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Abstract

This paper talks about computing the minimal surfaces subject to the well-
known Plateau problem. The differential form of the Plateau problem is defined
first and, the associated discrete schemes are generated by the finite element
methods. The convergence properties of the discrete solutions are proved by
steps and some 2-grid discretization algorithms have been implemented to speed
up the computation. These approximation methods have been implemented for
displaying such typical minimal surfaces on the Maple softwares.

Keywords: Plateau problem, variational form, convexity, Brouwer’s fixed point theo-
rem, maximum value principle, 2-grid discretization algorithm.

1 Introduction

The study of minimal surfaces is a branch of differential geometry, because the meth-
ods of differential calculus are applied to geometrical problems. One of the oldest
questions is: “What is the surface of smallest area spanned by a given contour?” Such
question seems nontrivial despite the fact that every physical soap film appears to
know the answer. But to prove it in a theoretically way was very hard in the old
years. People used to take the existence of the minimal surface within such a specified
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given contour, as the well-known Plateau problems (named after the Belgian physicist
Joseph Plateau). However, we are known that it has already been proved (by Rado and
Douglas) to be true in a general functional form during the 1930’s [4].

From the point of view of local geometry, a minimal surface can also be defined as
the surface which has the zero average mean curvature on each surface point, e.g., a
saddle shape.

Previously unknown and certainly unexpected minimal surfaces were found by
David Hoffman and his collaborators at GANG, the Center for Geometry, Analy-
sis, Numerics, and Graphics at the University of Massachusetts in 1985 [7]. They
first used their MESH computer graphics system to find these surfaces, and then later
proved their existence with fully rigorous mathematics. This truly excited the minimal
surface community and piqued their interest in computer graphics.

Solving such minimal surface problems in optimal geometry also requires special-
ized software systems because there is often no explicit parameterization of a desired
minimal surface. Although in the past years, lots of softwares have been produced for
computing and displaying minimal surfaces (e.g, the “Surface Evolver” [1] by apply-
ing the evolution techniques, which worked out by the geometric center of the Uni-
versity of Minnesota), the convergence theory of those special approaches are always
left as open problems. However, there exist one finite element method for solving
the Plateau problem based on the linear triangular domain partitions[8] with a com-
plete convergence theory, but solving the discrete equations under partially defined
boundary conditions are sometimes not cheap. In this paper, we discuss the finite ele-
ment solutions to the discrete Plateau problem based on another representation form,
which provide more possibilities and owns more general properties for getting the
discrete solutions. One convenient property is for applying the symbolic computation
to obtain the non-error discrete solutions, and the other is the new proof method fits
more general type finite element spaces regarding to the mesh and interpolation type.
The convergence properties and some speedup techniques (as the byproducts) are be
proved and some typical experimental results have been demonstrated to show the
error coincides the theoretical analysis.

This paper is also a revised version of the contributed paper [5] to the conference
CST2002 in Prague, Czech Republic.

In the next section we will first define the differential equations to the Plateau prob-
lems, and extend the variational forms from the continuous Sobolev space to the finite
element space. Some error resolutions for solving the linear equations by the finite
element method will be previewed in Section 3, and we will focus on the proving
of the convergence theory of the discrete solution to the Plateau problem mainly by
Brouwer’s fixed point theorem in Section 4. In section 5 we introduce two kinds of
2-grid discretization algorithms in order to speed up the normal computation and in
Section 6 we show some numerical experiments of displaying the minimal surface on
Maple software for testing these new approximating methods.



2 Preiminaries

Due to the fact that the minimal surfaces has the sufficient and necessary property of
having zero average mean curvature at each surface point, we can define the minimal
surfaces subject to the Plateau problem be the solution of a system of nonlinear partial
differential equation, with restricted boundary conditions.

Let us also assume that such minimal surface can be represented explicitly by term
z = u(zx,y) ina 3-dimensional space with fixed domain €2 and the boundary restriction

u=f(z,y), (z,y) €Y,

then u(x, y) must solve the following system of partial differential equations:

{ —div((1 + ) ) g, (1 4 uZ)uy) + 6ugyuzuy = 0 in €, 21)

u= f(z,y), onoL,

where € is strictly convex. Here the strictly convexity can be sufficient to assume
that the solution to the previous equation is unique if f(x,y), which satisfies the
bounded slope condition [10], is the restriction to 92 of a function in the Sobolev
space W21(Q), for some q > 2.

