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Testing the normal crossing property of hypersurfaces

Gabor Bodnar
RISC, Johannes Kepler University, A-4040 Linz, Austria.
Email: Gabor.Bodnar@risc.uni-linz.ac.at

Given finitely many hypersurfaces, in some nonsingular ambient variety W. They are normal
crossing if each of their irreducible components are nonsingular, and when r such irreducible
components meet at a point a € W, their local defining equations form a part of a regular
system of parameters at a. We give a straightforward algorithm to test this property. The
test relies on partial differentiation over W and Grobner basis computation.

Introduction

The normal crossing property has a prominent role in the problem of resolution of singularities
(see e.g. [2] for the foundations of the classical theory, or [1] for a more recent survey on the
field). The definition of embedded resolution of singularities requires that a desingularization
morphism 7 : W/ — W of an embedded variety X C W (where W, W' are nonsingular) has
the property that the irreducible components of 771(S) (also called as the set of exceptional
divisors) are normal crossing, where S C X is the set of singularities of X and 7 is an
isomorphism outside S.

The normal crossing test itself is a straightforward application of the available computer
algebra machinery on the problem. I am aware of the fact that the difficulty of the solution
falls into the category of the textbook exercises; still, it might be worthwhile to be documented,
since the normal crossing property is ubiquitous in resolution of singularities and in singularity
theory, and the solution provides a first constructive approach to the problem.

The normal crossing test

Let k be an algebraically closed field of characteristic zero, let W be a nonsingular affine variety
of dimension n with coordinate ring k[W] = R/J, where R = k[z1,...,2y], 0 # J C R. Let
Opys---0p, € Der(W) be derivations on W, coming from a basis dpy, ..., dp, of the module
differential forms Q(W).

Let X1,...,Xs C W be defined by fi,..., fs € k[W] respectively. The set of singularities
of the hypersurface X; C W is

Sing(X;) = {a € X;|0p,; fila) =0, j =1,...,n}.

Definition 1. The hypersurfaces X1,...,Xs; C W are normal crossing if for all i: Sing(X;) =
0 and for all {41,...,4} C{1,...,s}: ifa € X;,N---NX;,, the elements of { f;, Ow.a, - .-, fi, Ow,a}
are linearly independent mod m2.



The Jacobian ideal of f; ,..., f; is generated by all the minors of maximal size of the

matrix
Op fir --- Op,fiy
Jacobianw (fi,, ..., fi,) = : :
apl le .. apn le
Under the assumption [ < n and considering that all the k[I¥] elements and ideals are given
by representatives from R, if

gbasis((fi,,.--, fi,) + Jacobian_idealy, (fi,,..., fi,) + J, tdeg(z1,...,Tn))

contains a nonzero constant, Xj,,...,X; are normal crossing within their intersection, other-
wise they are not (and the result is a Grobner basis, defining the points where they fail to have
the property). When n < [, it is enough to check whether the intersection of the hypersurfaces
is empty, since the rank of Jacobianw (fi,,..., f;,) cannot reach [ at any point of W.

Because the method checks the normal crossing property for a selected subset of hyper-
surfaces along their intersection, the complete algorithm has to go through all the nonempty
subsets of X1,...,X,. A reasonable strategy is do the easier tests first, i.e. to check subsets
by increasing cardinality.

Input: W a nonsingular affine variety, (f1,..., fs) a list of defining equations
of hypersurfaces in W.
Output: a boolean indicating the normal crossing property of the input
hypersurfaces in W.
isNormalCrossing(W ,(f1,..., fs))
n:=dim(W); R/J := k[W]; O := tdeg(Generators(R));
for/=1to sdo
for each {i1,...,4;} C{1,...,s} do
if | < n then
G = gbasis((fi,,. .., fi,) + Jacobian_idealy, (fi,,..., fi,) + J,0);
else G := gbasis((fi,,-.., fi,) +J,0);
if NormalForm(1,G,O) # 0 then return false;
return true;
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Automated Proofs of Automated Geometry Provers
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In this talk I address three interrelated topics:

(A) the use of algebraic algorithms as the kernel of automated provers for certain classes of
geometric theorems,

(B) the use of automated theorem provers for proving these algebraic algorithms,

(C) the transition from the logic level on which algebraic algorithms are proved to the level
in which these algorithms are used as complex inference rules.

(A) is well known by the work of W.T. Wu and others, see for example [Wu 1978] for
the characteristic sets algorithm, and by the work of Kutzler and others, see for example
[Kutzler, Stifter 1986], for the Grébner bases algorithm.

I posed (B) as a research problem at the Calculemus Meeting in Rome 1996. In fact, my
current research interest in general automated theorem proving and the design and implemen-
tation of the Theorema system was heavily motivated by the desire to automate the type of
proving necessary for expanding, generalizing, modifying and applying Grobner bases theory,
see [Buchberger 1996] and [Buchberger et al. 2000]. Meanwhile, a couple of research groups
started to study the possibility of establishing Grobner bases theory by automated theorem
proving systems.

So far, the implementation of a formalization of Grébner bases theory by L. Thery, see
[Thery 2001], seems to be the most advanced study into this direction. The formalization is
carried out in the Coq system and all proofs are checked by the system. Also, the algorithms
that are proved correct are executable by producing an Ocaml version automatically. The
formalization and proofs within Coq suffer, however, from the fact that Coq is basically only
a proof checker, i.e. the proofs have to be composed by the users and are only checked
to be correct by the system. Since all proofs had been given completely formally in my
original papers on Grébner bases, see for example the concise summary of the formal proofs
in [Buchberger 1998], in the working style, there is very little difference between the situation
where you use a "professor" or a "student" as a proof checker and the situation where you
use a system like Coq.

Another work into the direction of (B) is [Ruiz-Reina et al. 2001], in which they give an
automated proof of the Knuth-Bendix algorithm using the automated prover ACL 2, which
is based on the well-known Boyer-Moore prover. Also, [Coquand, Person 1999] contribute to
(B) by giving a constructive proof of Dickson’s lemma using open induction. The work by
Ruiz-Reina seems to provide much more automation in the composition of proofs than the
approach by Thery. In fact, they provide a statistics on the proofs that demonstrates that
only very few "hints" had to given for finding the proofs. The main human interaction with
the system goes into the set-up of the definitions and the layers of lemmata and the sequence



in which they are given to the prover. In my view, this is natural and desirable, because the
user wants to have control on the systematic build-up of mathematical theories.

In the talk I will analyze the advances made in the area (B). In particular, I will also discuss
in which way I envisage Theorema to contribute to (B). Although the current implementation
of Theorema is still too weak to establish a complete proof of Grébner bases theory I will be
able to demonstrate a few features of Theorema that promise to make a computer-supported
proof of Grébner bases theory quite attractive:

e definitions, theorems, and algorithms are given in one logic frame (a version of higher-
order predicate logic) and in a very user-friendly notation

e algorithms are in fact theorems; their execution is nothing else than the application of
a fragment of the underlying logic inference system

e proofs are generated automatically; human interaction is mainly necessary for building
up knowledge bases in a reasonable order and for designing appropriate lemmata

e as a consequence, changes in definitions and the set-up of the theory do not make
it necessary for the user to re-formulate all proofs; thus, the emphasis of research in
Grobner bases theory (and related theories) can be on the design of domains, definitions,
and elementary and advanced propositions

e by the functor construct available in Theorema both for building up domains and knowl-
edge bases, theories and algorithm libraries can be built up in relatively small blocks
that can be combined flexibly and allow a high degree of abstractness and generality.

