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Abstract

A very general class of multisum expressions can be formulated in II3-
fields, a certain subclass of difference fields. This allows to simplify and
prove multisum expression and identities by solving parameterized linear
difference equations in II3-fields. In this article we explain how the solu-
tion space of such difference equations can be described in canonical form.
In many cases this canonical form also leads to a compact representation
of the solutions.

1. Introduction

In [Kar81, Kar85] an algorithm for indefinite summation is developed that is
based on the theory of difference fields [Coh65]. In particular so called I3 -fields
are introduced, in which parameterized first order linear difference equations
can be solved in full generality. By results from [Bro00|, I was able to streamline
these ideas which results in a simpler algorithm in [Sch02c¢, Sch02a, Sch02b].
This algorithm is available in form of a summation package called Sigma [Sch00,
Sch01] in the computer algebra system Mathematica. It cannot only deal with
series of (q-)hypergeometric terms, like [Gos78, PS95, PR97|, or holonomic series,
like [CS98], but also with series of terms where for example the harmonic numbers
can appear in the denominator.

Moreover Sigma can prove and discover a huge class of definite multisum iden-
tities. In [Sch00] T observed that one can apply Zeilberger’s creative telescoping
trick |Zei90] by solving a specific parameterized linear difference equation. This
enables in many cases to compute a recurrence in the 113 -field setting which has
a given definite multisum as a solution; therefore one can verify automatically a
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C. Schneider: Unique Representations in II3-Fields 2

given multisum identity. Additionally, I have generalized Karr’s ideas in [Sch02c|
such that one can search for all solutions of linear difference equations with ar-
bitrary order in II¥-fields. Hence one can find solutions of recurrences and thus
not only prove, but even discover definite multisums identities.

In [Sch02¢| one of the important results is that these algorithms enable to
search for all solutions of parameterized linear difference equations in I1>-fields.
In this proof the property is required that the solutions of such difference equa-
tions can be represented in a canonical form. This article delivers an algorithm
that allows to transform these solutions of a linear difference equation into such
a unique representation. Moreover it turns out that in most cases this canoni-
cal representation leads to a compacter description of the solutions. I want to
emphasize that all these transformations of the solutions into a canonical rep-
resentation are based on Gaussian elimination and ged-computations. Moreover
these constructions can be related to the theory of Grobner basis.

2. Parameterized Linear Difference Equations in I1>-Fields

Sigma [Sch00, Sch01] is a package, implemented in the computer algebra system
Mathematica, that enables to discover and prove nested multisum identities.

Example 2.1. After loading the summation package
n[1]:= << Sigma‘
Sigma - A summation package by Carsten Schneider
we are able to insert the following definite summation problem:

v (i) v

In[2]:= mySum = 1; (W),

First we generate a recurrence by Zeilberger’s creative telescoping trick [Zei90]

that is satisfied by mySum.

insl:= rec = GenerateRecurrence/mySum, RecOrder— > 3|

outisi= {(1 +N) (2+N) (3+N) (4 +N) SUM[N] — 3 (2+1N) (3 +N)* (4 +N) SUM[1 + N]+
(3+N) (4+N) (37 +21 N+ 3 N?) SUM[2 + N] — (4 +N)* SUM[3 +N] == —1}

Next we solve the recurrence in terms of the Harmonic numbers Hy = fozl %

and generalized versions HY = S°V | L with o € N.

m[4:— SolveRecurrence [rec|[1]], SUM[N], Tower— > {HN7H(N2),HS)}]

owtsr- {{0,2F (14N) Hy (24 (1 +N) Hy) + B +N (2+N) 1Y L lo,

(14+w)°

—2 N (24 N) + (14 N) Hy (24 (14 N) Hy) + B> + ¥ (2+N) Hh(f)} (o
(1+N)3 s Y

(—1+N) N+ (L+N) Hy (—1—3 N+ (1+N) Hy) +H? + N (2+1N) Hﬁf)}
(1+N)° ’
1

6 (1+0N)*
(10" Hy +3 (1+0)7 (N + (1 +N) H) B2 +2 (1 +8)° BY)}}

{1

(—6N—6N(1+N)Hy—3N(1+N)?H+
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This has to be interpreted as follows: The first three expressions are linearly
independent solutions of the homogeneous version of the recurrence, whereas
the last expression is a specific solution of the recurrence itself.