Set the nonlinear bi-argument operator
Au,v) = /[(1 + Ul YugUy + (1 + Ul )uyvy + Bugyuzuyv]dady,
Q

where uy, Ug,... denote d,u, 0, (0yu)..., etc. Then the equation (2.1) is weakly equiv-
alent to the following variational form:

Looking for w € Hg(2) N W24(£2), such that
A(w+ f,v) =0, Vv € Hy(Q) NnW>1(Q), (2.2)

where f is the “regular” extension of f from 02 to 2, especially, we could take f €
W24(Q), q > 2. (Obviously, u = w+ f is the exact solution according to the previous
uniqueness assumption.)

We now consider the discrete scheme for (2.2). Let 2, C Q be divided by mesh
Ty, with size h. S,(€2p,) be the finite element space constructed by the interpolation
operator I [2, 3]. It is also assumed that the mesh partition is regular and all the grid
nodes on 02, also located on 0f2.

Then the discrete solution wy, € S,(€2,) is defined by
A(U}h + fu U) = 0> Vv € Sh<Qh)7 (23)

and u, = wy, + f will be taken as the finite element solution to the Plateau problems.



The above discrete scheme appears to be a system of algebraic polynomial equa-
tions so that it can be either approximated by the Newton’s method, or solved directly
by the symbolic elimination methods [14] . Especially, the symbolic method is very
promising for those Plateau problem with the parameter depending or incompletely
defined boundary conditions since the complexity sometimes does not depend on the
number of parameters [6].

For the continuous models, since w is assumed to be unique, one sees that w" =
wlo, € Hy () N W4(Qy,) which satisfies

A(w" + f,v) =0, Yo € H} (Qn) N TW29(Qy)

also must be unique. Then we could in fact consider the original problem based on a
certain convex polygon domain. For convenience, we still take w” as w, €2, as , etc.,
and will prove that wy, convergence to the real solution w when the mesh size i goes
to zero in the following sections.

3 SomekError Resolutionsfor SolvingLinear FiniteEl-
ement Equations

Let L(-) be a linear operator defined by
L(u) = —div(ai1uy + 21y, Q1oUy + Go2ty) + bty + bouy, + cu,
where a;;, b;(i,7 = 1,2), and ¢ > 0 are continuous functions satisfying
anv: + a2gv§ + (@12 + a2 )vpvy > o(Vv)? Vo € 54(Q)

for some ¢y > 0.

According to the maximum value principle [11], it can be proved that the following
equation

A'(Pyu,v)(= (L(Pyu),v)) = (f,v) Yv € Sp(N) (3.1)

where (-, -) denote the inner product of Hilbert space L, (€2), will has a unique solution
for the given condition f [12].

Namely, P, : Hy(Q) — Sp,(9) is the Galerkin’s projection operator which satisfies
A'(u — Pyu,v) =0 Yo € Sp(Q).
And we have the error estimation result [2, 3].
Theorem 3.1 For h << 1, P,u admits the following estimate
lu = Phullco < CRF[|ullkr1,00, (3.2)
forC >0andk > 1.



Moreover, we introduce the discrete Green functions as, given z € 2, the Green
functions g ,, g7, € Si(Q2) satisfying

A(v,6,) = va(2), A'v,g7,) =v,(2) Vo € Su(). (33)

It has been proved that [13]
197.2ll1,1 < Cllogh|, (3.4)
197 4ll1,1 < Clloghl, (3.5)

for constant C > 0.

4 Approximating the Plateau Problems by the Finite
Element Methods

Let us first consider the discrete problem (2.3) defined on a finite element space S} (€2)
generated base on the the bilinear rectangular mesh partitions. The following lemma
shows the sufficient and necessary conditions of being the finite element solution to
the discrete equation (2.3).