Finally, in the talk, I would like to discuss (C). This is a very subtle issue, which I think
is the key point why the ordinary style of building up mathematical theories is efficient and
feasible. The transition from proving algebraic algorithms to using them as complex inference
rules, i.e. the transition from object level knowledge to meta-level inferencing, is by no means a
specific trick in geometry theorem proving but, rather, a paradigm that seems to be ubiquitous
in building up mathematical theories in an efficient and manageable way. We will discuss
in detail how this transition should be supported by appropriate tools in future computer-
supported mathematical software systems in order to make them true mathematical knowledge
management systems.
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Let PS be a finite set of polynomials in K[z1,--- ,x,], K is a field of characteristic 0. Let
E be and algebraic closed extension field of K. Let DS be also a finite set of polynomials in
K[.I'l,“‘ 7$n]

Zero(PS/DS) = {z|r € E",P(z) =0,YP € PS,3d € DS,d(x) # 0}

We define | J;, Zero(PS;/DS;) or | J; Zero(PS;/D;) as a quasi variety.

After setting up a coordinate system, geometric theorem can be translated into algebraic
form. The hypotheses can be represented by hi(z) = 0, ,hy(xz) = 0,PS = {h1,--- ,hp},
PS = 0 and the conclusion can be represented by C(z) =0, C = 0.

Definition g # 0 is called the non-degenerate condition if

(2A)(Vz € E")( PS(z)=0Ag(z) #0
= C(z) =0)
(2.B)(Fz € E™)( PS(z) =0Ag(x) #0)

Under the non-degenerate condition g # 0, if PS(x) =0, then C(z) =0. f PS=0=C =0
then the theorem T = (PS, C)is universally true.

Wu’s non-degenerate condition

Suppose C'S = C1,- -+ ,Cy, is the characteristic set of PS, then J = [, I; where I; is the
initial of Cy, if Prem(C,CS) =0, ie. Ij*---IimC = Q1C1 + -+ - + QmCr, + 0, then J # 0 is
the non-degenerate condition for the theorem to be true. In this case, Vz, PS(z) =0, J(x) #
0,= C(x) =0.

Kapur’s non-degenerate condition

Let Gy, G2 be the Groebner basis of ideal (PS) and (PS U {C x z — 1}).

if G; # {1} and G2 # {1}, then the theorem is true when g; # 0. If g; satisfy

(a)gi € G2 NK[z] Ag; ¢ (PS)

(b)1 ¢ GroebnerBasis(PS U {g; * z — 1})

Winkler’s simplest non-degenerate condition.

In K|[x], all the polynomials which satisfy (2.A) consists of an ideal N, N = [radical(PS) :
().

Let G be the Groebner basis of N. If there is a polynomial in N which satisfy condition
(2.B) then there is a polynomial in G which also satisfy (2.B).



Let G’ be a set of polynomials which satisfy (2.B). Let g be the least polynomial in G’ for
a given monomial order. then we call g # 0 the simplest non-degenerate condition.

The non-degenerate conditions given above are too "strong". Sometimes, the non-degenerate
conditions are not necessary for a theorem to be true.

Projection of Quasi-variety

The projection map is given as following:
Projg,, .1 wn 2 E* — BT

Proje,, i, an (1,00 ,20) = (21, , )

For polynomial set PS and polynomial D in K [z], we define the projection with 41, -+ , 2
as follows

Projg, o1, wnZero(PS/D) = {e € E™ | 3a € E™" ™ s.t.(e,a) € Zero(PS/D)}

How to compute the projection of quasi-variety?

We will give a algorithm to compute the projection of a quasi variety in the following two
steps.

In the first step, we will give the zero decomposition as

step 1. Zero Decompostion

Zero(PS/D) = U Zero(AS;/D;)

in which AS; is an ascending set.
step 2. Compute the projection of Zero(AS/D).
We combine step 1 and step 2 together, then we can get the projection of Zero(PS/D).

Theorem For polynomial sets PS, DS and polynomial C as shown above,let X = (x1,--- ,x,), Z =
(X1, yxm), Y = (a1, ,Tpn). Variables order is x1 < -+ < xp.
then

(1) if Projy Zero(PS/C) =10
and Projy Zero(PS/C) # 0, then the theorem T is universally true.

(2) if Projy Zero(PS/C) # 0, then it gives sufficient and necessary condition for the theorem
T = (PS,C) to be false.
Vzo € ProjyZero(PS/C) , then there is a z(, which makes PS(z¢) = 0 but C(x) # 0.
if p which makes PS(xy) = 0 and C(z¢) # 0, then there is a zg € Projy Zero(PS/C)

According to the above theorem, we can give the sufficient and necessary condition for a
geometric theorem to be true.
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We discuss the problem of deciding if a basic real semialgebaic set, i.e. a subset of R"
defined by a finite set of equations and inequalities, is compact.

Compactness is not a first-order property, hence one cannot apply quantifier elimination,
but on the real field it is equivalent to closedness and boundedness, that are first order prop-
erties, hence the problem is decidable; of course we are looking for better algorithms than
elimination of quantifiers in general.

We will use a few standard notations in real algebraic geometry, for which the standard
reference is [1]. The basic proof tools rely on quantifier elimination, but it is never used in
algorithms, that just use standard commutative algebra tools, real root counting for zero-
dimensional ideals being the only specific real algebraic geometry tool.

References

[1] Bochnak J., Coste M., Roy M.-F., Géomé - trie Algébrique Réelle, Erg. der Mathematik,
Vol. 12, Springer (1987)
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Industrial robotic 3-DOF manipulators are currently designed with very simple geometric
rules. In order to enlarge the the possibilities of such manipulators, it is interesting to relax
some constraints.

The behavior of the manipulators when changing posture depends strongly on the design
parameters and it can be very different from the one of manipulators commonly used in Indus-
try. P. Wenger and J. El Omri [6], [10] have shown that for some choices of the parameters,
3-DOF manipulators may be able to change posture without meeting a singularity in the joint
space. This kind of manipulators is called cuspidal.

We restrict the study to 3-DOF manipulators as described in figure 1 and manage to cara-
terize the values of the parameters for which such a manipulator cuspidal.

In the first part, we show that caraterizing the values of the parameters for which such
a manipulator cuspidal is equivalent to find the values of dy,ds,r2 for which a polynomial
P(t) € QR, Z,dy, d3,75][t] (where R = 22 + y? + 22 and Z = 22) of degree 4 has a triple real
root or in other words, to solve the following system :

P =0

o)

= o
w =0

The goal is then to compute a partition of the parameter’s space such that the number
of real solutions of system 1 in each cell is constant. Due to practical constrains, we are only
interested computing one sample point or a bowl in the cells of highest dimension : the other
possible cells will be embedded inside strict algebraic subsets of the parameter’s space.

Our first step consists in eliminating two of the variables ¢, R and Z = 22 in the system 1
: the generic solutions can be viewed as regular (with respect to the terminology of [1]) roots
of a triangular system with the following shape :

surf(R,dy,d3,r2) =0
lez(da,ds, r2)Z + trz (R, da, d3, 2) (2)
lct(d4,d3,7'2)t+t7“t(R, Z, d4,d3,7”2)

System 2 describes all the solutions of the problem for values of the parameters taken
outside the two algebraic varieties lcz(dy, ds,r2) = 0 and ley(da, ds, 7o) = 0, which are closed



d3

R
U .

=

Figure 1: The manipulator under our hypothesis

subsets of strict smaller dimension of the parameter’s space and so can be excluded for prac-
tical issues.

The number of real roots of surf varies if and only if its discriminant (disg(ds, ds,r2)) or
its leading coefficient with respect to R (lcr(d4,ds,r2)) vanishes.

So, the last set of equations to be computed for defining our partition of the parameters’
space in cells where the number of real solutions to system 2 is constant is defined by these
two conditions.

The real roots of system 1 must verify Z = 22 > 0 and R — Z = 22 + y> > 0 to be
admissible. Adding the condition Z = 0 (resp. R— Z = 0) to the initial system, give us (after
an elimination process) two polynomials in the parameters dz, dy and ro :Hypz—o(dy, ds, r2)
and Hypr z=o(d4,d3,72).

