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Abstract. We present a new method for constructing
a low degree implicit spline representation of a given para-
metric planar curve. To ensure the low degree condition,
quadratic B-splines are used to approximate the given curve
via orthogonal projection in Sobolev spaces. Adaptive knot
removal, which based on spline wavelets, is used to reduce the
number of segments. The B-spline segments are implicitized,
and the resulting bivariate functions are joined along suitable
transversal lines, yielding a globally continuous bivariate func-
tion. As shown by analyzing the asymptotic behavior of these
transversal lines for stepsize h — 0, the given curve can be
implicitized with any desired accuracy.

§1. Introduction

Planar curves in Computer Aided Geometric Design can be defined in two differ-
ent ways. In most applications, they are described by a parametric representation,
x = z(t)/w(t) and y = y(t)/w(t) where z(t),y(t), and w(t) are often polynomials.
Alternatively, the implicit form f(z,y) = 0 can be used.

Both the parametric and implicit representation have its advantages. The avail-
ability of both representations often results in simpler and more efficient computa-
tions. For example, if both implicit and parametric representations are available, the
intersection of two curves is obtained easier than otherwise, as it can be found by
solving a root finding problem in one variable.

From classical algebraic geometry, it is known that each rational parametric
curve has an implicit representation, while the converse is not true. The process
of converting the parametric equation into implicit form is called implicitization. A
number of established methods for exact implicitization exists: resultants, Grobner
bases, and moving curve and surface, see [3] for further information.

However, exact implicitization has not found widespread use in CAGD. This is
in part due to the following three facts:

e Exact implicitization often produces large data volumes, as the resulting implicit

polynomials may have a huge number of coefficients.
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e The exact implicitization process is relatively complicated, especially, in the case
of high polynomial degree. For instance, the resultant—based methods need the
symbolic evaluation of large determinants.

e Even for regular parametric curves, an exactly implicitized parametric curve
may have unwanted components (branches) or self intersections in the region of
interest.

For these reasons, approximate implicitization has been proposed. A number of meth-
ods are available for approximate implicitization: Montaudouin and Tiller [9] em-
ployed a power series method to obtain local explicit approximation (about a regular
point) to polynomial parametric curves and surfaces. Chuang and Hoffmann [2]
extend this method using what they called “implicit approximation”. Dokken [4]
proposed a new way to approximate the parametric curve and surface, globally, in
the sense that the approximation is valid within the whole domain of the curve seg-
ment or surface patch. Sederberg et al. [11] employed monoid curves and surfaces
to find an approximate implicit equation and approximate inversion map of a planar
rational parametric curve or a rational parametric surface .

This paper discusses the problem of constructing what we call a spline implici-
tization for planar curves: a partition of the plane into polygonal segments, and an
bivariate polynomial for each segment, such that the collection of the zero contours
approximately describes the given curve. On the boundaries, these polynomial pieces
are joined to form a globally C™ spline function, for a suitable choice of m. In this
paper we restrict ourselves to continuous functions m = 0. A methods for C?! spline
implicitization is currently under investigation.

The parametric and implicit representations of a planar curve have the same
polynomial degree n. However, the number of the coefficients in the parametric case
is 2(n + 1) while it is (n 4+ 1)(n + 2)/2 in the implicit case. Consequently, in the
implicit case, high polynomial degrees will lead to expensive computations.

Therefore, the main goal of this paper is to find a low degree spline implicit
representation of a given parametric planar curve. To ensure the low degree condition,
quadratic B-spline curves are used to approximate the given parametric curve (section
2). Then, adaptive knot removal, which is based on spline wavelets, is used to reduce
the number of segments (section 3). The resulting quadratic B-spline segments are
implicitized (section 4). Finally, these implicitized quadratic segments are joined
together, forming a globally C° function. (section 5).

