
and g € (t*F)* for some \ > 1.

2. Take f :=C-f—0qg € F[t]),,_, and let DAh be a basis matriz of a subspace
of V(a, f,F[t]lq_1) over K with D € K** and h € F[t]};_, for some p > 1.

3a. If CAg # 01x(n+1) then (D C)A(h + D - g) is a basis matriz of a subspace
of V(a, f,F[t]a) over K with D C € K" and h+ D - g € F[t]}.

3b. Otherwise one obtains an h' € F[t]gl with p—1 < u' < p as described in (24)
such that 0,y xn AR’ is basis matriz of a subspace of V(a, f,F[t]q) over K.

Moreover, if CAg and DAl are basis matrices of the vector spaces I(a, £, tiF)
and V(a, f,F[tla—1) then (D C)A(h + D - g), or 0, xn/\h' respectively, is a
basis matriz of the solution space V(a, f,F[t];).

Example 6.4. Let (Q(t1,12),0) be the II3-field over Q canonically defined by
o(ty) =t1+ 1 and o(ts) = ta + = +1 Then by Theorem 6.2 one can carry out
the following reduction step Wthh appears in the reduction process sketched in

Example 5.1. s

/_/%
V((17_1) ( — (2112112;1 = t2
T >\ 1,-1), f, 12 Q(t1))
V(]-7 _17 ( ﬁ’_l )ﬂ Q(tl)[tQ}O)
—_———— ——
=:f Q(tl)
1. First we compute a basis matrix CAg = ( ?)/\(tgtgtl) of the incremental
solution space I((1,—1), f, 12 Q(¢1)) (see Example 6.1).

2. Let f:=C - f—(o(g)—g) = ( o ) € Q(t1)[t2]2 = Q(#1)? and compute a
basis matrix, say DA = (9 = )A(%), of V((1,—1), (t1+l,—1) L Q1) [ta]o).
3. Then (DC)A(h+ D -g) = (3 3')a("11%2) is a basis matrix the solu-

0 0

tion space of V((1,—1), (%ﬂfz) , Q(t)[t2]1)-
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To prove the fundamental reduction theorem, a simple lemma is introduced.

Lemma 6.2. Let F be a field which is also a vector space over the field K and let
V and W be finite dimensional subspaces of K" xTF over K withV C W C K" xF.

Furthermore assume that My € F&>t s q generator matriz of V and My €
Fex(tD) of W. Then there exists a matriz K € K¢ such that My = K M.

v1 w1
MV:(S) andMW:(;)
Vd We

where the v; and w; vectors are interpreted as row-vectors. We have

Proof: Let

spang (vy,...,vq) =V C W = spang (ws, ..., w,).
Thus there are vectors k; = (ki1, ..., ki) € K® for 1 <i < d such that

vi:kilwl—l—---—l—kiewe:kzi-Mw

k1
and therefore My = K My with K = ( :
K
row-vectors. ! L]

> where the k; are interpreted as

Proof of Theorem 6.2

Let CAg be a basis matrix of a subspace of I(a, f,t?F) as it is stated in the
theorem. Then by the property of the incremental solution space it follows that
f:=C-f—o0.9 € F[t]},,_,. Now let DAh be a basis matrix of a subspace
of V(a, f,F[t]s_1) over K as stated in the theorem. Then we clearly have that
DC e K**"and h+ D - g € F[t]},.

The special case in 3b: If CAg = 0y (ny1) holds, it follows that f = (0), in
particular A\ = 1. Then by Corollary 6.1 the statement in 3b holds. Moreover, if
C g is a basis matrix of I(a, f, t4TF), condition (23) holds. If additionally DAh
is a basis matrix of V(a, f,F[t|;—1) then by Corollary 6.1 0,/ x,/ AR’ is a basis
matrix of V(a, f,[F[t];) which proves the theorem for the special case 3b.

What remains to consider is the case 3a, in particular we may assume that
CNg # 01x(nt1)- (25)

Step 1: We show that (D C)A(h + D g) generates a subspace of V(a, f,F|[t]s)
over K. We have

oah=D-f=D-(C-f—049) < 0sh=D-(C-f)—D- 049
S oh+D 0,g=(DC)-f<oqh+D-g)=(DC)-f
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and by h+D-g € F[t]}] it follows that (D C)A(h + D - g) generates a subspace
of V(a, f,F[t]4) over K.

Step 2: Next we show that (D C)A(h 4+ D - g) is a basis matrix of a subspace
of V(a, f,F[t]4) over K. If

(D C)AN(h + D - g) = 01x(n+1) (26)

then by convention it is a basis matrix and represents the vector space {0} C
K™ x F. Otherwise, assume that the basis matrix is not of the form (26). We will
show that the rows in the matrix (D C)A(h + D - g) are linearly independent
over K which proves that it is a basis matrix. Assume the rows are linearly
dependent. Then there is a 0 # k € K* such that

k- ((DC)A(h+ D -g))=0. (27)

e Now assume that
k-D=0. (28)

DAh is a basis matrix by assumption. If DAh consists of exactly one zero-
row, we are in the case (26), a contradiction. Therefore we may assume that the
rows are nonzero and linearly independent over K, i.e. we have k- (DAh) # 0.
Hence by (28) it follows that

0%#kh € Flt]y,. (29)

Since g € (tYTF)*, we conclude that k (D - g) € t“F. Therefore by (29) we have
O#£kh+k(D-g)=k(h+D-g)and thusk-((DC)A(h+ D -g))#0,a
contradiction to (27).

e Otherwise, assume that v := k- D # 0. Then by (27) we have

O=k-(DC)AN(h+D-g))=(k-(DC))\N(k(h+ D -g))
=(k-D)-C)AN(kh+ (k-D)-g))=(v-C)AN(kh+vg)

and thus
v-C=0 and kh+vg=0. (30)

But CAg is a basis matrix with (25). Therefore the rows must be linearly
independent over K, i.e. v - (CAg) # 0. Hence by (30) we have 0 # v g € t?F.
As k h € F[t]4—1, we finally get kh + v g # 0, a contradiction to (30).