Finally we obtain a closed form evaluation of mySum by finding a linear combi-
nation of those homogeneous solutions plus the specific inhomogeneous solution
that have the same initial values as mySum.

in5]:= sol = FindLinearCombination[recSol, mySum, N, 3]

1
ousl= ————— (3 (L +N)? H2 + (1 +N)° H3+

6 (1+N)
3(1+N2HY +3(1+N) Hy (24 (1 +8)2H)+
2 (3+HY +3NHY +38 HY + 8 HY))

The summation package Sigma provides algorithms that allow to solve parame-
terized linear difference equations in so called I13-fields. In particular the func-
tions GenerateRecurrence and SolveRecurrence apply internally this differ-
ence field machinery which finally allows to discover a huge class of multisum
identities. In the sequel we will illustrate how one can solve recurrence rec from
the previous example in the difference field setting.

Definition 2.1. A difference field (resp. ring) is a field (resp. ring) F together
with a field (resp. ring) automorphism o : F — F. In the sequel a difference field
(resp. ring) given by the field (resp. ring) F and automorphism ¢ is denoted by
(F,0). Moreover the subset K := {k € F|o(k) = k} is called the constant field
of the difference field (F, o).

It is easy to see that the constant field K of a difference field (F, o) is a subfield
of F. In the sequel we will assume that all fields are of characteristic 0. Then it
is immediate that for any field automorphism o : F — [ we have o(q) = ¢ for
q € Q. Hence in any difference field, Q is a subfield of its constant field.

Example 2.2. Let Q(t1,...,t4) be the field of rational functions over Q with

the field automorphism o canonically defined by

1
O'(C):C VCGQ, 0(t1)=t1—|—1, a'(t2):t2_|__’
t1 +1
1 1
(t1 +1)% (ty +1)3°

Note that the automorphism o acts on ¢, to, t3 and t4 like the shift operator S
on N, Hy, HY and H with SN = N + 1 and

1
(N +1)2

0'(?53):?534— O'(t4):t4+

3) _ 1O 1

SHy =Hy + , SHY =HY +

(N+1)
Furthermore let

a;:=(1+t) 2+4) B+t) d+t), a:=302+t) B+t)* (d+1t),
a3:<3+t1> (4+t1) (37+21 t1+3t%), a4:—(4+t1)4
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Then the problem of solving the recurrence rec in Example 2.1 in terms of N,
Hy, Hﬁ) and Hg\?}) can be rephrased as the following problem in terms of the
difference field (Q(¢y,...,t4),0): find all g € Q(¢4,...,t4) such that

a1 0%(g) +az0%(g) +azo(g) + asg = —1. (1)

The algorithms in Sigma, based on [Sch02c, Sch02a, Sch02b], deliver three lin-
early independent solutions si, S5, s3 over Q of the homogeneous version of the
difference equation and one particular solution p of the recurrence itself, namely

242 (14 t) to 4 (L+ 1) 1% 4 (1+41)° t3

S1 -

(1+1)° ’
f 2 @rt)+2(14h) t2+(31+t1)2 2+ (L+ 1) ts
(1+t)
. _(Cltt) b= (1 +t) (1+3 1) t23+ (L4+11)" 622+ (1 +t1)° 13 and
(14+t)
P ::%(76 ti—6t (L+t) ta—3t (L4+61)° 22+ (1+11)° t2°+
6 (1+t1)

(=3t (1+0)2+3 (1 +81) 1) ts+2 (1+8)° ta).

Since the difference equation (1) has order 3, the set
{kis1 4+ kysy +ksgss+plk; € Q}

describes all the solutions of (1) in Q(¢4,...,t4). From this result the output of
the function SolveRecurrence in Example 2.1 follows immediately.

As illustrated in [Sch01, Sch02c| one is able to discover and prove a huge class of
indefinite and definite multisum identities by solving parameterized linear differ-
ence equations in I1>-fields; in particular one can carry out indefinite summation,
Zeilberger’s creative telescoping idea and solving recurrences.