Lemma4.1 For any w,wy, solves (2.2), (2,3) respectively, and for any v € S}(Q),
there holds

A(wp + f,v) = Alw + f,v) + A'(w+ fiw, —w,v) + Rlw + f,w, + f,v) (4.1)

where A’(w + f;-,-) is the bilinear operator defined from (3.1) with the coefficients
Aijy bi, C, Z,j = 1, 2, given by

2 2
a1 = 1+ Uy, 99 = 1+ Uy, Q12 = 21 = —UylUy,

b1 = 3uylgy — FUyyUy, by = 3uzplgy — 3Uzyly,

and ¢ = 0. Then wy, € S;.(€2) solves (2.3) if and only if
A(w+ f;w—wp,v) = Rw+ f,w, + f,v), Yve S;(Q). (4.2)
Further more, if ||0yywh 0,00 + ||wal|1,00 < K, then the remainder R satisfying
R(w + f,wy + f,v) < C(E)|w — walfi sollv]l1.1- (4.3)

Proof: Set G(t) = A(w + f + t(w, — w),v), then it follows from the identity

G(1) = G(0) + G4(0) + /tht<t)<1 — t)dt.



It is easy to compute that
Gi(0) = A'(w + frwp — w,v).
And, by taking
R(w+ f,wp+ f,v) = /Otht(t)(l — t)dt,

using the condition ||wp||1,00 + ||@sywrllo,.0 < K and a straightforward calculation,
we get that B B
|R(w+f7wh+fav)|

< max|Gy(t)|
< C(K)|Jw — wpl|? o llv 1

Finally, if wy, solves (2.3), then G(1) = 0, thus complete the proof.

~ Let P, be the Galerkin’s projection with respect to the bilinear operator A'(w +
f;-,-), we have the following theorem then:

Theorem 4.1 For problems of the form (2.2), there exist a constant C' > 0, such that
for rectangular mesh 7}, with its size h << 1, the corresponding finite element equa-
tion (2.3) defined on the finite element space S} (£2) contains a solution wy, satisfying

llwn, — Pawllic0 < Ch?|loghl,
and thus we have the following error estimation
|lwn — w10 < Ch

by using Theorem 3.1.

Proof: Define a nonlinear operator @ : S;(Q2) — S}(Q) by
A(w+ f,®v) —w,¢) = Rw+ f,v+ f,0) V¢ € S,(Q).

It can be proved by the maximum value principle and the fact that S} () is of finite
dimensional, ® is well defined and a continuous operator. According to the result of
Theorem 3.1 we can obtain the error estimates that

|lw = Prwl|1,00 < C*h, C*>0

Then define aset B = {v € Si(Q) : [|[v — Pywl|1,0 < C*h}. Since S;(Q) is
of linear, by the inverse estimation, there exist Cy, Cy, Cs, Cy > 0, such that for all
v € SEHQ),

|02y (v — w)l[0,00
< |0y (v = Inw)lfo,00 + |0y (Inw — w)lo,0
S Olh_l(”U — Phw||1,oo + ||Ihw — Ph’LU“l,oo) + CQ
S 037



Similarly we obtain

(v = w00 < Ca-

Thus we get ||0yyv|[0,00 + ||v]1,00 IS uniformly bounded.

Now we can prove that ®(B) C B which means @ is a contraction operator. In
fact, when we substitute ¢ by the discrete Green functions ¢ = g; , and ¢ = g; , into

A'(w+ f;@(v) — Paw,¢) = R(w + f,v+ f, 9),
according to Lemma 4.1, (3.4) and (3.5), for all v € B, we get

[2(v) = Phwl|1,00
< Collogh|[|w — ][} o
< 2Co|logh| (|| Paw — [} o + llw — Prwlf} o)
< 2Cq|logh|(C*2h% + C*2h?)
< Ch?|logh|(< CRY),
where Cy > 0and h << 1.
By Brouwer’s fixed point theorem, there exist a solution w,, € B, such that

<I>(wh) = Wp,.
And according to Lemma 4.1, wy, solves (2.3) and satisfies
|wp, — Phw||1,00 < Ch*[l0gh.

Thus we complete the proof.