So, in each connected subset of the parameter’s space where none of the following polynomi-
als vanish diSR(d4, d3, TQ), lCR(d4, d3, 7”2), Hypzzo(d4, d3, TQ), Hpr_Z:()(d4, d3, 7“2), lCZ(d4, d3, 7“2),
lcy(dy,ds,m2), the system 1 has a constant number of real solutions.

The best way for representing our partition is now to compute a partial CAD (Cylindrical
Algebraic Decomposition - see [3]) of R® adapted to this set of polynomials. For practical
reasons, we are only interested in finding one point or a bowl in the cells of higher dimension,
embedding the other cells inside algebraic subsets of the parameters’ space. This make much

10



more easier the projection (much less resultant computations) and lifting phases (no compu-
tations with real algebraic numbers) of the CAD.

We mix several technics for this purpose : [5] for reducing the number of polynomials to
be computed, [2] for testing if some algebraic sets have real roots or not, etc.

The final result of the full computation is a partial cellular decomposition of the parame-
ter’s space so that for each point taken in the interior of any cell, the number of solutions to
the system 1 is constant.

Precisely, we have computed :

e at least on point in each cell, as far as possible from the boundaries of the cell;

e the equations of the algebraic sets that bounds these cells;

In practice, we provided 6 polynomials and 105 sample points which represents a reason-
able output since it allows roboticians to analyse the results.
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The concept of a matroid, as introduced by Hassler Whitney, captures the abstract com-
binatorial properties of linear (or even algebraic) dependence of finite configurations of points
in projective space. The information carried by the matroid structure is often ‘all you need to
know’ about a configuration of projective points, that is, all its intrinsic properties: which sets
of points are collinear, coplanar, cospatial, etc. The matroid (that is, the matroid of linear
dependence of points) does not, however, carry information about how the configuration has
been embedded in projective space. The matroid does not determine whether a given set of
points lies together on a non-linear algebraic surface, nor does it predict whether three pairs
of points generate lines that are concurrent, unless a point of concurrence happens to be itself
a point of the configuration. Such properties could be termed eztrinsic to the configuration,
requiring information about the environment of the figure.

The deepest problems in matroid theory involve the search for combinatorial obstacles to
the representability of matroids in projective spaces over specified fields. This is another sign
that the gap between intrinsic and extrinsic properties of matroids is highly significant.

The best-known earlier attempts to bridge this gap are the Orlik-Solomon algebra, exten-
sively used to study hyperplane configurations, and Neil White’s bracket ring. Both of these
constructions start by taking anticommutative products of elements of the matroid.

We propose a further step in this direction, associating with each matroid an appropriately
weakened form of Hopf algebra, called a lax Hopf algebra, constructed from the free exterior
algebra generated by the elements of the matroid, forming tensor products, then taking the
quotient by the ideal generated by homogeneous components of coproducts of dependent words.
In this manner we effectively impose those algebraic relations that necessarily would hold in
any representation of the matroid, and over any field. We call this quotient the Whitney
algebra of the matroid.

That this is a natural construction follows from a simple observation. Consider the Hopf
algebra structure of the exterior algebra A = @ A* generated by a finite set of points in
a projective space. Recall that the coproduct § : A - A® A is the multiplicative map
determined by §(a) = a ® 1 + 1 ® a, for all vectors a € A!; for example,

d(abe) = d(a) 6(b) 6(c)
=abc®1 + ab®c — ac®b + bc®a

+ c®ab — b®ac + a®bc + 1® abe,
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for vectors a, b, ¢ (where the signs are determined by anticommutativity). Now if the set
{a, b, c} is dependent, then the wedge product abc is equal to zero in A, and hence the coprod-
uct d(abc) is also zero. Since A is graded by the nonnegative integers N, the tensor product
A ® A is thus graded by N x N, and an element of A ® A is equal to zero if and only if all its
(N x N)-homogeneous components are zero. Hence, in particular, if {a, b, ¢} is linearly depen-
dent, then the homogeneous component a ® bc —b® ac+ c® ab of shape (1,2) in the coproduct
§(abc) is equal to zero. We obtain similar relations in each component T*(A) = A®--- ® A
of the tensor algebra T'(A) = @ T*(A) from the fact that the iterated coproduct 6*(a; - - - a,)
is zero for any dependent set of vectors {a1,...,a,}.

In this talk, we exhibit our main technical result, the Zipper lemma, a cancellation theorem
that points to the basic exchange properties of the Whitney algebra of a matroid, and proves
the (skew) commutativity of a geometric product. This geometric product is essentially the
product defined by Hermann Grassmann in his 1844 Ausdehnungslehre, roughly speaking, the
tensor product of join and meet operators.

In the spirit of the present assembly, we demonstrate the straightening algorithm for the
Whitney algebra of uniform matroids, based on the Rutherford method of interpolants, here
applied to tableaux with holes. Such Whitney algebras are torsion-free, so this method yields
a basis for each homogeneous component of the algebra. An analogous method for Whitney
algebras (not necessarily torsion free) of arbitrary matroids is not yet known, but we will
indicate a possible approach. On the other hand, a simple, but highly exponential, algorithm
yields a normal form for the integer matrix of coefficients of the defining relations of each
homogeneous component of the algebra. The torsion properties of this algebra reveal coordi-
natizability properties of the underlying matroid.
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MMP (Mathematics-Mechanization Platform) is a stand-alone software platform which
implements various versions of Wu-Ritt characteristic set (CS) method and its applications

[4].

MMP /Geometer is a package of MMP for automated geometry reasoning. The aim of
MMP /Geometer is try to automate some of the the basic geometric activities, mainly geo-
metric theorem proving, geometric theorem discovering, and geometric diagram generation.
The current version is mainly for plane Euclidean geometries and the differential geometry of
space curves.

The goal of MMP/Geometer is to provide a convenient and powerful tool to learn and
use geometry by combining the methods of geometric theorem proving and geometric diagram
generation. The introduction of computer into geometry may give new life into the learning
and study of the classical field. Geometric problems are abundant in the field of robotics,

CAD, and computer vision. We expect that MMP /Geometer may have applications in these
fields.

Automated Geometric Theorem Proving and Discovering

Study of automated geometric theorem proving (AGTP) may be traced back to the land-
mark work by Gelernter in the late fifties. The extensive study of AGTP in the past twenty
years is due to the introduction of Wu’s method in late seventies [4], which is surprisingly
efficient for proving difficult geometric theorems. AGTP is now one of the successful fields of
automated reasoning. There are few areas for which one can claim that machine proofs are
superior to human proofs. Geometry theorem proving is such an area.

Our experiments show that MMP /Geometer is a quite efficient in proving geometry the-
orems. Within its domain, it invites comparison with the best of human geometry provers.
Precisely speaking, we have implemented the following methods.

Wu’s method might be the most powerful method in terms of proving difficult geomet-
ric theorems and applying to more geometries [4]. Wu’s method is a coordinate-based
method. It first transfers geometric conditions into polynomial or differential equations
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in the coordinates of the points involved, then deals with the equations with the char-
acteristic set method.

The area method uses high-level geometric lemmas about geometry invariants such as the
area and the Pythagorean difference as the basic tool of proving geometry theorems [1].
The method can be used to produce human-readable proofs for geometry theorems.

The deductive database method can be used to generate the fixpoint for a given geo-
metric configuration[2]. With this method, we can not only find a large portion of the
well-known facts about a given configuration, but also to produce proofs in traditional
style.

Comparing with other provers, MMP/Geometer has the following distinct features. First,
it implements some of the representative methods for AGTP, while most previous provers are
for one method. MMP /Geometer is stand-alone, while most of the previous provers are im-
plemented in Lisp or Maple. Third, MMP /Geometer is capable of producing human-readable
proofs and proofs in traditional style. Finally, MMP /Geometer has a powerful graphic inter-
face, which will be introduced below.