! Solving Parameterized Linear Difference Equations !

e GIVEN: A difference field (F, o) with constant field K, aq,...,a,, € F with m > 1 and
(a1...am) #(0,...,0) =:0and fi,...,fn, € F withn > 1.

e FIND: Allge Fandallcy,...,c, € Kwitha; o™ 1 (g)+ - +amg=ci fit+ - -+cn fn.

Note that in any difference field (IF, o) with constant field K, the field F can be
interpreted as a vector space over K. Hence the above problem can be described
by the following set called solution space.

Definition 2.2. Let (F, o) be a difference field with constant field K and consider
a subspace V of I as a vector space over K. Let 0 # a = (aq,...,a,) € F™ and
f=0(f1,..., fn) € F". We define the solution space for a, f in V by

V(a,f,V):{(cl,...,cn,g) eKnXV:alam_l(g)+"'+amg:le1+"'+cnfn}'
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It follows immediately that V(a, f,V) is a vector space over K. Moreover in
[Sch02¢| based on [Coh65] it is proven that this vector space has finite dimension.

Proposition 2.1. Let (F,0) be a difference field with constant field K and as-
sume f € F" and 0 # a € F™. Let V be a subspace of F as a vector space over
K. Then V(a, f,V) is a vector space over K with mazimal dimension m+n— 1.

Example 2.3. In Example 2.2 V((a,az,as,a4),(—1),Q(t1,...,t4)) is a sub-
space of Q(t1,...,t.) over Q with the basis {(0, s1), (0, s2),(0,s3),(1,p)}.

In [Sch02c, Sch02a, Sch02b] algorithms are developed that enable to search
for a basis of the solution space V(a, f,FF) in a huge class of difference fields,
so called II>-fields. As indicated in Example 2.2, one can rephrase expressions
involving nested sums and products in [1X-fields. Since [I>-fields can be con-
structed completely algorithmically, the user can be dispensed from working
explicitly with difference fields. IIX-fields and its important properties are intro-
duced in [Kar81, Kar85|] and further analyzed in [Bro00, Sch01, Sch02a|. In this
work we focus only on the property that a IT1X-field (F, o) with constant field K
is represented by a field of rational functions K(¢1,...,t.) over K.

Example 2.4. The difference field (Q(4, .. .,t4),0) in Example 2.2 is a [1¥-field
with constant field Q.

In this work let K[tq, ..., t,] be a polynomial ring with coefficients in the field K
and let K(¢1,...,t.) be its quotient field; i.e. K(¢1,...,%.) is the field of rational
functions over K. Let T := [t1,...,t,] be the monoid (under multiplication)
of power products t!* ...t with the unit element 1 = #...t%. An admissible
ordering < on T is a total ordering that fulfills the following two properties:

o 1 <tforallte T\ {1}, and
e for all s,t,u € T we have su < tu, if s < t.

Let < be such an admissible ordering and take f € K[ty,...,t,]* and t € T. We
denote by [f], the coefficient of t in f. Moreover the leading power product of f
is defined by

Ipp_(f) := max{t € T'| [f], # 0},

and the leading coefficient of f is defined by le_(f) := [f]lpp<(f). In the sequel
this admissible ordering will be always clear from the context, and hence we will
suppress < in lc and lpp. If g € K(#1,...,t,) then there are uniquely determined
f1, f2 € K[ty,...,t,] such that f = % where gedyp, . 1(f1, f2) = 1 and le(f2) =

1. In this case we write den(g) = f> as the denominator of g.

3. A Unique Representation of the Solution Space

The main goal of this article is to provide an algorithm that transforms any
basis of a solution space V := V(a, f,F) for a II1X-field (F,o) with constant
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field K to a canonical representation. This representation of the solution space
V is uniquely defined up to a given admissible ordering < on the monoid of
power products [ty,...,t.] in the field of rational functions F = K(¢1,...,¢.). In
particular the algorithm under discussion is based just on gcd-computations in
K[t1,...,t.] and on Gaussian elimination.