§2. B-spline Approximation of Planar Curves

Using the idea proposed in [10], we generate a quadratic B—spline approximation via
orthogonal projection in Sobolev spaces. The uniform B-spline B; 4 5 of order d with
knot sequence hZZ, where h is the stepsize, form an orthonormal sequence in Sobolev
space HY~1'2(IR) endowed with the inner product:

d—1

(f7 g)R,d,h = Z h2p‘_1 wu(d) < 8Mf7 8Hg > (1)

p=0
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for certain positive weights w,(d). These weights are specified explicitly in [10].
For the case of finite intervals, the inner product (1) need to be modified near the
boundary. Let r = [rq h,72 k], 7; € ZZ, ro — r1 > d —1. The sequence Bj 4,
r1 —d < j < rg — 1 is orthonormal with respect to the bilinear form,

2
o D atiomy = 3 FD () Ai(dyh) gD )T + (f,9)man (2)
=1

where f(@ := [f 0f,...,0% 2f] and the same for g(¥. The matrices A;(d,h) are
specified in [10].

The B-spline approximation of a given curve g, with respect to the norm which
is induced by the inner product (1), can be written as:

g = >  (Qug)j Bjan (3)

JE[r1,ra]

where (Qng); is the j*® B-spline coefficient vector and Bj 4 is the j*® B-spline.
According to [10], these B-spline coefficients are given by:

(Qng); := (8 Bj,d,n)r, A1 2(d,h) (4)

The quadratic B-spline coefficients (Qg); are computed as the inner product of g
and Bj 3 5, in Sobolev space H*?(IR), where B; 3, are the quadratic B-splines. The
following estimate [10] shows that the approximation order of @}, is optimal.

(g — Qng)lloo < Ch*(|0%g|oo

where C is a certain constant.

The control points of the approximating B—spline curve can be generated by sim-
ple and efficient computations, as only (possibly numerical) integrations are needed.
Also, no assumption about the given parametric representation have to be made,
except that it should be at least C'. By using sufficiently many segments, the initial
approximation can be made as accurate as needed.

Remark 1. In next section, we will use spline wavelets for data reduction process.
For this reason, the stepsize h is restricted to be in the form %, 1 € 72, and the knot
sequence is modified to be [0,0,0, h, 2h, ....... ,1—2h,1 — h,1,1,1]. Both B-spline

basis and coefficients are modified according to the new knot sequence.

Example

Throughout this paper, we will use the following example to illustrate the idea of
this paper. We consider a polynomial parametric curve g of degree 20, as shown in
Fig. 1.
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Fig. 1. A polynomial parametric curve of degree 20.
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First, we approximate g using quadratic B-splines. Fig. 2 shows the error be-
tween g (black) and the quadratic B-spline approximation g’ (gray) for stepsize
h = 1/128. Note that the error had to be exaggerated by a factor § = 25000 to make
it visible.

6
2 4 6 8 10 @ 12

2

Fig. 2. The original curve (black) and the error introduced by approximating
it with a quadratic B-spline curve (gray). The error is exaggerated
(amplified) by a factor § = 25000 to make it visible.

§3. Data Reduction via Spline Wavelets

After computing the initial B-spline approximation, we apply a knot removal (or data
reduction) procedure, in order to reduce the number of segments. Such a reduction
means that we approximate the given B-spline in a space S by a B-spline in linear
subspace of S. Knot removal has been discussed in a number of publications, see
e.g. [5,8] and the references cited therein. In [5], the authors propose an optimal
technique, by treating the knot removal procedure as a reverse approximative knot
insertion process. It is based on a so—called “ranking list”, is used to compare the
evaluate the error introduced by removing a specific knot.

In the present work, a special method for our special situation (see Remark 1) is
proposed. We propose a new technique, utilizing spline wavelets [1], for knot removal.
The method is not optimal, but it is cheaper than all other methods since no sorting
or ranking lists are required.