Automated Geometric Diagram Generation (AGDG)

MMP /Geometer implements AGDG methods for the following reasons. First, a geometry
theorem prover needs a nice graphic user interface (GUI). Second, AGDG methods may en-
hance the proving scope for AGTP methods with constructive statements as input by finding
the construction sequence. Third, with AGDG methods, MMP/Geometer may be used in
application areas such as robotics, linkage design and computer vision.

Dynamic geometry software systems, noticeably, Gabri, Geometer’s Sketchpad, Cinderella,
and Geometry Expert [3] may generate diagrams interactively based on ruler and compass con-
struction. These systems are mainly used to education and simulation of linkages. It is well
known that the drawing scope of ruler and compass construction has limitations. To draw

more complicated diagrams, we need the method of automated geometry diagram generation
(AGDG).

In MMP/Geometer, by combining the idea of dynamic geometry and AGDG we obtain
what we called the intelligent dynamic geometry, which can be used to input and manipu-
late diagrams more easily. It can be used to manipulate geometric diagrams interactively as
dynamic geometry software and does not have the limitation of ruler and compass construction.
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The collection of geometry theorem proof schemes that I will present in my talk is a
subproject of the larger SymbolicData project to set up and run a publicly available repository
of digital test and benchmark data from different areas of symbolic computation. This work
is part of the benchmark activities of the German “Fachgruppe Computeralgebra” who also
sponsored the web site [3] as a host for presentation and download of the tools and data
developed and collected so far. We kindly acknowledge support also from UMS MEDICIS of
CNR/Ecole Polytechnique (France) who provides us with the needed hard- and software for
establishing and running this web site.

About the SymbolicData project

For easy reuse of the SymbolicData data both in the repository and at a local site we concen-
trated on free software tools and concepts. The data is stored in a XML like ASCII format
(using tag/value pairs) in records that can be edited with your favorite text editor. Records
with similar attributes (tags) are grouped into tables. Table descriptions are stored in the
same XML-like format and can be manipulated, changed, extended etc. as easily as records.
The tools are completely written in Perl using Perl 5 modular technology.

The project is organized as a free software project. The CVS repository is equally open
to people joining the SymbolicData project group. Tools and data are freely available also as
tar-files (via HTML download from our Web site) under the terms of the GNU Public License.

The SymbolicData project and geometry theorem proving

Due to the research interests of the people involved so far with the SymbolicData project
we mainly collected various data related to polynomial system solving. Geometry theorem
proving via the Descartes-Wu coordinate method is one of the sources of challenging bench-
mark examples for that area. Such systems can be derived automatically with appropriate
computer algebra software (CAS) from proof schemes that formalize more informal geometric
statements. [1] is probably the most prominent source of such examples, where S.-C. Chou
collected and worked out 512 examples this way. The SymbolicData proof scheme collection
contains more than 200 of these examples, but also various examples from other sources.

Proof schemes and geometry theorem proving

Even if this conference refers in its title to “automated deduction in geometry” many authors
speak about “mechanized geometry theorem proving” since the whole process of proving in-
cludes some stages that require human intervention and intuition. The first and dominant
such step is the translation of the informal geometric statement into a formal proof scheme
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that takes into consideration the special proof approach (and software). It is that part of
Chou’s work that required most diligence and erudition. Hence it is desirable to collect such
geometry proof schemes as the starting point of further transformations.

Given such a proof scheme and reliable software the geometric problem can be translated
automatically into an algebraic one. Even the solution of the algebraic problem can be auto-
mated if it requires only standard techniques. This applies, e.g., to constructive proof schemes
since the corresponding algebraic problem reduces to simplification of rational expressions. For
other algebraic approaches (e.g., Grobner bases) the solution may be less straightforward and
require more human interaction. This is reflected by a solution tag in such SymbolicData
GEQO records that stores some information about a possible treatment of the corresponding
algebraic problem.

Towards a proof scheme repository

Since a public repository of proof schemes should serve different geometry theorem provers
it is not desirable to store proof schemes in a special language of one of them. Instead one
should invent and use a generic proof scheme language that is sufficiently general to easily
map to the special proof scheme languages of the different provers. There are several concepts
for generic data exchange on the way (XML, OpenMath, MathML).

For our first experiments within the SymbolicData project we invented our own generic
proof scheme language — the GeoCode. It arose from a prototypical test implementation of a
geometry theorem prover based on the coordinate method — the GeoProver [2|. GeoProver
versions exist for the four major Computer Algebra Systems Maple, Mathematica, MuPAD,
and Reduce. The translation of the generic GeoCode proof schemes to each of the target
systems is realized with appropriate Perl tools within the SymbolicData tools framework.

With GeoProver, version 1.2, the GeoCode description was separated from the GeoProver
and stored in a special table GeoCode within the SymbolicData project. Hence the GeoCode
description may be extended, modified and adopted in the same way as other Symbolic-
Data records. It requires further discussion with interested parties to work out the necessary
changes.

A first comparison with the syntax of other geometry provers ([4, 5]) given in the liter-
ature encourages that with some more Perl programming efforts the collected proof schemes
are valuable not only for other provers based on the coordinate method but — at least for
constructive proof schemes — also to provers using Cayley algebra computations. It seems also
possible to fix these definitions in a more common OpenMath-compliant format. We started
first experiments to translate constructive proof schemes in a format to be displayed by the
dynamical geometry software GeoNext.
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The rigidity concept is in the heart of many geometric constraint satisfaction problems
(GCSP) applications. In particular, constructive solving methods use this property to decom-
pose GCSPs into solvable subsystems. Rigidity detection procedures can be classified in 2
categories: pattern-based approaches depend on a repertoire of known rigid subsystems which
cannot cover all practical instances; flow-based approaches use flow machinery to identify
subsystems verifying a structural property: the structural rigidity. The latter approaches are
more general although structural rigidity is only an approximation of rigidity.

A New Structural rigidity

A GCSP S = (0,C) is composed of a set O of geometric objects (points, lines, planes, ...)
represented by their generalized coordinates; and a set C' of geometric constraints (distances,
angles, incidences, parallelisms, ...) represented by systems of equations and inequalities on
the generalized coordinates. Each object has a number of degrees of freedom (DOF) equal to
the number of its independant coordinates; each constraint removes a number of DOF equal to
the number of its independant equations. The number of DOF of a GCSP is equal to the sum
of its objects’ DOF minus the sum of its constraints’ DOF. Figure 1(a) presents an example
of a GCSP in 3D.

Intuitively, a GCSP is rigid if it is indeformable and can be displaced anywhere in the
considered geometric space. It is over-rigid if it cannot be displaced anywhere, and under-

rigid otherwise. In the example of figure 1(a), the subsystem CDF is rigid, AF is under-rigid
and ACDEF is over-rigid.

* Supported by CNRS and Région Provence Alpes Cote d’Azur
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Figure 1: (a)A GCSP in 3D composed of 1 line (A, 4 DOF) and 5 points (B, C, D, E and F,
3 DOF each) constrained by 4 point-line incidences (i4p, iac, tAD, tAr, 2 DOF each) and 5
point-point distances (dop, dor, dpg, dpr, dpr, 1 DOF each) represented in dots. (b) The
objects-constraints network corresponding to this GCSP. Capacities are represented in bold
on arcs.

The structural rigidity is a generalization of Laman [1] characterization of rigidity for bar
frameworks in 2D. A GCSP S is structurally rigid (s_rigl) in dimension d if it verifies
DOF(S) = %) and vs' ¢ §, DOF(S') > %) Imdeed, %) is the number of inde-
pendant displacement (rotation-translation) in a geometric d-space, and a rigid GCSP must
have all these displacements and admit no other one. It is well known that redundant or
non-generic GCSPs mislead structural rigidity. We highlight here another limit which ap(plies
even in the non-redundant and generic case: there exists rigid GCSP having less than %
DOF in dimension d. Such subsystems appear in figure 1(a): CD and ACDE are rigid but
have only 5 DOF, which makes them over-s_rigl (since @ = 6 in 3D); also, ABCD is
under-rigid and has 6 DOF but contains C'D and is found over-s_rigl (or exact-s_rigl if
subsystems having less than d objects are not considered).