Altogether it follows that (D C)A(h + D - g) is a basis matrix of a subspace,
say W, of V(a, f,F[t]4) over K which proves the first part of the theorem.

Step 3: Now assume that CAg is a basis matrix of I(a, f,t?F) and DAh is
a basis matrix of V(a, f,F[t|4—1) respectively. What remains to show is that
W = V(a, f,F[t]y). Clearly V(a, f,F[t|s) is a finite dimension vector space over
K by Proposition 3.1. Hence we can take a basis matrix EAh of V(a, f,F[t]s),
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say E € K", h € F[t];, and write h = hy + hy € (t*F)” @ F[t];_,. Let V be
the vector space that is generated by EAh;. Since

0=04h—E - f=o0.hy+0.hs—E-f (31)

by assumption and o,h, € F[t]},, ; by Lemma 4.2, it follows that o hq — Ef e
F[t]d+l .- Therefore V C I(a, f,t*F) and thus by Lemma 6.2 we find a matrix

D e KM such that EAhy = D(CAg) = (D C)A(D - g), this means
E=DCand hy=D-g. (32)
By (31) we have

(32)

Uah2—E f_aahl - (EC)'f_O_a(D'g):D'(C'f_gag)

and hence o
oghs =D - f. (33)

Let U be the vector space over K that is generated by DAhs. Then by (33)
it follows that U C V(a, f,F[t]s—1) and thus by Lemma 6.2 we find a matrix
K € K¥** such that DAhs = K (DAh) = (K D)A(K - h), this means

D=KD and hy = K - h. (34)

Then

(32)

ENh = EA(hy + hy) = (D C)A(D - g + hsy)
Y (KDCN(KD)-g+K-h)=K((DC)A(D-g+h))

and it follows that W O V(a, f,F[t];) which proves the theorem. (In particular,
K is a basis transformation, i.e. v = p and K is invertible.) O

Remark 6.1. If CAg = 01x(n+1) and DAhR are basis matrices of I(a, f,¢*F)
and V(a, f,F[tlq_1), (D C)A(h + D - g) generates V(a, f,F[t],), since in any
case the proof-steps 1 and 3 hold; but the rows in (D C)A(h + D - g) are
linearly dependent over K. A quite expensive transformation to a basis matrix
of V(a, f,F[t]4) can be avoided, by applying situation 3b. This subcase delivers
the desired basis matrix by some cheap row operations in the matrix DAh.

Remark 6.2. Finally I want to indicate that Theorem 6.2 can be generalized
from a IT¥-extension (IF(¢), o) of (IF, o) to a difference ring extension (A[t], o) of
(A, o) where t must be transcendental over a commutative ring A but the ring
A even might have zero-divisors. In [Sch01] reduction strategies are developed to
find at least partially the solutions of parameterized linear difference equations
where for instance elements * € A can appear with o(z) = —z and 2% = 1.
These extensions enable to work with summation objects like (—1)".
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6.5. The Incremental Reduction Process

By exploiting the incremental reduction theorem recursively one can carry out
a reduction process as it is already indicated in diagram (18). More precisely by
applying Theorems 6.1 and 6.2 with the given matrix operations one obtains an
incremental reduction process of the solution space V(a, f,F[t]q).

fa:=Ff, Aa=n V(av .fdvlﬁ‘[t}d)

5.
5. 1\\ d
T da fattE)
Y
a1 €FHYGY, V(a, fa—1,Fltla-1) L V(g faF)aa e b7, fy e B
fo € F[#]0 V(a, fo,F[t]o) 5
5. TR
~ I(a, fo,F)
ol
Fo1 € F V(a, f-1,F[t] 1) = V(ao, fo,F)ag € F™, f € F"
||

Nullspaceg (f—1) x {0}

Definition 6.3. Let (F(¢),0) be a [IX-extension of (F,c0), 0 # a € F[t]™ with
| := |a| and f € F[t]},, for some d € Ny U {—1}. Then by an incremental
reduction process of the solution space V(a, f,F[t]s) we understand a diagram as
above. We call {(ag4, fa), .-, (@o, fo)} the subproblems of the reduction process.

Proposition 6.2 states that if the basis matrices of the subproblems within an
incremental reduction process are normalized (Definition 4.9), the subproblems
in this incremental reduction process are uniquely determined. But this means
that the whole incremental reduction process is uniquely defined.

Proposition 6.2. Let (F(t), o) be a [I1X-extension of (F,0), 0 # a € F[t]™ with
I :=|a| and f € F[t]};,, for some d € NgyU{—1}. Consider a reduction process of
the solution space V(a, f,F[t]y) where the basis matrices of the d+1 subproblems
are normalized. Then the subproblems are uniquely defined.