Theorem 3.1. Let (F,0) with F := K(ty,...,t.) be a IIX-field over K, 0 #
a € F"™ and f € F". Then there exists an algorithm that transforms any ba-
sis of V(a, f,F) by Gaussian elimination and ged-computations to a uniquely
determined basis of V(a, f,F) for a given admissible ordering on [ty, ..., t.].

This important aspect is needed in order to prove that the algorithms, developed
in [Sch02c]|, enable to search for a basis of a given solution space in a IIX-field.
Moreover in many examples this specific basis representation of the solution
space is very compact among the possible basis representations.

Example 3.1. By applying the algorithm, that will be explained later, to the
given basis {(0,s1),(0,s2),(0,s3),(1,p)} from Example 2.3 and rephrasing this
result (Example 3.4) in terms of N, Hy, HE\?) and Hg\?;) will lead to the following
simpler description of the solutions for recurrence rec in Example 2.1.
24 (1+N)Hy (2+ (1 +N) Hy) + B + 8 (2 +N) 8P 1+ ( 1+N ) Hy
o — b o B o

. (64314 M P +(1+NE+3 1+ HP+
6(1+N)4( (1+N)”H + (1 +N)° B +3 (1 +N)* By

3(1+N) H (2+ (1 +0)°HY) +2 (1+M)° )}

.

Next we want to rephrase the above theorem in a precise problem speci-
fication. For this we introduce some further notations. Let F be a field and
f=1....fn) eF*withn > 1. For h € F we write h f = (h f1,...,h f,) € F"
and fAh = (f1,..., fm,h) € F*™1. In addition we denote 0,, := (0,...,0) € K"
as the zero-vector of length n; if the length is clear from the context, we just
write 0. Furthermore let K be a subfield of F and V # {0} be a subspace of
K" x F over K. In addition let B = {by,...,ba}, d > 1, be a basis of V with
b; = (Cih c ,Cm,gl'> € K" x F, i.e.

V:{k1b1++l€dbd|k’1€K}

C11 Cin 91

The basis B is represented by the basis matric Mpg := ( Do ) in the
Cd1 --- Cdn 9d

sequel; in particular we have that

V={k-Mg|keK'}.

C11 Cin g1
Moreover we write Mp = CAg for C := ( : : : ) and g := ( : ) We call

Cd1l --- Cdn 9d

C the parameter matriz and g the solution vector of Mpg.
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By the above remarks Theorem 3.1 can be rephrased to the following problem.
4‘ Find a unique basis matrix representation in the field of rational functions }7

e GIVEN: A field of rational function F := K(¢1, ..., t.) over K, a basis matrix CAg of a
subspace V # {0} of K™ x F over K, and an admissible ordering < on [t1,...,t.].

1p
Example 3.2. In Example 2.2 we found the basis matrix (8 o
0 s3

for the solution space V((ay, as,as,aq), (—1),Q(t1,...,t4))-

e FIND: A unique basis matrix representation of V by gcd-computations and Gaussian
elimination.

3.1. The Trivial Case F = K

If one changes a basis matrix of V by Gaussian-elimination, more precisely by
row operations, one obtains again a basis matrix of V. As it will turn out, all
those matrices will be transformed to matrices in row reduced echelon form.

Definition 3.1. A matrix is in row reduced echelon form if the following holds:
(1) The leftmost nonzero entry in any nonzero row is a 1. (2) If a row has the left
most nonzero entry in the r-th column, all the other entries in the r-th column
are 0 and the leftmost nonzero entries in subsequent rows are in columns to the
right of the r-th column. (3) All zero rows come after all nonzero rows.

Example 3.3. The matrix M in Example 3.6 is transformed by row operations
to M’ which is in row reduced echelon form.

There is the following fact from linear algebra.

Lemma 3.1. If a matriz C s transformed by row operations to a matriz D
in row reduced echelon form, it is uniquely determined, i.e. for any other such
matriz D', that one obtains by transforming C by row operations to a row reduced
echelon form, we have D = D’.

In case K(ty,...,t.) = K, i.e. e = 0, we can transform the basis matrix CAg €
K™+Dxd of V by row operations to a basis matrix DAh of V that is in row
reduced echelon form. By the above lemma this DAh is uniquely determined
which proves Theorem 3.1 for exactly the special case e = 0.