We introduce the degree of rigidity (DOR) of a set of objects O in the context of a
GCSP S: DOR(0O,S) is the number of DOF that the subsystem of S induced by O has if it
is rigid. Determining DOR(O, S) is equivalent to geometric theorem proving in the general
case since it depends on the geometric properties S induces on O (parallelisms, incidences,
alignment, ...). We then reformulate the structural rigidity definition as follows: A GCSP
S =(0,C) is structurally rigid (s_rig2) in dimension d if it verifies DOF(S) = DOR(O, S)
and VS’ = (0',C") C S, dof(S") > DOR(0O',S). This definition remains a heuristic for rigid-
ity but is strictly better than the initial one. For instance, CD and ACDE have DOR =5
and are then detected s_rig2. Also, ABCD has DOR=5 and is detected under-s_ rig2.

Algorithms

We propose algorithms, corresponding to our new definition, for the main problems of rigid-
ity: deciding if a GCSP is rigid and detecting rigid or over-rigid subsystems. They use flow
machinery on a network G(S) introduced in [2] to represent a GCSP S. Constraints and
objects are nodes in G(S), and the capacities are the DOFs. Figure 1(b) presents the network
corresponding to the GCSP in figure 1(a).

A flow in G(S) is a distribution of the constraints’ DOF among the objects’ DOF. If a
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maximum flow in G(S) does not saturate all arcs outgoing the source, this means that some
constraints’ DOF cannot be absorbed by the objects’ DOF, i.e. 35’ C S s.t. DOF(S') < 0.
We propose to add a node R, with capacity K + 1 from the source (see figure 1(b)). Hence,
maximum flow allows to identify S” C S s.t. DOF(S") < K: It was proved [2| that S” is
induced by the set O” of objects traversed during the last search for an augmenting path.
Taking K = DOR(O', S), we obtain DOF(S") < DOR(0",S) which implies S” is over or
exact s_rig2. Linking R successively to all DOR-minimal subsets of objects in the GCSP
allows to identify an over or exact s_rig2 subsystem if there exists one. A DOR-minimal
set O of objects in a GCSP S verifies VO' C O, DOR(0,S) > DOR(0O',S). DOR-minimal
subsets contains at most 3 objects for GCSPs built on points, lines and planes in 3D.

A GCSP S = (0, () iss_rig2 if it contains no over-s_rig2 subsystem and verifies DOF(S) =
DOR(0,S). To find an over-s_rig2 subsystem, we use the same algorithm with capacity
K = DOR(0',8)—1 instead of DOR(0O', S).

These algorithms are polynomial in the size of DOR-minimal sets if the DOR can be com-
puted in polynomial time. Computing the DOR is polynomial for mechanisms and GCSPs
limited to metric constraints. It is difficult for GCSPs with incidence and parallelism con-
straints since they introduce explicit degeneracies. Other easy classes have to be found.
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Spherical curves have various applications in geometric modelling and in kinematics and
animation. For instance, curves on the 4D unit sphere can be identified with spherical (i.e.,
rotational) motions, and they can therefore be used for computer animation and robot motion
planning.

Rational curves on quadric surfaces can be seen as solutions to certain Diophantine equa-
tions in the ring of polynomials. In the case of the sphere S?, which is a representative of the
class of oval quadrics, this equation takes the form w? = x2 4 y? + z2. All irreducible solutions
can be generated with the help of a classical representation formula from number theory, which
was first noted by V.A. Lebesgue in 1868 [1]. More recently, this formula has been used to
define a mapping from real projective 3-space onto the unit sphere, § : P3(R) — S2, which
has been called the generalized stereographic projection [2|. Due to its algebraic origin, this
mapping can be used to generate any rational curve of degree 2n on the sphere as the image
of a curve of degree n.

Besides, this mapping has been be analyzed from a geometrical point of view. It can be
shown to identify the points of the unit sphere with a very special two—parameter system of
lines, which is called a elliptic linear congruence. (See [3| for more information on line geom-
etry). As a major advantage, the generalized stereographic projection avoids the dependency
on the choice of the center of projection, which is always introduced by using the standard
stereographic projection.

We use the generalized stereographic projection to generate and to analyze the solutions to
the C' Hermite interpolation problem with spherical rational curves on the sphere S?. Given
two points with associated first derivatives on a sphere, we interpolate these data with a ra-
tional curve segment of degree 4. (In the 4D case, the data span a three-dimensional space,
and is natural to ask for solutions which are contained in it. Note that also non-3D solutions
exist; they have no singularities.)

The given data can be interpolated with a two—parameter family of curves. Some examples
are shown in the following figure.
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The black curve segments match the same C'' Hermite boundary data.

Using the generalized stereographic projection, each solution can be identified with a point
in a certain parameter plane. We discuss the shape of the solutions, which is characterized by
the presence of cusps or double points. This results in a so—called characterization diagram:
the parameter plane is subdivided in different regions which correspond to solutions exhibiting
the same shape.

This talk is based on joint work with Wenping Wang (The University of Hong Kong,
China).
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In CAGD, there are two possibilities to define planar curves: the implicit form f(z,y) = 0,
or by parametric equations x = z(t)/w(t) and y = y(t)/w(t) where x(t),y(t), and w(t) are
polynomials. Both the parametric and implicit representation have its own advantages. The
availability of both often results in simpler computation. For example, if both implicit and
parametric representation are available, the intersection of two curves is obtained easier than
if only implicit or parametric representation is available.

From classical algebraic geometry, it is known that each rational parametric curve has an
implicit representation, while the converse is not true. The process of converting the paramet-
ric equation into implicit form is called implicitization. A number of established methods for
ezact implicitization exists: Resultants [4], Grobner bases [1|, and Moving curve and surface

[9]-

However, ezact implicitization has not found widespread use in CAGD. This is in part due
to the following facts:

e Exact implicitization often produces large data volumes.

e Exact implicitization process is relatively complicated, especially, in the case of high
polynomial degree.

e A single exact implicitized parametric curve may have unwanted components or self
intersections.

For these reasons, approzrimate implicitization has been proposed. A number of methods are
available for approximate implicitization: Montaudouin and Tiller [8] employed a power series
method to obtain local explicit approximation (about a regular point) to polynomial para-
metric curves and surfaces. Chuang and Hoffmann [3] extend this method using what they
called “implicit approximation”. Dokken [5] proposed a new way to approximate the paramet-
ric curve and surface, globally, in the sense that the approximation is valid within the whole
domain of the curve segment or surface patch. Sederberg et al. [10] employed monoid curves
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and surfaces to find an approximate implicit equation and approximate inversion map of a
planar rational parametric curve or a rational parametric surface .

This paper discusses the problem of constructing what we call a spline implicitization for
planar curves: a partition of the plane into polygonal pieces, and an implicit polynomial for
each piece. On the boundaries, these polynomial pieces are joined together with C™ continuity
for suitable choice of m.

Recall that the parametric and implicit representations of a planar curve have the same
polynomial degree n. However, the number of the coefficients in the parametric case is 2(n+1)
while it is (n+1)(n+2)/2 in the implicit case, i.e., in the implicit case, high polynomial degree
will lead to expensive computation.