Based on the lower order finite element space like S} (€2), to generate the discrete
system (2.3) is convenient but the uniqueness property of the solution u, is at present
not able to be proved. However we could prove that problem (2.3) will contains a
unique solution if the finite element space belongs to a H? Sobolev space and we can
also similarly prove

Theorem 4.2 For problems of the form (2.2), there exist a constant C' > 0, such that
in the finite element subspace S;,(2)(C H?(Q2)) with its mesh partition parameter
h << 1, the finite element equation will has a unique solution u,, satisfying

[[tnl2,00 < C,

and
l[ttn = tllm,00 < CRE [t j41 00

wherem =0,1and k =1, 2.



Proof: For m = 1, the proof of the existence and convergence properties of uy,
those are basically the same as for proving Theorem 4.1, only need to change the
holding condition for the inequality (4.3) into ||ws||20c < K and later could prove
||v]|2,00 is also uniformly bounded.

For uniqueness, we consider that u;, should still maintains the minimal area prop-
erty over the domain Q in the H? finite element space S, () [6], e.9. uy, solves

MiNy 0= 70— fes, @) 1A (v) = /Q (1+ |Vo*)/2}, (4.4)

then w;, should be a unique solution since it is a strictly convex defined form [8].

In case that m = 0, we use the Aubin-Nitsche duality argument [3] to get the L2
error estimates.

5 The2-grid Discretization Approaches

In this section, we introduce the 2-grid discretization techniques [16] to speed up the
computation, based on the previous convergence theory.

Our basic assumption is, the finite element space should be a subspace belongs to
W24(Q). We denote H be the maximum mesh size to the coarse grid partition and £
the maximum mesh size to the refined grid partition (see Figure 1). And we also set
0< H?>< h<<H.

The 2-grid discretization algorithm, roughly speaking, is to use the coarse grid
approximation on finite element space Sy (2) as an initial result for the recollection
on the refined space S, (2) later.

The 2-grid discretization algorithm 1.
1. Solve wy € Sy (£2) such that

A(wy + f,v) =0, Yv € Sg(Q).
2. Solve ¢, € S,(€2) from the linear equation
Al(wg + fren,v) = —A(wy + f,v), Vv € S(Q).
3. Setu" = wy + f + e

Theorem 5.1 Assume that »” is the solution obtained by the 2-grid discretization
algorithm 1, If h << 1, then by definition of the coarse solution ugy = wy + f, we
could get

llun — u"[ly < Cllun — unlf} o (5.1)



Consequently,
|lu —u"||, < C(h+ H?) (5.2)

for the constant C > 0.

Proof: From the algorithm, (4.1) and (4.3), we have

A(wy + fiup — ul,v)
= A'(wy + fiup —ug,v) — A'(wg + f;en,v)
= A'(up; up — un,v) + A(wy + f,v)
= —R(ugy, up,v)

< Cllug — upl? sollv] 11

Since when A is sufficiently small, the bilinear operator A’(ug; -, -) will be well-

posed, hence we can use the Inf-Sup condition [16]
A (ugrsup—ul

|uP —upl|y < CsUp,cs, () IEIR >

Cllumr—upnll} oollvll1,1
[lv][1

< OSUP,es, (o)
< Cllug — unlli

By applying Theorem 4.2, for two different grid partition sizes, we could obtain
lu = unll1,00 < Ch,

||U — uH“l,oo S CH.

Thus we can prove (5.2) by the triangular inequalities.

In fact, the 2-grid discretization algorithm 1 can be simplified by eliminating the
lower differential order term from the operator A'.

If we define
A (s, ) = A'us ) = N(u; )
where

N(u;-v) = / (b2 (1), (-0 + by (), ()

and the coefficients by (u), bo(u) follows the definitions in Lemma 4.1, then we could
have

The 2-grid discretization algorithm 2.



1. Solve wy € Sy () such that
A(wg + f,v) =0, Yv € Sp(Q).
2. Solve e, € S,,(£2) from the linear equation
Al (wy + fren,v) = —A(wy + f,v), Yv € Sp(Q).
3. Setul = wy + f +ep.