Consider a B—spline curve defined on a certain number of knots sufficient to
guarantee the desired accuracy. First, the wavelets transform of the given B-spline
curve is computed. Then, by setting all wavelets coefficients vectors with norm less
than the threshold to be zero, we can remove blocks wavelets with zero coefficients
vector. For each block, one of the two common knots can be removed from the knot
sequence. The length of these blocks varies between 2 and 5 wavelets, depending on
the location of the removed knot in the knot sequence (that is, if the knot is an inner
knot or close to the boundary). Finally, the B—spline final representation g of the
given B—spline curve g’ is computed over the reduced knot sequence Kgpa.

The error can be bounded simply by applying the wavelet synthesis to the set
of removed wavelets. Due to the convex hull property of the B-splines, the error is
bounded by the maximum absolute value of the control polygon.

Example Continued

We apply the procedure to the quadratic B-spline curve g’. Applying the data
reduction process, the number of knots is reduced from 133 to 17, where the threshold
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is equal to 107%. Fig. 3 shows the error between the original curve g (black) and the
final B—spline representation curve g” (gray) over Kgna. The knots are plotted as
circles. The knots at the boundary have multiplicity 3. The error is exaggerated by
a factor 6 = 10 to make it visible.
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Fig. 3. The original curve (black) and the B—spline approximation curve after
the data reduction (gray). The error is exaggerated (amplified) by a
factor § = 10 .

Fig. 4 shows — on a logarithmic scale — the values of wavelets coefficients of the
curve g’ before (left) and after (right) data reduction. The threshold is plotted as
thick black line.
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Fig. 4. The logarithmic value of wavelets coefficients before (left) and after
(right) data reduction.
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§4. Implicitization

After the data reduction process, we have a quadratic B-spline approximation g”
defined over the reduced non—uniform knot sequence Kgna. To implicitize this curve,
we split the B—spline representation of this curve into the Bézier segments. Then,
each quadratic Bézier segment is implicitized.

The conversion from B-spline representation of the curve to Bézier representa-
tion can easily be achieved via knot insertion. By increasing the knot multiplicity at
each knot to be equal to the degree of the curve (in our case to be 2), the B—spline
representation is converted to Bézier representation.

Each quadratic parametric Bézier segment has three control points. Let (po, qo),
(p1,q1) and (p2, g2) be the control points of one of these segments. Then the implicit
form of this segment can be shown to be equal to

Qo(y)Pa(7) — Po(z)Q2(y)  Qo(y)Pr(z) — Po($)Q1(y))

Flrp = (Qlcu)Pz(x) ~P@)Q)  Qo(v)P(2) ~ Po(2)Q:(v)

where

Pi:<2,>(pi—m), Qi:(2_>(qi—y) for  i=0,1,2.

?

§5. Joining the Segments

We will now join the polynomial segments, which have been produced by the implic-
itization process. More precisely, we have to identify suitable transversal lines, such
that these segments can be pieced together along them, giving a globally continuous
function.

Any two consecutive segments are parabolas which meet with tangent continuity
at their junction point py. Moreover, they intersect in two additional points p1, p,
see Fig. 4. Note that these two points can be conjugate complex! The transversal
line has to be chosen as the line passing through the junction point py and one of
the other two intersection points p;, pi. There are two possibilities to choose this
line. We pick the line L(po,p1), which is closer to the normal vector of the curve.
According to the following theorem, we can then always achieve a C° joint along the
transversal line L(po, p1)-

Theorem 2. Given two quadratic functions g;(z,y) and go(x,y) such that they
have a common root and a parallel gradient at po(zo, yo), and intersect at p1(z1,y1).
Let L(po,p1) be the line joining po(zo, yo) and p1(z1,y1). Then after multiplying go
by a suitable constant, g1(z,y) and ga(z,y) are identical along the line L(pg, p1).