Proof: By Theorem 6.2 the first subproblem (ag4, fd) is uniquely defined. Now
assume that the first r subproblems are uniquely defined for some 1 < r < d. By
assumption the basis matrix of V(@a,., f,, F) is normalized and hence uniquely de-
fined. Hence by Theorem 6.1 the basis matrix of the solution space I(a, f,,t" F)
is uniquely defined. But then by Theorem 6.2 f,_; is uniquely defined. By The-
orem 6.1 we have to find a basis matrix of I(a, f,_1,¢ ' F). In order to achieve
this, we have to find a basis matrix of V(@y,_y, fr—1,F) where (@,_y, fr—1) are
uniquely defined. But this is the d — r + 1-th subproblem in our incremental
reduction process. Hence by induction on r all d 4+ 1 subproblems are uniquely
defined. O
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7. Algorithms to Solve Linear Difference Equations

In the following I want to emphasize that one is able to develop algorithms to
solve parameterized linear difference equations in II1>-fields with the reduction
techniques introduced in the last two sections. For this let (F(¢), o) be a I1X-field,
0+# a € F[t|™ and f € F[t]".

The incremental reduction process: First we look closer at the incremental
reduction process introduced in Subsection 6.5. For this let [ := |a| and take
d € NgU{—1} such that | f| € F[t];+4. Then the main observation is the following:
If one is capable of solving parameterized linear difference equations of order
m — 1 in the difference field (I, o), in particular if one can compute a basis
matrix of all the subproblems in an incremental reduction process then one is
able to compute a basis matrix of V(a, f,F[t]q).

Combining all reduction techniques: Moreover, an algorithm can be de-
signed which computes a basis matrix of V(a, f,F(t)), if the full reduction strat-
egy as in (5) can be applied:

1. Clearly the simplifications in Subsection 5.1 work in any I3 -field, and hence
one can reduce the problem to find a basis matrix of V(a’, f’, F(t)) with (10).

2. Furthermore, if one can compute a denominator bound of V(a’, f’,F(¢)), one
is able to reduce the problem to the problem of computing a basis matrix of
V(a”, f”,F[t]) (Subsection 5.2).

3. Moreover, if one is capable of determining a degree bound of V(a”, f”,F[t]),
one can apply the incremental reduction technique on V(a”, f” F[t];) and
obtains its basis matrix (Subsection 5.3).

Finally one reconstructs a basis matrix of the original problem V(a, f,F(t)) as
it is described in Subsections 5.1 and 5.2.

A recursive reduction process - the first order case: As already indi-
cated in Section 5 these reduction strategies deliver an algorithm to compute
all solutions of parameterized first order linear difference equations: First by
results from [Sch02a, Sch02b| there exist algorithms to compute a denomina-
tor bound of V(a’, f’,F(t)) and a degree bound of V(a”, f” ,F[t]) for the cases
0 # a’ € (F[t]*)? and 0 # a” € (F[t]*)% Second the subproblems in an in-
cremental reduction process are again parameterized first order linear difference
equations in the I1¥-field (F, o). But recursively these problems can be solved
again by our reductions strategies.

In order to compute the solution space in Example 5.2, the reduction techniques
are applied recursively which results in a recursive reduction process.

Example 7.1. Let (Q(t1)(t2),0) be the II¥-field over Q canonically defined by
t; =t1+1and ty = (t1+1) to. In order to find a g € Q(t;, t2) such that o(g)—g =
t1ty, we compute a basis of the solution space V((1,—1), (t1t2),Q(t1)(t2)) by
applying our reduction techniques recursively.
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V((1,-1), (t1 tH2) ,Q(t1) (82))
v((1, -1), (tl\T2) , Q(t1)[t2])

V(1 -1, (01 £2) , Q) [E2]1)
5. 5.
I ‘\~A>I<<1,1>,*g1t23> 2 Q)

V((L,—1), (0), Q(¢1)) 4 V((tr 41, -1, (b)), Q)
||  Lemma 5.1 [l
QxQ V((t1+1,*1”),(t1)y<@[t1])

V((t1 +1,-1), (t1) ,Q[h]oN

5. :

T ><<t1 +L-1), (1), 10)
V((t1 +1,-1), (0), {0}) 4. v((L,0), 1), QT

[ || Base Case
Nullspaceg((0)) x {0} Nullspaceg ((—1, 1))

7.1. The Second Base Case

Looking closer at the recursive reduction process (the labels 1 in Example 7.1),
one can follow a path with a new base case, namely

V((1, =1), (t1 2), Q(tr, t2)) — V((t1 +1,-1), (t1), Q(t1)) — V((1,0), (1), Q).

In the general case, for a [1¥-field (F,0) over K with F := K(¢y,...,%.), 0 #
a. € F" and f, € F" the following reduction path pops up:

V(ae, fe, K(ttl’ e ,te))
V(ae_l, fe—1, K(tl, e ,te_l)):. . .‘_,V(al, f1, K(tl))

V(a’Oa f0>K)'

Finally one has to determine a basis of V(ay, fo,K) for some 0 # ag € F™ and
fo € Fo. Theorem 7.1 allows us to handle this second base case.

Theorem 7.1. Let (F,0) be a difference field with constant field K, f € F" and
0#a=(a,...,a,) € F™. Then V(a, f,K) = Nullspaceg (fA(— > ", ai)).

Proof: Let ¢ € K" and g € K. It follows that
c/\gGV(a,f,K)<:>cf—aag:()<:>cf—g(ZaZ) =0

i=0
< c/Ng € Nullspaceg (fAu).

O]

Remark 7.1. Given f € K" in a field K a basis of Nullspaceg(f) can be
immediately computed by linear algebra.
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7.2. The Reduction Algorithm for II1X-fields

By the remarks in the beginning of Section 7 one obtains an algorithm to solve
parameterized linear difference equations, if one is able to apply recursively our
reduction techniques. This will be possible, if one can compute all denominator
and degree bounds within a recursive reduction process.