Therefore, the main goal of this paper is to find a C! low degree spline implicit represen-
tation of a given parametric planar curve. We extend our technique proposed in [6]. First,
to ensure the low degree condition, quadratic B-splines are used to approximate the given
curve via orthogonal projection in Sobolev spaces. Adaptive knot removal, which is based
on spline wavelets [2], is used to reduce the number of segments. The resulting quadratic
B-spline segments are implicitized. These implicitized quadratic segments are joined together
with O continuity along suitable transversal lines. Using results from classical differential
geometry 7], the asymptotic behavior of these transversal lines for small step size is analyzed.
We showed that these lines are always well behaved, except at inflections of the original curve.

Finally, by multiplying with suitable polynomial factors, the segments are joined with
C'. The main problem was to “localize” the construction, as otherwise the degree of the
implicit representation would depend on the number of segments. In order to localize the
construction, we introduce some additional partition lines and multiply each segment by a
piecewise quadratic multiplier, defined as a quadratic polynomial in each sub-patch. In this
case, we get a global C! spline curve of degree 4. As an advantage, we have a smaller data
volume compared with the case of ezact implicitization.
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In recent years, with the introduction of reverse engineering in the fields of 3D modeling,
there has been increased need for complex and high detailed models, which are generally cre-
ated by 3D laser scanner, in many computer graphics applications. Current high-end graphics
systems are capable of rendering tens of millions of polygons per second. However, the com-
plexity of large geometric datasets appears to be growing at a faster rate as compared to
the rendering capabilities of the graphics systems. The number of polygons much affects the
rendering speed of the system as well as memory usage. Although the highly complex and
detailed models can provide a convincing level of realism, it must be noted that the complexity
of the model does not mean the degree of recognition of the model. Because the human cannot
distinguish the degree of details from models with various resolution more than some level of
complexity. This means that over highly complex model can cause rather problems. Fortu-
nately, the full complexity of the models is not always required and desirable in applications,
such as simulation and virtual reality systems, focusing on the real-time interactivity. Since, it
is acceptable to decrease the fidelity of the models for increasing the runtime efficiency. More-
over, in such systems, an object might be projected on the screen at various scales, according
to the distance from the viewer. We, however, cannot recognize the degree of visual details,
as the size gets smaller. Therefore, it is useful to have various simpler versions of original
complex models according to its uses in various applications. The surface simplification is one
of the methodologies to solve the problems. In polygonal surface simplification, the goal is to
take a complex polygonal model as input and automatically generate a simplified model as
output without a loss of geometric properties of the original model if possible.

The goals of this works are to generate a various simpler versions of original complex model
with retaining the characteristic features of the original model even after drastic simplification
process. The primary contributions of this work are as following:

1. Error metric guaranteeing feature preservation: We have developed an error metric
that describes and reflects the geometric features of surface and the geometric changes
before and after simplification. To define the error metric, we introduced the orientation
component of local surface as an additional property.

2. Surface simplification algorithm based on half-edge contraction manner: We have devel-
oped a surface simplification algorithm based on half-edge contraction manner utilizing
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the error metric is implemented. The half-edge based scheme is the method that reposi-
tions a new vertex after the edge contraction by merging one of the two vertices to the
other in previous edge having directionality. It is more efficient in memory usage and
useful in real-time applications, which require progressive transmission of large amount
of surface data and instant rendering compared to existing methods adopting optimal
positioning scheme.

In addition, the proposed simplification algorithm has some additional features or advan-
tages. The algorithm assumes a high simplification rates. In many cases, according to our
observations, when the original model is simplified less than some degree of simplification ra-
tio, there is almost no visual difference. Moreover, applications for real-time rendering might
demand higher rate of simplification to decrease the complexity of a scene. So, the proposed
algorithm is concentrated on the preservation of geometric features of the original model even
after performing drastic level of simplification. Another feature of the algorithm is that the
reduction process is completely automated. A number of existing algorithms require a user
to specify an error term, i.e. distance. However, requiring a user intervention to specify the
desired fidelity of the approximation is not practical and thus not a good approach. Since, to
run the algorithm, a user should set the different error terms according to the various models
to be simplified, although the user may not have any knowledge about the models. The user
intervention in the proceeding of the algorithm often means that the absence of the error met-
ric. A surprising number of algorithms use no metric at all. In the proposed algorithm, the
only constraint to halt the algorithm is the target triangle or vertex count, which is specified
by a user. Whether or not to support the triangle or vertex-budget approach is important for
time-critical rendering on which we focus.
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An affine algebraic variety is the set of solutions of a system of polynomial equations. Given
a set of polynomials fi,..., f, the geometric aspects of finding and describing their common
solutions V(f1, ..., fn) may be summarized by the notion 'parametrization of varieties’. While
there is an obvious need for a concise description of the solution set of a polynomial system,
in applications the problem often arises just the other way round. For instance, in Computer
Aided Geometric Design one often asks for a finite set of polynomial equations, whose set of
solutions contains all image points of a given parametrized surface in 3-space. Of course one is
interested in such a system which contains these image points in a minimal way. Finding such
a system from a given parametrization is called 'implicitization’. Thus, if p is a parametrizing
map, implicitization is the problem of finding the smallest algebraic variety X that contains
the parametrized set im(p).

We consider several methods of computing the implicit form. Among others, they make
use of Grobner Bases, resultants and interpolation techniques. All these methods are related
to Elimination Theory which in its modern developments lies at the heart of implicitization.

Interpolation

Finding the implicit representation of a paramtrized variety means finding the coefficients of
a finite set of polynomials. So, if we know bounds for the degrees of the desired polynomials,
we may evaluate the given parametrizing functions in some finite set of interpolation nodes,
obtaining a linear system L. A nontrivial solution of L yields an answer to the implicitization
problem. Although such degree bounds are easy to compute, the direct approach often fails
due to the huge size of the linear system. Recently there has been progress in the development
of methods taking advantage of the special type of such a linear system.

Grobner Bases

The fundamental theorems on implicitization describe the variety X = im(p) with the aid of
elimination ideals which therefore are of central interest.

Theorem 1 (Elimination). Let a C Kk[t1,...,tm,Z1,-..,2Zy] be an ideal and G a Grébner
basis of a with respect to an elimination order t; >> ;. Then G Nk[x1,...,z,] is a Grobner
basis of a Nk[z1,...,x,].

Taking into account the existence of algorithms for computing the reduced Grobner basis
out of any ideal basis, the problem of finding the implicit representation of varieties given by

!Partially supported by the Austrian Science Fund (FWF) under the special research area SFB F013.
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rational parametrizations is completely solved. However, computing Grobner bases for the
mentioned ideals is a costly task. This is the reason to consider also different methods of
implicitization.

Resultants
Consider positive degrees dy,...,d, representing the spaces of homogeneous polynomials in
k[xg,...,x,]. For each pair of indices i,a where 0 < i < n and |a| = d; we introduce a

variable y; o, constructing the polynomial ring Z[y; o). If Q € Z[y; o] and F; = Z| ol=d; Ci,aT*
are homogeneous polynomials in k[zg, ..., x,] of degree d; (0 < i < n) then Q(Fy,...,F,) is
the result of replacing in 2 the variable y; o by the scalar ¢; .

Theorem 2. Let K be algebraically closed and firz positive integers dy, ... ,d,. Then there is
a unique polynomial Res € Zy; o] with the following properties:

1. If Fy,...,F, € K[xg,...,z,] are homogeneous of degrees dy, . .. ,dy then V(Fy, ..., F,) #
0 if and only if Res(Fy,...,F,) =0.
2. Res(zdo, ... af) =1.

n

3. Res is irreducible in K[y; o].

Roughly speaking the implicit representation of a parametrized variety is given by the
resultant of a family of homogeneous polynomials. The problem is that the resultant vanishes
identically in case the parametrization has base points. One solution to this problem is given
by the following concept.