3.2. Elimination of Denominators

What remains to consider is the case e > 0. In a first step we reduce the problem
from finding a unique basis matrix representation of a subspace of K" x F to
the problem of searching a unique basis matrix representation of a subspace of
K" x K[tl, . ,te].
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Lemma 3.2. Let F := K(t1,...,t.) be a field of rational functions over K,
V # {0} be a subspace of K" x F over K and u € F*. If DAh is a basis matrix
of the subspace W := {eA(gu)|cAg € V} of K" x (dF) over K, DA is a basis
matriz of V over K.

Proof: The d rows in DAh are linearly independent over K if and only if they
are linearly independent in D/\%. Hence D/\% is a basis matrix of a subspace U
of V over K. Take any cAg € V. Therefore cA\(gu) € W. Consequently there is
a k € K? with cA(gu) = k- (DAh), thus cAg = k- (DA®), and hence cAg € U.
Therefore V = U which proves the lemma. |
Let g = (¢1,--.,9x) and compute by some gcd-computations

w :=lem(den(gy),...,den(gy)) € A.

Then W := {eA(gu) | eNg € V} is a subspace of K" x K[ty,...,t.]. Now assume
that we are able to determine a unique basis representation DAh for the vector
space W. Then by Lemma 3.2 we obtain a basis matrix D/\% of V that is uniquely
determined among the basis matrices of V.

Example 3.4. Consider the subspace V := V((ay, as, as,aq), (—1),Q(t1,...,t4))

of Q x Q(t4,...,ts) over Q and its basis matrix from Example 3.2. Furthermore

fix the lexicographic ordering < on [ty,...,t4] with 1 < ¢; < t3 < t3 < t4.Then

we can determine u := lem(den(g;), den(gs), den(gs), den(p)) = (1 +¢;)* and we
1

0 g3

g1
immediately obtain a basis matrix (0 92) with
0 94

gri=(1+t)(24+2(0 +t1)ta+ (1 4+1)% 12+ (14 t1)% t3),

goi=(1+t) (=2t (2+t) +2(1+t)ta+ (1 +11)* 82+ (1 +11)*t3),

g3 = (1 +t)((m1+t)ts — (L+t) (A4 3t)ta+ (1 4+11)2 12 + (1 + 1) t3),
ga=06(—6t; —6t1 (1+t1)to—3t1 (L+t1)%t5+ (1+11)* 3+

(=3t1 (1+¢t1)2 +3(1+t1)° to)ts +2(1+ 1) ta)

for the subspace W := {cA(gu)|eAg € V} of Q x Q[ty, ..., ts] over Q. Later we
will develop an algorithm based on Gaussian elimination that computes a unique

1g
basis matrix representation of W, namely B = (8 g;) with

0 g3

1
g:zé(6+3(1+t1)2t§+(1+t1)3t§+3(1+t1)2t3+3(1+t1)t2 (2+ (1 +t1)%ts)

+2(1+t)ts), =0 4t) 2+ QA +t1)ta(2+ (1 +t1)to) +t3+t1 (24 t1) t3),
G =1+ 1)2 L+ (L +t)ta),  g3:=(1+1t)>

1 g/u
Hence by Lemma 3.2 we obtain the basis matrix 8 Z;;Z ) of V that is uniquely

0 g3/u.
determined among the basis matrices of V. Rephrasing this basis matrix in terms

of N, Hy, Hg\?) and HE\?,’) leads directly to the solution given in Example 3.1.
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By the above lemma we are just concerned in solving the following problem.

4‘ Find a unique basis matrix representation in its polynomial ring }7

e GIVEN: A polynomial ring A := K[t1,...,t.] over a field K, a basis matrix CAg of a
subspace W #£ {0} of K" x A over K, and an admissible ordering < on [t1,...,%].

e FIND: A unique basis matrix representation of W by Gaussian elimination.

3.3. A Unique Representation of the Parameter Matrix

Next we transform the basis matrix C'Ag of W by row operations to a basis
matrix DAh of W where D is in row reduced echelon form. Then by Lemma 3.1
for any other such basis matrix D’Ah of W where D’ is in row reduced echelon
form we must have D = D’. Hence one only has to deal with the following
subproblem.