In order to formalize this in precise terms, we define two input-output specifi-
cations of algorithms which deliver exactly the desired denominator and degree
bounds that are needed in a recursive reduction process.

Specification 7.1. for a denominator bound algorithm

d=DenBound ((F(t),0), a, f)

Input: A IIX-field (F(¢),0) over K, a = (a1, ..., a,) € F[t|™ with a; a,, # 0, and f € F[¢]™.
Output: A denominator bound d € F[t]* of V(a, f,F(¢)).

Specification 7.2. for a degree bound algorithm

d=DegreeBound ((F(t),0), a, f)

Input: A TIX-field (F(¢),0) over K, 0 # a € F[t]™ and f € F[t]".

Output: A degree bound b € Ny U {—1} of V(a, f,F[t])

Now we are ready to define if a II3-field is m-solvable with m > 1. In this case
parameterized linear difference equations of order less than m can be solved.

Definition 7.1. Let m > 1. In the following we define inductively if a II¥-field
(F, o) is m-solvable. If (F,0) is the constant field or m = 1, (F,0) is called
m-solvable. Furthermore a II¥-field (F(¢),0) is called m-solvable for m > 2,
if (F, o) is m-solvable and there exist algorithms DenBound and DegreeBound
that fulfill Specifications 7.1 and 7.2 with input DenBound((F(¢),0),a, f) and
DegreeBound((F(t), o), a, f) for any a = (ay,...,a,) € F[t]™ for some 2 <
m’ < m with ay a,y # 0 and any f € F[t]" for some n > 1.

If a IT>-field is m-solvable and algorithms DegreeBound or DenBound are applied,
they will always fulfill Specifications 7.1 or 7.2.

In particular in [Abr89b, Abr95, vH98| and |[Abr89a, Pet92, SAA95, PWZ96|
algorithms are developed that fulfill Specifications 7.1 and 7.2 for any m > 2 in
a [I¥-field (K(¢), o) over K with o(t) =t + 1. All these results immediately lead
to the following theorem.

Theorem 7.2. A II3X-field (K(t),0) over K with o(t) =t + 1 is m-solvable for
any m > 2.

Furthermore in Theorem 7.4 we will show by results from [Sch02a, Sch02b],
based on [Kar81, Bro00|, that any ITY-field is 2-solvable. In combination with
the following considerations this results in algorithms to solve parameterized first
order linear difference equations in full generality.

Now we are ready to write down the algorithms that follow exactly the reduction
process as it is illustrated in Example 7.1.
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Algorithm 7.1. Solving parameterized linear difference equations in m-solvable T3 -fields.
B=SolveSolutionSpace((E, o), a, f)

Input:  An m-solvable II¥-field (E,o) over K with E = K(¢y,...,t.) and e > 0; 0 # a =
(a1,...,am) € E™ and f € E™.

Output: A basis matrix B of V(a, f,E).
(*Base case II - Section 7.1%)

(1) IF e = 0 compute a basis matrix B of Nullspaceg (fA(— >, a;)); RETURN B.

(*Reduction step I: Simplifications - Subsection 5.1%)
Let F :=K(t1,...,te—1), i-e. (F(te),0) is a IIX-extension of (F, o).

(2) If a,,, # 0, set k := m, otherwise define k sgch that ay, # agy1 = -+ = a,, = 0. Transform
a, fby (11)toa’ = (a},...,a,) € F(t.)™ and f’ € F(t.)" with a} a,,, # 0 and m’ < m;
clear denominators in a’, f’ as in Theorem 5.2 which results in a’ € F[t,]™, f’ € F[t.]".

(3) IF a’ € F[t.]' RETURN Id, 0™ *(£)

L.
ay

(*Reduction step II: Denominator elimination - Subsection 5.2%)
(4) Compute by d := DenBound((F(t.),0),a’, f') a denominator bound of V(a’, f/,F(t.)).
(5) Set o’ := (U",“fil(d)“d’ ) € F(t.)™ as in Theorem 5.5, and clear denominators in a’
and f” := f’ by Theorem 5.2 which results in a” € F[t.]™ and f” € F[t.]".

(*Reduction step III: Polynomial degree elimination - Subsection 5.3*)
(6) Compute by b := DegreeBound((F(t.),o),a”, f”) a degree bound of V(a”, f/,F|t.]).
(7) Set CAw:=IncrementalReduction((F(t.),0),b,a, f) by using Algorithm 7.2.

(8) RETURN C o™ *(2).

Algorithm 7.2. The incremental reduction process in m-solvable II>-fields.
B=InrementalReduction((F(¢),0),d,a, f)

Input:  An m-solvable II¥-field (F(t),0) over Kand d € NoU{—1}; 0 # a = (a1,...,am) €
F[t]™ with [ := |a| and f € F[t]?_,.