Moving Varieties

Let X be given in parametrized form by rational functions %, ey f—(’) where f, € k[s1,..., Sp)-
A moving variety of type d and multi-degree (o1,...,0,,) 1s a polynomial

o1 Om

« a i1 %
Y Y AR st (1)
i1=0 im =0 |a|=d

For each fixed value of s1,..., s, (1) is the implicit representation of a variety in IP"(K). The
moving variety is said to follow X if

o1 Om

« a1 tm
DD D A SOt s =0 (2)
i1=0  im=0|a|=d

In its simplest instances the method of moving varieties presents itself as a generalization of
the classical resultant method.
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In this talk we consider the problem of multiple algebraic representations and multiple
elimination results, and the solution by combining expansion and simplification techniques, in
automated geometric theorem proving with Grassmann-Cayley algebra, Clifford algebra and
their related bracket algebras.

To better understand the situation of the problem, we divide the content into three parts.

Projective geometry with Grassmann-Cayley algebra and bracket algebra

Multiple algebraic representations usually occur in problems related to conics. The basic
constraint that six points in the projective plane are on the same conic has 15 different
representations by bracket equalities. In proving a theorem involving such a constraint in either
its hypothesis or conclusion, the proving procedure can be made drastically different (either
much simplified or much more difficult) by choosing different representations. In general
all possible representations of a geometric constraint must be considered, and techniques on
optimal selection should be developed.

Multiple elimination results come from different expansions of the same Cayley expression
into bracket polynomials. For example, let a, b, ¢ be three points in the projective plane, let a
be the intersection of lines 12 and 34, let b be the intersection of lines 1’2’ and 3'4’, and let
¢ be the intersection of lines 1”2” and 3”4”. In Grassmann-Cayley algebra the constructions
of a, b, c are represented by the following Cayley equalities:

a=12A34, b=12'A3'4, c=1"2"N3"4".

Here the juxtaposition 12 denotes the join of vectors 1,2, and the wedge symbol denotes the
meet of two bivectors. If we want to eliminate points a, b, ¢ from the bracket [abc], we only
need to substitute the corresponding Cayley expressions of the three points into the bracket,

and we get
[abc] = [(12 A 34)(1'2 A 3'4') (172" A 3"4")).

The right side of the equality has 16847 different expansions into bracket polynomials. Choos-
ing different expansions has considerable influence upon the computational complexity of later
algebraic manipulations. Thus, techniques on optimal selection of expansions should be de-
veloped.

In the polynomial ring of coordinates, simplification techniques of a polynomial expression
contain expansions, collections, factorizations, etc. In the bracket ring, similar simplification
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techniques must be developed in order to carry out efficient computation. The corresponding
techniques are called Cayley expansions, contractions and Cayley factorizations respectively.

Affine geometry with affine Grassmann-Cayley algebra, affine bracket alge-
bra and heterogeneous Grassmann-Cayley algebra

The most common model of an affine space is a hyperplane away from the origin in a vec-
tor space with one more dimension. The hyperspace composed of all displacement vectors
fully characterizes the affine space in that a vector in the surrounding vector space represents
an affine point if and only if it does not belong to the hyperspace. Vectors in the hyper-
space represents points at infinity of the affine space. In this model we can simply adopt the
Grassmann-Cayley algebra and bracket algebra for the projective geometry of all the affine
points and the points at infinity, under the modification that a new operator should be devel-
oped to distinguish affine points from points at infinity. This operator, known as the boundary
operator in elementary topology, is simply a bracket operator in bracket algebra. The modified
version of Grassmann-Cayley algebra and bracket algebra are called affine Grassmann-Cayley
algebra and affine bracket algebra respectively, and a parallel development of the expansion
and simplification techniques is necessary.

By discarding the homogeneous feature of the affine Grassmann-Cayley algebra, we get
another version of the algebra, which generalizes the classical Grassmann algebraic represen-
tation of affine geometry.

Metric geometry with different Clifford algebras and Clifford bracket alge-
bras

For the same metric geometry, there are usually several models to realize them in inner product
spaces. For Euclidean geometry, for example, one of the most useful models is to realize the
Euclidean space in the null cone of a Minkowski space with two more dimensions. For each
model there is a Clifford algebra generated by the corresponding inner product space. Each
algebra presents a different algebraization of the same geometric problem.

The techniques of expansion and simplification can be further developed in Clifford algebra.
In fact, they constitute the main contents of the so-called expansion theory of general Clifford
algebras and Clifford bracket algebra. Powerful new computational tools for metric geometries
can be developed in this way.

In this workshop, we intend to talk about our recent research work on the above three
topics: algebraic representation, expansion and simplification in applying Grassmann-Cayley
algebra and Clifford algebra in automated geometric theorem proving.
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A fundamental problem in Computer Aided Design is the formulation of effective approxi-
mation schemes or algebraic algorithms which solve for the location of points on a plane, given
a set of relative separations (dimensions) between them. For CAD applications, an important
class of configurations are those for which the dimensions are just sufficient to ensure that
the points are located rigidly with respect to one another. These configurations are known to
correspond to maximally independent graphs. A number of algebraic and numerical methods
have been proposed for solving these configurations (Owen [4], Bouma et al [1], Light and
Gossard [3]) and these have been successfully implemented in CAD programs.

These algebraic methods assemble the solution for complete configurations from the solu-
tions of rigid subcomponents. The assembly process involves only rigid body transformations
and the solution of quadratic equations. The simplest subcomponent is a triangle of points
and this is solvable by quadratic equations. All the other subcomponents in this process
are represented by graphs which are (vertex) 3-connected and so the problem of solving any
general configuration is reduced to the problem of solving just those configurations which are
represented by 3-connected graphs.

We have previously suggested that with generic dimension values a subcomponent which is
represented by a 3-connected graph cannot be solved by quadratic equations (Owen [4]). This
would mean that for generic dimensions the existing algebraic methods solve all configurations
which can be solved by quadratic equations. Such configurations are also known as "ruler
and compass constructible". Gao and Chou [2] have given a procedure for determining in
principle if any given configuration is ruler and compass constructible. However their analysis
is based on the detail of derived elimination equations and they do not address the problem
of solvability for general classes of graphs.

We propose to strengthen the suggestion above to the following conjecture:

Conjecture. A generic configuration of dimensioned points on the plane whose graph is
3-connected is not solvable by radicals.

We have proved the conjecture for the (infinite) class of graphs which have a planar em-
bedding. For this class we establish a reduction scheme through which we can prove that
the solution to any rigid 3-connected graph with a planar embedding leads to the solution of
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configurations with the maximally independent 3-connected graph shown in Figure 1, which
we call the doublet.

Figure 1.

The proof is both long and eclectic, drawing on new and known results from graph theory,
algebraic geometry and Galois theory. Moreover, the final step uses the Maple Mathematical
software package to show that there are certain dimension values for which the doublet has
non-radical roots. This requires an examination of the generators of single variable elimination
ideals which are polynomials of degree 28.

We will give an outline of the main ideas and state the relevant theorems, the proofs of
which will appear elsewhere.
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In our talk, we describe the following different aspects of modeling multidimensional point
sets (shapes) using real-valued functions of several variables:
- algebraic system as a formal framework
- representation of shapes, operations, and relations using real-valued functions
- internal representation and algorithms
- specialized language for function-based modeling
- extension to point sets with attributes (hypervolumes)
- some applications.

Algebraic system. The concepts of the function representation FRep [1] can be pre-
sented as an algebraic system (Objects, Operations, Relations). A complex object is defined
as F'(X) > 0, where F is a single continuous function of several variables (coordinates X of a
point in a multidimensional space). Operations are unary, binary, and k-ary operations closed
on the object representation. Relations as, for example, “interpenetration” are defined on the
set of objects using predicates.