Proof: The restriction of g;(z,y) and ga(z, y) to the line L(pg, p1) are two quadratic
functions that have two common roots at pg and p;. After multiplying g5 by a suitable
constant, they have the same gradient at py. Therefore, gi(z,y) and go(x,y) are
identical along the line L(pg,p1). O

After identifying suitable transversal lines, and multiplying the implicitized seg-
ments with suitable constants, we obtain obtain a globally continuous function which
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Fig. 4. Choosing the transversal line.

is defined within a certain neighbourhood of the curve. Clearly, the segments cannot
be extended continuously beyond the intersection points of the transversal lines. In
the limit, for stepsize h — 0, these intersection points form the the ewvolute of the
given curve. This is due to the following result.

5.1 Asymptotic Behavior of the Transversal Lines

Next we analyze the asymptotic behavior of the transversal lines for decreasing step-
size. It will be shown, that the normal behaves nicely, provided that the curve has
(in a certain neighbourhood) no inflection points. More precisely, the two additional
intersections of the parabolas exist, and one of them tends to get closer and closer
to the normal of the curve.

In order to get results which can be interpreted geometrically, we use the so—
called canonical Taylor expansion [7] of the curve, which is derived in classical differ-
ential geometry.

Theorem 3. Consider a curve which is parameterized by its arc length, and which
has no inflection point, k # 0. We apply the spline implicitization (orthogonal
projection in Sobolev space and implicitization + joining of the segments) to the
curve, where the knots of the quadratic B-Spline curve are uniformly spaced with
stepsize h. If the stepsize h tends to zero, then the transversal line L(pg,p1) tends
to the normal vector of the curve at the point py.

Proof: In the sequel we sketch the idea of the proof. Start from a curve which is
parameterized by its arc length. The canonical Taylor expansion with respect to the
arc length parameterization, p(s) = { p1(s), p2(s) }, is given by

1 1
p1(s) =s — 6 Ko 3 — g o 1 st + O(s%) and
p2(s) :114/ 82—|-1K, 83+i(li2—l<63)84+0(85) ’
2T T T 0



(o] D. JUuLtbeer, J. oCnRICRo, vi. onataoy

where ko = k(0), k1 = k'(0), etc. This expansion is an immediate consequence of
the Frenet—Serret formulas.

First, we approximate the curve p(s) with a quadratic B-spline curve defined
over a knot sequence [...,—2h,—h,0, h,2h,...], as in section 2. The quadratic B~
spline approximation of p(s) is given by piecewise function consists of m segments
(f;;i = 1..m). We consider two consecutive segments, for example the segments
defined over the intervals [—h, 0] and [0, h] respectively, and call it fiee, and fiighe.
Based on the canonical Taylor expansion we obtain again Taylor expansions for these
two segments.

In order to compute the intersection points p1, p} of these two segments, we im-
plicitize the parametric quadratic polynomial fio¢;. Then we substitute the parametric
form of fiig¢ into the implicit form of fiery . This gives a quartic equation in the curve
local parameter S, where s = hS. But S? factors out, as both parabolic arcs are
joined with tangent continuity continuity. Solving the remaining quadratic equation
we get two values S7 and S of the parameter S. By substituting these values into
fiignt, we get the following two Laurent series for the coordinates p; = (x1,%1) and
Py = (22, y2) of the intersection points of the two segments fie, and frighs,

7= -2 4 O(h?)
Ko
1 k2
Y1 = §—é + O(hQ)
"0 (5)
2 (3K7 — 5
Ty =2y 2 (8m1 Fokia + o) O(h?)
Ky 3 Kg
1 1 (12k2 4+ 39x2 — 20
Yo = 8—3h_2 _ _( ko ""/51, Kok2) +O(h)
Ko 6 Ko

Clearly, for sufficiently small stepsize (h — 0) and k¢ # 0, the second intersection
point (z2,ys) converges to normal of the curve. O

We illustrate this result by an example. Figure 5 shows the transversal lines for
three different stepsizes. Obviously, one of them converges to the curve normal.