Output: A basis matrix B of V(a, f,F[t]a).
(*Base case I - Subsection 5.4%)
(1) IF d = —1, compute a basis matrix B of Nullspaceg (f) x {0}; RETURN B.
(*Degree Elimination by incremental reduction - Subsection 6.4*)
(2) Set 0 # G := ([al]l (@ ... [am), (a)g) €™ and f = [f],,, € F".
(*Computation of the subproblems in an incremental reduction process*)
(3) Set CAw := SolveSolutionSpace((F,0),a, f) with C € K**" g € (t°F)* by Alg. 7.1.
(4) Set g :=wt? and f':=C - f — 0.9 € F[t]}_,.
(5) Set DAh := IncrementalReduction((F(t),0),d —1,a, f’) with D € K*** h € F[t]h_,.
(6) TF DAR # 0y (n41) THEN RETURN (D C)A(h 4 D - g).
(7) Compute b’ € F[t]"_, as in (24); RETURN 0, xn AR’

First the correctness of Algorithm 7.2 is shown in an m-solvable II¥-field (F(t), o)
under the assumption that Algorithm 7.1 works correct in the II¥-field (F, o).
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Lemma 7.1. Let (F(t),0) be an m-solvable I1X-field over K and d € NoU{—1};
let 0 # a € Fit|™ with | .= |a| and f € F[t]}' ;. Assume that Algorithm 7.1 ter-
minates and works correct for any valid input with the I1X-field (F, o). Then Al-
gorithm 7.2 with input InrementalReduction((F(¢),0),d, a, f) terminates and
computes a basis matriz of V(a, f,F(t)).

Proof: If d = —1, we obtain in line (1) by Theorem 5.6 a basis matrix of
V(a, f,F[t]s) and we are done. Now assume as induction assumption that Algo-
rithm 7.2 with IncrementalReduction((F(t),0),d — 1, a, f") works correct for
any f’ € F[t]) , for some A\ > 1. Hence in line (5) we obtain a basis matrix of
V(a, ', F[t]4_1). By definition (IF, o) is an m-solvable II¥-field. Thus we obtain a
basis matrix DAh of V(a, f,FF) in line (3) by assumption. Hence by Theorem 6.2
(D C)A(h + D - g) is a basis matrix of V(a, f,F[t],) if DAR # 01xyn+1; Oth-
erwise 0(,—1)xn/AR’ is a basis matrix. Thus by induction on d Algorithm 7.2
works correctly for any d > —1. Clearly the algorithm terminates. |

Remark 7.2. Assume that Algorithm 7.1 terminates and works correct for any
valid input with the II¥-field (IF, o) and consider Algorithm 7.2 with input as
in Lemma 7.1, i.e. InrementalReduction((F(¢),0),d, a, f). Then the algorithm
calls itself exactly d times where in line (3) exactly d + 1 subproblems (Defini-
tion 6.3) for an incremental reduction process are computed.

Finally the correctness of Algorithm 7.2 is shown.
Theorem 7.3. Algorithm 7.1 terminates and is correct.

Proof: Let (E, o) with E = K(¢4,...,t.) be an m-solvable I1X-field over K with
e>0,0#acE"”and f € E". If e =0, by Theorem 7.1 we compute a basis
matrix of V(a, f,K) in line (1). Otherwise let F := K(¢y,...,t.—1) and assume
as induction assumption that Algorithm 7.1 terminates and works correct for
any valid input in the [I¥-field (F, o). Now perform step (3). Then we obtain
a' = (d),...,a,) € F[t]™ with m’ <m, d}ay#0and f’ € F[t,]" as described
in line (2). If a’ € F[t.]" in line (3), by Theorems 5.1 and 5.4 the result is
correct. Now assume that a’ ¢ F[t.]™ with m’ > 2 where (F,0) is m’-solvable
by definition. Since the input of DenBound in line (4) fulfills Specification 7.2,
we compute a denominator bound d € F[t.|* of V(a’, f’,F(t.)). Now take a” €
F[t.]™ and f” € F[t.]" as described in line (5). Clearly, in line (6) we compute a
degree bound of V(a', f’,F[t.]) due to the correct input for DegreeBound. Then
by Lemma 7.1 and our induction assumption it follows that we obtain a basis
matrix CAw of V(a”, f”,F[t.],) and hence of V(a”, f”,F[t.]) in line (7). Since
d is a denominator bound of V(a’, f',F(t.)), by Theorems 5.2 and 5.5 CA7 is a
basis matrix of V(a’, f’,F(t.)). But then by Theorems 5.1 and 5.2 C o™ *(%)
is a basis matrix of V(a, f,F(t.)). O
By results from [Sch02a, Sch02b] we show that all II¥-fields are 2-solvable.

Theorem 7.4. Any I13-field is 2-solvable. In particular there exists an algorithm
that solves any parameterized first order linear difference equation in a 11X-field.
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Proof: The proof will be done by induction on the number e > 0 of extensions
in the IIX-field (K(¢4,...,t.),0) over K. For e = 0, the theorem clearly holds by
Theorem 7.1. Now assume that the theorem holds for the [1¥-field (F, o) with
F := K(ty,...,t.) and consider the II¥-extension (F(tei1),0) of (F,o). Then

by [Sch02a, and [Sch02b, | Corollary 7.1 ‘] there exist algorithms
with input DenBound((F(t.41),0), a, f) and DegreeBound((F(tc+1),0), a, f) that
fulfill Specification 7.1 and 7.2 for any a € (F[t.41]*)* and f € Flt..]". Hence
the I1¥-field (F(tey1),0) is 2-solvable. But then by Theorem 7.3 one can solve
parameterized first order linear difference equations in the I1¥X-field (F(¢),0).
Therefore the induction step holds. |

7.3. Solving Linear Difference Equations by Increasing the Solution Range

In many cases algorithms DenBound and DegreeBound with Specifications 7.1
and 7.2 are not known for the general case m > 3 of [IX-fields, contrary only
the rational case, Theorem 7.2, and some special cases in [Sch02a, Sch02b] are

well studied so far. But by [Sch02a, | Theorem 6.4 | based on the work of [Bro00]

there exists at least an algorithm that fulfills Specification 7.3.