! Find a unique solution vector with entries in K[t1,...,t.] !

e GIVEN: A polynomial ring A := K[tq,...,t.] over a field K and a basis matrix CAg of
a subspace W # {0} of K" x A over K where C € K*" is in row reduced echelon form
and g € A?. Furthermore an admissible ordering < on [t1,...,%].

e FIND: A uniquely determined h € A% by Gaussian elimination, such that CAh is a
basis matrix of W.

Let C be in row reduced echelon form, more precisely assume that

C11 Cnl g1
CAg = | €4 - O 2
g 0 ... 0 g (2)
0 0 ga
where (cyy,...,cy) # 0. Note that all rows except the last one are zero rows, if

[ = 0. Moreover note that d > 1, if d = [.

Example 3.5. In Example 3.4 the parameter matrix C' of M = CAg is already
in row reduced echelon form.

If C'Ag stands for the basis matrix of a solution space W in the context of pa-
rameterized linear difference equations, (g1,. .., ¢;) stands for solutions of linear
difference equations where the inhomogeneous part varies, whereas (g;11, - - ., 94)
gives a basis of the solutions of the homogeneous version. In the sequel this two
parts will be considered separately, first the homogeneous part (g;.1, - .., gq) and
finally the inhomogeneous part (g1,..., ).

3.4. The Homogeneous Part of the Solutions

First we consider the special case d = [ in (2), i.e. d > 1.
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Lemma 3.3. Let A :=K[ty,...,t.] be a polynomial ring over K and CAg be a
basis matriz of a subspace W # {0} of K" x A over K where C € K& is in row
reduced echelon form, g € A and we have (2) with (cy,...,cu) # 0. If d =1,
CAg is uniquely determined.

Proof: Assume there are two such basis matrices C1Ag; # Ca/Ags of W. We have
C, = (5, since they are in row reduced echelon form. Hence there are two rows
cAu € W and eAv € W with u # v and therefore 0,A(u — v) € W. Since C is
in row reduced echelon form and d = [, it follows W N ({0,,} x A) = {0,41}, a
contradiction. O
Hence for the case d = [, Theorem 3.1 holds. From now on we are only concerned
in the case \ := d — [ > 0 where we write

P={p1,...,px} ={gi41..., 94y C A" (3)

4‘ SUBPROBLEM (I) Find unique representatives of the homogeneous solutions }7

e GIVEN: A polynomial ring A := K[t,...,t] over K and (p1,...,p») € A* whose
entries form a basis of a subspace B of A over K. Furthermore an admissible ordering
<on [ty,...,te].

e FIND: A uniquely determined g € A* by Gaussian elimination such that its entries
form a basis of the subspace B of A over K.

In the sequel we define the set
X :={x € [t1,...,t.] |z is a power product that occurs in one of the p;}. (4)

By the admissible ordering < on [ti,...,t.] we obtain a unique ordering on the
power products in X, say

X={zr1>x9> >}
Moreover we can write

pj = Z kji z;
i=1

with £;; € K. Then we can set up the matrix

z1

with p =M - < : ) Next transform this matrix by row operations to a matrix

M’ that is in row reduced echelon form. Clearly the entries in

q:(QM"-v(D\)::M"(x;) (5)

Ty
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form a basis of B. In particular by Lemma 3.1 it follows that this q is uniquely
defined. Hence we can write

C11 Cn1 1
C1i Cnl  4i

C/\g - 0 0 a1 (6)
0 0  qa

where C' and q are uniquely defined. Hence if [ = 0, Theorem 3.1 holds.

Example 3.6. Fix the lexicographic ordering < on [t1,...,t4] with 1 < t; <
to < t3 < t4. Then the polynomials g1, ¢2,95 € Qlty,...,t.] from Example 3.4
consist only of the power products

B3t > 13t > b1ty >ty > 1ot2 > 12> t1t2 > 12 > thty > toty > b1ty >tg > 5 > 12 >t > 1.