Thus, for sufficiently small stepsize h, we get a system of lines through the
junction points of neighbouring segments, such that the implicit equations can be
joined (at least) continuously along the transversal lines.

It is well known that no polynomial and rational curves — except straight lines —
can be equipped with a closed—form arc length parameterization [6]. However, we can
always reparameterize a general parametric curve by its arc length approximately,
using numerical methods.

5.2 Singular Case: Inflection Points

If the curve has an inflection point (ko = 0), then we may consider the curve locally
as a graph of a function. For a piecewise quadratic function, we can always join the
segments of the implicit equation with C° continuity, as the parallels of the y-axis
always form a system of suitable transversal lines. This is due to the fact that all
these implicit quadratic curves share the infinite point of the y-axis.
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Fig. 5. The behavior of the transversal lines for different stepsize (h =
and 135 respectively).

Generally, however, the axes of the two parabolic segments are not parallel.
Fig. 7 (left) shows a curve consists of two parabolic segments g1, g2 and the control
polygon. The curve has an inflection point at F. The B-spline control points are
showed as diamonds while the additional Bézier control points are showed as circles.

Fig. 7. Local modification of control points at inflection points.

From the above figure, it is clear that both axes of g;, go are generally not
parallel. To force them to be parallel, we can modify the control points such that
a = b and ¢ = d. This can be achieved by moving both points B and C along lines
AB and CD respectively. Recall that the control points £, F' and H come from the
knot insertion process. Then, the control points F, F' and H can be written as:
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E:(l—al)A+alB, F:(l—ag)B+a2C, H:(l—ag)C—l—agD

where «; is a constant depend on the knot sequence. It is clear from Figure that:

eta+bt+c+d+f=2x2p—1x4 (6)
and ) .
o=, oze), o (-0,
(1—a) 07 Qa3

Substituting from above into (6) and choosing a = b, ¢ = d one finds the new control
polygon. Fig. 7 (right) shows the new control polygon and the two parabolic segments
g, g after the modification.

§6. Example (finished)

We derive an implicit equation for the quadratic B-Spline curve from Figure 3, which
was obtained after data reduction. In order to visualize the quality of the implic-
itization, Fig. 8 shows the algebraic offsets (thin lines) of g (thick line) and the
transversal lines through the junction points of the segments. By algebraic offsets
(or parallel curves) of g’ we mean the curves defined by the equation g(z,y) = ¢,
where g(z,y) = 0 is the implicit equation of the original curve g” and the constant
c is the “algebraic distance”. To make the picture clearer, we enlarged a part of the
curve and draw some additional algebraic offsets, see Fig. 9. From this Figure, it can
clearly be seen that the algebraic offsets are C° but not C.

6.5 |
6 :
5.5 !
5
4.5
4

Fig. 8. Implicitized curve and algebraic offsets.

§7. Conclusion

We have derived a method for constructing a spline representation of a given para-
metric planar curve, which is valid within a certain neighbourhood of the given curve.
The construction consists of four steps; B—spline curve approximation, knot removal,
segment implicitization and segment joining. Compared to the existing methods for
implicitization, our method has the following advantages.
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Fig. 9. Implicitized curve and algebraic offsets (enlarged).

e The method is computationally simple. In particular, no evaluations (symbolic
or numerical) of large determinants are needed.

e It produces a low degree implicit representation. For instance, the intersection
of a line with the implicitized curve can be found by computing the roots of a
quadratic polynomial.

e The methods avoids unwanted branches or singularities, which otherwise could
be present in the neighbourhood of the given curve.

e The implicit function is globally continuous.

e The method yields — for high degree curves — a smaller data volume as in the case
of exact implicitization. In our example (degree 20), we have only 72 coefficients.
Exact implicitization would produce 231 coeflicients.

As a matter of future research, we plan to generalize this method to the C* case,
and to surfaces.
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