Specification 7.3. for a restricted denominator bound algorithm
d=DenBoundH((F, o), a, f)
Input: A TIX-field (F(¢),0), 0 # a = (a1,...,an) € F[¢|™ with a1 a,, # 0, and f € F[t]".

Output: A d € F[t]* with the following property: If (F(¢),0) is a X-extension of (F, o), d is
a denominator bound of V(a, f,F(t)). Otherwise there exists an = € Ny such that
dt” is a denominator bound of V(a, f,F(t)).

Theorem 7.5. There exists an algorithm that fulfills Specification 7.3.

By this result one only needs an € Ny to complete the denominator bound and
an y € Ny to approximate the degree bound, in order to simulate Algorithm 7.1.
This idea leads to Algorithm 7.3 that will be motivated further in the sequel.
Let (F(t),0) be a I1¥-field, a’ = (a},...,ad.,) € F[t]™ with a}a/, # 0 and
f’' € F[t]". Suppose we computed a d € F[t]* by DenBoundH((F(t.),0),a’, f’)
that fulfills Specification 7.3. Then one can choose as in line (5) of Algorithm 7.3
an x € Ny such that dt* is a denominator bound of V(a’, f/,F(¢)). Then after
computing @’ and f” as in line (6), one is faced with the problem to choose a b
that approximates a degree bound of V(a”, f” F[t]). By definition we must have
(17). Hence we might choose any y € Ny and take b := max (| f”|—|a”|, y) as the
degree bound approximation. The following result, a refinement of Theorem 5.5,
motivates us to choose a variation of that approximation.

Theorem 7.6. Let (F(t),0) be a I1X-extension of (F, o) with constant field K,
0+#a=(ay,...,an) € Fit]™ and f € F[t]". Let d € F[t|* be a denominator
bound of V(a, f,F(t)), define @’ = (=g o5 ) € F(t)™ and let y € N.
If Cng is a basis matriz of V(a', f,F[t],1jq) then Cr9 is a basis matriz of
Va, f,F[t], ® F(t)V7*).
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Proof: As in the proof of Theorem 5.5 we obtain equivalence (15). Now let
cN(dg) € V(a, f,F[t],4q). We will show that

g € Flt], @ F(t)7™. (35)

Write g = go + g1 € F[t] @ F(t)V™) where ¢; = % is in reduced representation.

Since d g € F[t] and d go we have d g; € F[t]. In order to show (35), we show first
that

ldg:ll <y +[dl- (36)
If g = 0 then (36) holds. Otherwise assume g; # 0. Then 0 < |a| < |b] < |d|
and bu = d for some u € F[t]* with |b] + |u| = |d|. Hence |dgi| = |au| =

la| + |u] < |b] + |u| = |d|. Therefore (36) holds in any case. Since |dg| =
max(|d gol, |d g1]) < y+|d|, by (36) it follows that |d go| < y+|d| which proves
(35). Hence by (15) we obtain

cA(dg) € V(a, f,Ft]y1a) = chg € V(a, f,F[t], @ F)V)).  (37)

Let CAg be a basis matrix of V(a’, f,F[t]). Then by Proposition 5.1 C»9 is
a basis matrix of a subspace of V(a, f,F(t)). Therefore by (37) C'»9 is a basis
matrix of V(a, f,F[t], ® F(t)V™)). O
Actually we want that the polynomial part in the solution F[t] & F(¢)Y"* has
degree bound ¥, i.e. the solution should be in F[t], ®F(t)" 7<) Then the previous
theorem explains why in line (7) of Algorithm 7.3 we choose b := y + max(f"” —
a”,|d| + x) as the approximated degree bound of V(a”, f” Ft]).

Hence one only needs an x € Ny to complete the denominator bound and an
y € Ny to approximate the degree bound. Loosely spoken, the main idea is
to insert manually this missing tuples (z,y) in the above algorithm. In order
to formalize this, a bounding-matrix is introduced that allows to specify these
tuples (z,y) for each extension ¢; in a II¥-field (F(t1,...,t.),0).

Definition 7.2. Let (F(t1,...,t.),0) be a II¥-field. For e > 0 we call a matrix
(o1 ve) € No¥¢ bounding-matriz with length e for F(ty, ... t.), if for all 1 <
i < e we have z; = 0 or (F(¢y,...,t;),0) is a [I-extension of (F(t1,...,ti—1),0).
In case e = 0 the bounding-matrix is defined as the empty list ().

With the concept of bounding matrices one can search for all solutions of linear
difference equations in II¥-fields by the following modified algorithm.

Algorithm 7.3. Finding solutions of parameterized linear difference equations in TIX-fields.
B=SolveSolutionSpaceH((E,o), M, a, f)

Input: A II¥-field (E, o) over K with E = H(%1, . ..,%.) and e > 0 where (H, o) is m-solvable;
a bounding-matrix M with length e for E, 0 # a = (a1,...,a,,) € E™ and f € E".

Output: A normalized basis matrix B of a subspace of V(a, f,E) over K.
(1) IF e = 0 RETURN SolveSolutionSpace((E,0),a, f)
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Let F:=H(t1,...,te—1), i-e. (F(te), o) is a IIX-extension of (F, o).

(2) Normalize a, f as in line (2) of Algorithm 7.1 which results to an k& with 1 <k < m and
to a’ = (a},...,al,) € Flt.]™ and f’ € F[t.|" with a} al,, # 0 and m’ < m.