Hence we can write (g1, 92, 93) = M - & where

and x = (3 tatd tat tata,t3 13,63,01 83,3,85 42,63 tot1 t2,2,63,¢3,1,1 ). Then by transforming
M into row reduced echelon form we obtain

/

which yields to (¢, ¢2,q3) := M’ - x as given in B o

3.5. The Inhomogeneous Part of the Solutions

Finally we consider the case [ > 1 for (6) where we have to find a unique
vector (gi1,...,q;). Then we determine a unique basis matrix W which proves
Theorem 3.1. The following lemma states how the possible (g1, ..., g;) look like.

Lemma 3.4. Let A := Klty,...,t.] be a polynomial ring over K, C be in row
reduced echelon form and assume that

Cl1 Cnl g1 c11 Cnl 91
M=CAg= | = ¢ o and M'=CNg' = €1 - ena gi/
SEREEEREE e e o

are basis matrices of the subspace W # {0} of K" x A over K with (c14, . . ., Cna) #
0 and | > 1. Then for any 1 <1i <[ we have g, := g; + Z;\:l k;q; with k; € K.

Proof: Consider the rows c/Ag; and cAg} with ¢ = (¢;1, ..., ¢iy) forsome 1 <@ <.
Since cAg;, cA\g; € W, we have OA(g; — ¢;) € W. As C' is in row reduced echelon
form, it follows that {OAqy,...,0Ag,\} is a basis of W N ({0,411} x A). Hence
OA(g; — g}) = Sor | ki (OAg;) for some k; € K which proves the lemma. O

"Note that Lemma 3.3 is a consequence of Lemma 3.4.
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For ¢; K:={¢; k| k € K} with = € [t1,...,t.] consider the direct sum

A
B:=a¢K
=1

as a subspace of A over K. Moreover we define g +B := {g+b|be B} for
any g € A. Then the previous Lemma 3.4 states that we have to deal with the
following problem in order to find a unique vector (g1,...,q) in (6).

4‘ SUBPROBLEM (II) Find unique representatives for the inhomogeneous solutions F

e GIVEN: A polynomial ring A := K[ty,...,t.] over K, ¢ = (q1,...,q\) € A with (5)
where M’ is in row reduced echelon form and g € A.

e FIND: A uniquely determined g € g + B.

Let
Q=1{q, ..,qn} (7)

with A > 1, g € Q and f, f € A. We say that f is reduced by ¢ to f', f — f/,
if the leading power product in ¢ appears as clpp(q) in f for some ¢ € K* and
we have

ff=f-cq (8)
In other words, if we have f —— f’, the term clpp(g) is eliminated in f which

leads to f’. Moreover we say that f is reduced by Q to f’, f 9, f’, if there
exists a ¢ € Q with f - f.

Proposition 3.1. Let A := Klty,...,t.] be a polynomial ring over K and con-
sider @ = {q1,...,qx} € B C A with (5) where M’ is in row reduced echelon
form and g € A. Then after at most X reductions of g by () one obtains a uniquely
defined g € g + B that cannot be reduced further, i.e. for some k; € K we have

A
f]:g‘f‘zfii% (9)
i=1
Proof: Consider a chain of reductions
Q Q Q
g=9g1 — G2 —>3g3...9j—-1 —> Qv

with 2 < v < A. Now choose one of these reductions, say g;_1 “, g;, where a cx
with ¢ € K* and z € [ty,...,1.] is eliminated. Then by construction of (), where
(5) holds and M is in row reduced echelon form, there cannot occur such a term
k x for some xk € K* in any of the g; with [ < i < j. But this means that after at
most A reduction steps, we cannot reduce further which leads to an g with (9).
Moreover for any g; for 1 < i < [ exactly the power product x occurs in form of
cx where c is fixed. Hence any chain of reductions is -up to a reordering of the
reduction steps- exactly the same. In particular the resulting polynomial, that
cannot be reduced further, must be always g. |
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Example 3.7. Let us going back to Example 3.6. Here we found already a
unique vector ¢ = (q1,Ge,q3), i-e. a unique basis of the homogeneous version of
the linear difference equation (1). Looking at the leading power products we have
Ipp(q1) = t3t3, Ipp(ga) = t3 t5 and lpp(hs) = t3. Then one can see immediately
that ¢ := ¢; in Example 3.6 is free of any term with power products lpp(hs) or

Ipp(hs), but the term —%ti{’ t3 occurs. Hence we can apply the reduction g M, g
with ¢’ := g—i—% h1. Clearly the resulting ¢’ is free of any term with power products
lpp(h1), Ipp(hs) and lpp(hs), and consequently ¢’ is not further reducible. Hence
we found g := ¢’ as our uniquely determined part that is needed to define the
desired basis matrix B of W in Example 3.4.