Theorem 5.2 Assume that 1" is the solution obtained by 2-grid discretization algo-
rithm 2, and v € H3(Q), then we could still get

llup — u”||y < C(H? + h). (5.3)
Proof: By definitions and the facts from Lemma 4.1 we could obtain that
Al(wy + f;up — ul,v)
= A (wy + f;up — up,v) — Ay(wy + f;en,v)
= A'(ug;up — ug,v) + Alwy + f,v) — N(ug; up — ug,v)
= —R(ug,up,v) — N(ug;up — ug,v).
Since u € H3(Q),

N(u;up — ug,v)
= /(blﬁx(uh — UH)U + b28y(uh — UH)’U)
Q
= —/Q(bl(uh — U )Vy + bo(up — up)vy + 2(u§y — UgglUyy ) (Up — up)v),

and ||u||2,00 is uniformly bounded according to Theorem 4.2, we have
IN(ug;up — ug,v)l
< lbx(wr)llo,collun — umllo,ecllv]l1,1 + [1b2(wr)locollun — umllo.collv]]1,1
+ 2|y 4y — Un ety llo.colltn — wrllo,ool[V]]0,1
< 6llumll3oollun — unllosollvlli
< Cllun — unllocollv]l1,1-

By the fact that the bilinear operator A’ (uy; -, ) is positive definite, we could still
get that

AL (uprup—ul

E))
[[v]l1

Jul —uplly < OSUP,es, (@)

llwrr —unllF oo ll0ll1,1+lun —u |lo,00[v]]1,1
[v][1

< OSUP,es, (o)
< Cllun = unll? o0 + llun = u™lo,00)

< C(H?+h).
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Thus complete the proof.

However, to generate the discrete equations based on the 12 finite element space
is not convenient in practical. But we might notice that the 2-grid discretization al-
gorithm 2 is also well-defined if the finite element space is generated based on the
bilinear rectangular mesh interpolations (since we only use the first order derivate
function of ug in the discrete schemes). Although we could not prove whether using
2-grid discretization algorithm 2 still admits the error estimates of Theorem 5.2 under
the linear approach (even if we know priorly that the discrete system has a unique so-
lution), we could find it works resonablely on some typical cases from the experiments
result (see Example 2 in the next section).

6 Examplesof Generating Minimal Surfaces

To illustrate the features of the approximation methods proposed in this paper, we now
show some model examples.

Example 1.

For Q = [0, 1] x [0, 1], we use the bilinear rectangular mesh interpolation to generate
the finite element interpolation with mesh size h = 1/16. The border curves are the
restriction of smooth function f = 0.25 — (x — 0.5)2. Then the finite element solution
after sufficient iteration steps is displayed in Figure 2, a saddle shape.

Example 2.

This trivial example shows the convergence property for the approximated solu-
tions. By given the initial border function the restriction of zy(1 — z)(1 — y) on the
same domain, we know the exact solution to this Plateau problem should be uniquely
aplane z = 0.

Figure 3 shows the maximum error between the discrete solution and the exact
minimal surface which we expected will not be greater than 2x10~*, if we use the same
grid partition as the last example. And based on the relatively coarser grid partition by
h = 1/8or h = 1/4, we get the maximum errors will be less than 8 + 10~* or 4% 1073,
respectively, that coincides the error estimations of Theorem 4.1.

Figure 4 indicates the result solved by the 2-grid dsicretization algorithm 2, whose
initial iteration is based on the coarse grid partition 4~ = 1/8 on the finite element
space S} (€2). We can obviously find the solution u” has the same efficiency as that
solved directly from the refined grid partition (Figure 3), but computing »” is much
more cheaper than computing u,, on the dense grid partition » = 1/16.

Those experimental data for the computations are obtained from the Solaris oper-
ating system computer galaxy.risc.uni-linz.ac.at with 1152M memory.
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7 Conclusion and Remarks

In this paper, we discussed the finite element methods for solving the Plateau prob-
lems on convex domains, and proved the error analysis to all the approaches. Solving
these discrete forms to the Plateau problems will be more flexible especially under the
general boundary conditions. We have also implemented some 2-grid discretization
algorithms which could speed up the computations. There also exists possibilities of
applying the parallel algorithms based on the locally mesh refinement [6, 17] on the
large scale domains. For purpose of the final generating of those minimal surfaces, we
carried out all the numerical examples on the Maple software.
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Figure 1: The coarse and refined grid partition

| > Figure 2: The approximated minimal surface
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Figure 3: The shape of the discrete solution which also indicate the error

Figure 4: The solution solved by the 2-grid discretization algorithm 2
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