3) IF a’ € F[t.]! normalize IdnAam_k(a—f,l) to B (Definition 4.9); RETURN B.

4) Let M = Moa(y); if e =1, My is the empty list ().

5

‘Approximate a denominator bound by setting d := DenBoundH((F(t.),0), a’, f') t*.

(
(
(
6

)
)
)
) Set a” = (Um%/ll(d)“—d/) € F(t.)™ and clear denominators in @’ which results in
a” € F[t.]™ and f” € F[t.]" (like in line (5) of Algorithm 7.1).

(7 ‘Approximate a degree bound by setting b := y + max(| f”| — |a” |,z + |d]). ‘

(8) Set CAw:=IncrementalReductionH((F(t.), o), Mo,b,a, f) by using Algorithm 7.4.

(9) Normalize C o™ *(%) to B (Definition 4.9); RETURN B.

Algorithm 7.4. The incremental reduction process.
B=InrementalReductionH((F(t),0), M, d, a, f)

Input: A TIX-field (F(¢),0) over K with F = H(¢y,...,t.) and e > 0 where (H, o) is m-
solvable; a bounding-matrix M with length e + 1 for F(t) and d € Ny U {—1};
0+#a=(ay,...,an) € F[t]™ with | := |a| and f € F[t]}, ;.

Output: A basis matrix B of a subspace of V(a, f,F[t]4) over K.

Exactly the same lines as in Algorithm 7.2 up to the replacing of line (5) by:
(5) Set DAh := IncrementalReductionH((F(t),0),d —1,a, f’) with C € K**™ g € (t*F)*.

Remark 7.3. The normalization steps in lines (3) and (9) are not necessary
to prove correctness of Algorithm 7.3 in Theorem 7.7. Nevertheless this prop-
erty is essential for Theorem 7.8 that states that we can find all solutions of a
given solution space by adapting appropriately the bounding-matrix. Although
the normalization is based on linear algebra, i.e. on Gaussian elimination (The-
orem 4.4), this transformation of the basis matrix might be very expensive. In
particular if one deals with the creative telescoping problem or with highly nested
indefinite sums this transformation seems to be quite infeasible. But fortunately
exactly those problems are formulated in parameterized first order linear differ-
ence equations, hence Algorithm 7.1 might be applied (Theorem 7.4) without
any normalization steps. Moreover for recurrences of higher order, that come
from typical summation problems, those normalization steps are quite cheap.

Similarly as above, one shows that Algorithm 7.2 works correct in a I1>-field
(F(t),0) under the assumption that Algorithm 7.1 works correct in (I, o).

Lemma 7.2. Let (F(t),0) with F := H(t,...,t.) be a IIX-field over K where
(H, o) is m-solvable, M = Myx(y) be a bounding-matriz with length e + 1 for
F(t) and d € NgU{—1}; let 0 # a € F[t|™ with | := |a| and f € F[t]}' ;. Assume
that Algorithm 7.3 terminates and works correct for any valid input in the 113-
field (F, o). Then Algorithm 7.4 terminates and computes a basis matriz of a sub-
space of V(a, f,F(t)) over K for InrementalReductionH((F(t),0),d, My, a, f).
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Proof: The proof is essentially the same as for Lemma 7.1 where one just does
not use the last statement in Theorem 6.2. O
First we analyze the subproblems in the incremental reduction process of the
solution space V(a, f,E[t]s) under the assumption that Algorithm 7.3 computes
for any valid input a basis matrix of V(a, f, ) for some @ € E* and f € E”.

Lemma 7.3. Let (F(t),0) with F := H(t,...,t.) be a IIX-field over K where
(H, o) is m-solvable, M = Myx(y) be a bounding-matriz with length e + 1 for
F(t) and d € No U {—1}; furthermore let 0 # a € F[t|™ with | := |a| and
f € F[t]}, 4. Assume that Algorithm 7.3 terminates and computes for any valid
input SolveSolutionSpaceH((F(t), o), My, &, f) a basis matriz of V(a, f,F(t)).

1. Then Algorithm 7.4 terminates and computes a basis matriz of V(a, f,F(t))
for InrementalReductionH((F(t),0),d, M, a, f).

2. The algorithm calls itself d times where in line (5) the d+1 uniquely defined
subproblems in the incremental reduction (Definition 6.3) are computed.

Proof: The proof of the first part is essentially the same as for Lemma 7.1.
Also one sees immediately that in line (5) d + 1 subproblems of the incremental
reduction process are computed (Remark 7.2). Since in line (9) the basis matrices
are normalized, the uniqueness of the subproblems in the incremental reduction
follows by Proposition 6.2. O
Now we prove the two main results. First correctness of Algorithm 7.3 is shown.

Theorem 7.7. Let (E,0) with E := H(ty,...,t.) be a [IX-field over K where
(H, o) is m-solvable. Let 0 # a € E™, f € E" and B be a bounding-matriz with
length e for E. Then for SolveSolutionSpaceH((E, o), a, f, B) Algorithm 7.3
computes a basis-matriz of a subspace of V(a, f,E) over K.