Remark 3.1. In the end I indicate that behind all these constructions one can
find the more general concept of Grobner basis. I will use all the notations and
definitions as they are given in [Win96, Chapter 8|.

First let us consider the simpler case that 1 ¢ X in (4). Moreover forget all
algebraic relations in the power products of X, i.e. interpret all the elements in

X ={x1,..., 2.} (10)

as new variables. Then each polynomial p; € P from (3) can be written in the
form

p] :Zcizi EK[xl,...,xr] (1]‘)
=1

with ¢; € K. Then it follows for instance by Buchberger’s Theorem [Win96, The-
orem 8.3.1] and the product criterion [Win96, Theorem 8.5.1] that for any admis-
sible ordering on [x1,...,z,| the set P forms a Grobner basis in K[z1, ..., x,].
Moreover the set @@ from (7) forms a normed reduced minimal Grébner basis
according to an admissible ordering < with x; > --- > x,. This follows immedi-
ately by (5) and the fact that M’ is in row reduced echelon form. In particular
by [Win96, Theorem 8.3.6] @ is uniquely defined for the admissible ordering <.
This is exactly what we needed in order to choose a uniquely defined vector
q=(q,-...,q) for a given P.

Note that there might be power products that occur in (g¢i, ..., g;) but not in
X. In this case interpret that power products as new variables, say vy, ..., Ys,
and define an admissible ordering on [x1,..., 2., 41,...,Yys] With

T1 > >Tp >Y1 >0 > Ys-

By this construction we may write
T S
gi = Zcixi +Zklyl € K['Tla"wxrayl;"'?ys]
i=1 i=1

for ¢;, k; € K. By definition of the admissible ordering <, @) forms a normed re-
duced minimal Grébner basis in K[xy, ..., 2,41, .., ¥y, w.r.t. <. Moreover the
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reduction defined in (8) is included in the more general concept of polynomial
reduction given in [Win96, Definition 8.2.4]. In our situation only this special-
ized reduction is needed due to the simple Grébner basis structure of (). Here
the elements ¢; € K[zy,...,2,,y1,...,ys] are reduced to g, modulo the ideal
generated by () until they cannot be reduced further. Again by Grébner basis
theory, [Win96, Theorem 8.3.4], these g; are uniquely defined which is exactly
the required property in order to obtain a uniquely defined (gi, ..., q)-

Finally we have to consider the case 1 € X, in particular we assume that
x, = 1 for (10). The problem is that 1 might be in the ideal generated by the
set P. But then {1} is the normed reduced minimal Grébner basis of P, and not
Q. In order to avoid this situation, one can introduce, besides x1,...,7,_1 an
additional indeterminate z and writes

r—1
p; = krz+zkle € K[x17'"7$r—1>y17"'ay8az]

=1

for p; given in (11). Then it follows again that

P = {p,...,p\}

forms a Grobner basis for any admissible ordering. Moreover the set {¢},...,¢\}
where the ¢; are defined by

forms a normed reduced minimal Grébner basis in K[zq,..., 2, 1,91, ..,¥s, 2],
which is uniquely defined, w.r.t. an admissible ordering < with

TS o > Ty > > Y > > Y > 2

Similarly one has to introduce g, € K[zy,...,2,-1,¥1,...,Ys, 2] by replacing the
constant term ¢ € K in g; by cz. Then one can reduce g; by the Grobner basis
Q in K[z1,..., 21,1, .,¥s, 2] modulo the ideal generated by Q' to g, that
cannot be reduced further. Then again this g_; is uniquely defined. Finally by
substituting z — 1 one just obtains (qq,...,¢\) and (gi,...,q) as it is needed
to obtain a uniquely determined basis matrix of a given vector space W.
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