Proof: If e = 0, by Theorem 7.3 we compute a basis matrix of V(a, f,E) in
line (1). Otherwise let F := H(¢y,...,t.—;) and assume as induction assumption
that Algorithm 7.1 terminates and works correct for any valid input with the
I13-field (F, o). Now transform a and f to @’ and f” like in line (2). If one exits in
line (3), the result is a normalized basis matrix of V(a, f,F(t.)) by Theorems 5.1
and 5.4. Clearly b is chosen such that f € F[t.];, ;. Hence by Lemma 7.2 we obtain
in line (8) a basis matrix of a subspace of V(a, f,F[t.],) over K and hence also of
a subspace of V(a, f,F[t.]) over K. But then by Proposition 5.1 and Theorem 5.1
C o™ ¥ (%) is a basis matrix of a subspace of V(a, f,F(t.)) over K. Finally one
returns a normalized basis matrix of a subspace of V(a, f,F(t.)) over K. O
Finally we show that by choosing an appropriate bounding-matrix, we are able
to find all solutions of a parameterized linear difference equation in I3 -fields.

Theorem 7.8. Let (E, o) with E := H(ty,...,t.) be a IIX-field where (H, o) is
m-solvable. Let 0 # a € E™ and f € E". Then there exists a bounding-matriz
B with length e for E such that for SolveSolutionSpaceH((E,0), a, f, B) Al-
gorithm 7.3 computes a basis-matriz of V(a, f,E).
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Proof: If e = 0, take the empty list () as bounding-matrix, and the theorem
holds. Now assume e > 1 and set F := H(¢y,...,t._1). In order to prove the
theorem, we prove the following stronger result. Let

S:={(ay, f1),...,(ar, fr)}

with 0 # a; € F(t.)™ and f; € F(t.)" for some m;,n; > 1. Then there ex-
ists a bounding-matrix B with length e for F(t.) = H(¢y,...,t.) such that
one computes with SolveSolutionSpaceH((F(t.),0),a;, fi, B) a basis-matrix
of V(a,, fi,F(t.)) for all 1 < ¢ < k. Having this result in hands, the theorem
follows immediately by considering the special case k = 1.

Now assume that the more general assumption holds for the II¥-field (F, o) and
let S be as above. Now adapt (a;, f;), as it is performed in line (3) to (al, f;).
For any 1 < i < k with a} € F(t.)! we obtain a basis matrix of V(a/, f/,F(t.))
in line (3). Therefore we can restrict S to those a} with a} ¢ F(t.)' and write

S:={(al, f1), - (@, fr)}

for some k' < k. If k' = 0 we are done. Otherwise suppose &’ > 0. Let d; € F[t.]*
for 1 < i < K’ be the polynomial obtained by DenBoundH((F(t.),o),al, f).
Furthermore let z; € Ny be minimal such that d; ¢}’ is a denominator bound
of V(aZ, f!,F(t.)). Now we set x := max(z1,..., 2 ). Note that x; = 0 for all
1 <i < k" and hence x =0, if (F(¢.),0) is a X-extension of (I, o). Furthermore
d; t? is a denominator bound of V(a, f/,F(t.)) for all 1 < i < k’. Next adapt
(a’, f]) for the denominator bound d;t* to (af, f;’) as it is performed in line
(6). Now let y be minimal such that b; := y + max(| f”| — |a”|, |d;| + =) is a
degree bound of V(al, f!,F[t.]) for all 7+ with 1 < i < k’. With those degree
bounds b; we consider the uniquely determined incremental reduction process of
V(ay, fI',Fltc]s,) for all 1 < i < k' where the basis matrices of the subproblems
are normalized. In this incremental reduction processes of V(a?, I, F[t.]s,) for
1<i <K let
Si = {(ag, fip) - (@50, Fio)}

be the uniquely determined subproblems. Then by induction assumption there
exists a boundmg—matrlx B, € NQX(e Y of length e — 1 for F such that for
all (b,g) € Ui:1 S; Algorithm 7.3 with SolveSolutionSpaceH((F, o), By, b,g)
computes a basis-matrix of V(b, g,F). Hence by applying Algorithm 7.4 with
input InrementalReduction((F, 0),b;,a, fl', Bg) one computes a basis ma-
trix C;Aw; of V(ay, f',Flt.]) for all 1 < ¢ < k' by Lemma 7.3. Clearly
B := Bou(y) is a boundlng—matrix of length e for F(t.). Since d;t* is a de-
nominator bound of V(a;, f;, F(t)), by Theorems 5.2 and 5.5 C;, 7% is a basis-
matrix of V(a;, f/,F(t.)) for all 1 <14 < k'. But then by Theorems 5.1 and 5.2
Cino™ F(52) is a basis matrix of V(a;, fi, F(t.)) for all 1 < i < k’. Hence the

d; t*
induction step holds and the theorem is proven. |

Remark 7.4. Asillustrated in Example 3.1, Algorithms 7.1 and 7.3 are available
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in the package Sigma in form of the function call SolveDifferenceVectorSpace.
Some further remarks are given about the implementation of Algorithm 7.3.

e Let (E,o0) with E := H(¢q,...,t.) be a IIX-field where (H, o) is m-solvable,
0 # a € E" and f € E". Then by calling SolveDifferenceVectorSpace
without choosing any bounding-matrix as input, Algorithm 7.3 will be ap-
plied with SolveSolutionSpaceH(a, f, M, (E,0)) by using automatically a
bounding-matrix M for E of length e. More precisely the bounding-matrix M
is of the form (§ == §) € N5*¢ where ¢ = 1,if (F(¢1,...,t;),0) is a [l-extension of
(F(ty,...,t;_1),0), otherwise ¢ = 0. It turned out that with this simple choice
one computes a basis of V(a, f,E) in many cases.

e In some specific instances there are denominator and degree bound algorithms
developed in [Sch02a, Sch02b). If one runs into such special cases, these bounds
are used in lines (5) or (7) instead of using the bounding-matrix mechanism.
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