Representation. A complex object can be constructed by applying different operations
to primitive objects. A primitive is considered a "black box" with the defining function given
by a known function evaluation procedure. There is a rich system of operations closed on the
representation, i.e., resulting in a continuous real function: set-theoretic operations and Carte-
sian product defined using R-functions (exact C* continuous definitions for set operations on
functionally defined arguments), blending and bounded blending, offsetting, sweeping, projec-
tion, deformation, metamorphosis, and extended space mapping, which combines spatial and
functional transformations (mappings). FRep can be considered a combination and general-
ization of Constructive Solid Geometry (CSG), implicit surfaces, sweeping, and other known
shape models.

Internal representation. The real-valued function F' defining the point set is associated
with a tree structure that serves as its underlying representation. The function F is evaluated
at the given point by a procedure traversing a tree structure with primitives in the leaves and
operations in the nodes of the tree. In general, a k-ary tree should be supported. Specific
details of processing different operations are discussed.

Specialized language. HyperFun is a specialized high-level modeling language suitable
for specifying FRep models [2]. While being minimalist, it supports all main notions of FRep.
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HyperFun is also intended to serve as a lightweight exchange protocol for FRep models to sup-
port platform independence and Internet-based collaborative modeling. A minimal API for
interrogating HyperFun models includes the parsing and the function evaluation procedures.
The applications developed for HyperFun include a polygonizer (surface mesh generator),
plug-in to a ray-tracer, and a set of Web-based modeling tools such as translator to Java,
polygonizer in Java, and interactive modeler based on empirical modeling principles and pro-
vided as an applet.

Constructive hypervolume model. Multidimensional point sets with multiple at-
tributes (hypervolumes) can be used to model heterogeneous objects with internal distribution
of material, density, temperature, and other scalar attributes. FRep was recently applied to
define a constructive hypervolume model [3]. The underlying representation can be defined
in a similar way by introducing a set of tree structures. Along with the tree corresponding
to a function F defining the point set, there are constructive trees associated with functions
S; defining attributes and reflecting the construction logic of the attribute definition. We
describe an extension of HyperFun providing for using it to model hypervolumes.

Applications. Main current application areas of FRep and HyperFun include education
(geometry and geometric modeling, computer graphics, programming languages), animation
and multimedia, and computer art. The constructive hypervolume models can be applied in
multiple material rapid prototyping, geological and biological modeling, physics based simu-
lations, and volume graphics. We are also planning to develop an advanced computer-aided
design system based on several geometric representations including FRep and the constructive
hypervolume model.
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We study the Minkowski sum S of two regular quadrics Q1, Q2 in real affine 3-space A% and
will answer the question, under which conditions the Minkowski sum S admits real rational
parametrizations and how they can be computed. A regular quadric @ is given by a quadratic
equation

X'MX =0,

where M is a real symmetric 4x4 matrix and X = (1,z,y,2)! is a vector containing the
unknowns x,y, z. It is assumed that M has full rank and that () possesses real points which
implies that @ is either an ellipsoid, a paraboloid or a one or two sheet hyperboloid. It is known
that any quadric @ is birationally equivalent to the projective plane P?. By stereographic
projection ¢ : P? — @ C P3 it is possible to construct rational parametrizations for Q.
Quadrics in affine space A3 possess same properties and o : A2 = Q C A? parametrizes
Q —{e, f}, where e, f are a pair of real or conjugate complex intersecting lines.
The Minkowski sum S of two sets A, B is defined by

S=a+bacAandbec B,a,be A3

It is known that if A, B are convex then S is convex too and the boundary of S is given by
boundary points a € JA and b € JB whose oriented tangent planes T, and Tj at a and b
respectively, are parallel. If A and B are not convex, the boundary 95 of S is at least a subset
of A+ 0B. In the following we assume A and B to be smooth surfaces, in particular quadrics
and concentrate on the computation of the Minkowski sum S of these surfaces.

A pointwise construction of § can be obtained as follows: We look for points a € A and
b € B whose oriented tangent planes T,,T}, are parallel. Then, at least in the convex case,
s = a4+ b is a point of the boundary surface of the Minkowski sum S and the tangent plane
T, at s is parallel to Ty, T.

Our problem can be reformulated as follows: Given two quadrics Q1, @2, is it possible to
rationally parametrize both of them in a way that the oriented tangent planes T,, and Ty,
are parallel. More precisely we ask for rational parametrizations ¢; (u,v) and ¢2(u,v), where
q; parametrizes @;, such that the oriented tangent planes to corresponding parameter values
(u,v) are parallel. The parameter domain is assumed to be a subset of the affine plane A2.

At first we notice that if there exists a similarity mapping a (the corresponding linear
mapping is a scalar multiple of the identity I) which maps (1 onto @2, the problem is rather
simple since corresponding points q1,q2 = a(g1) with respect to « possess parallel tangent
planes Ty, ,Ty,. In particular this holds for spheres @1, Q2.

In some kind similar is the case where Q1,Q2 are both paraboloids. These are quadrics
which are tangent to the plane at infinity in the projective extension P3 of A3. It can be
shown that the computation of rational parametrizations g1, g2 for which the parallelity of T},
and Ty, holds, is a linear problem.
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At second we observe that the problem is invariant with respect to affine transformations.
Suppose that @2 is an ellipsoid, we assume it to be given by the equation

Q22+’ +22-1=0.

From a Euclidean point of view Q? equals the unit sphere S? and the Minkowski sum S is
nothing else but the outer offset surface (outer parallel surface) of ;. It has been proved
earlier that the offset surfaces of quadrics admit rational parametrizations, see [4]. Further,
this indicates a kinematic generation of the Minkowski sum S. It has to be noticed that the
outer offset S is not a rational surface in the common sense (birationally equivalent to P?),
since its algebraic closure contains in general also the inner offset as a second component.
Nevertheless, there exist real rational parametrizations of the outer offset S which shall be
called improper, since the inverse mapping is in general no longer rational.

Theorem 1. The Minkowski sum S of a regular quadric Q1 and an ellipsoid Q2 is affinely
equivalent to an outer offset of Q1 and it admits rational parametrizations.

If Q1 and Q2 are both regular ruled quadrics (which contain one dimensional subspaces) it
is already proved in [3] that their Minkowski sum S = @1 + Q2 admits rational parametriza-
tions. Moreover, this property holds for general rational non developable ruled surfaces Q1, Q2.

Finally it shall be proved that the more general statement holds:

Theorem 2. The Minkowski sum S of two reqular quadrics Q1, Q2 in affine space A3 admits
rational parametrizations.
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Modern 3D measurement devices (laser range scanners, structured light based measure-
ment,...) produce a large amount of 3D data of geometric objects. These data are more or
less structured point clouds. We have a variety of methods for processing these clouds of
points: triangulation, mesh decimation, automatic CAD model generation (reverse engineer-
ing) through surface fitting [8]. Together with rapid prototyping and 3D printing, there is a
complete chain for the emerging area of 8D technology. For the essential steps such as data
acquisition, CAD model building, model modification and printing there are already good
solutions on the market.

Whereas the basic concepts and algorithms for 3D Vision and Reverse Engineering of
geometric objects are available, the degree of automation and intelligence in the systems still
has be increased. A reverse engineering system should not just fit any surface to the data as
long as it is within tolerance. For several reasons including functionality and the choice of
the right manufacturing tools, it is important to understand the shape, i.e. recognize special
shapes, symmetries and other geometric constraints, and build an according CAD model [8].

In the talk, the speaker will survey recent advances on shape understanding and recon-
struction and present problems which might be efficiently solvable using techniques developed
for automatic deduction in geometry.

A basic entity for shape understanding is the detection of symmetries [3]. The computation
of exact symmetries of polyhedra has been treated by several authors. The methods used are
those of Computational Geometry; at the heart of most algorithms is a linear time graph
isomorphism algorithm [1]. All these results are not efficiently applicable to the decision
whether rather dense point sets such as those coming from modern 3D scanners, represent
symmetric objects. This is so because of errors in the data, the high number of data points,
and the fact that the measurement data do generally not possess the same symmetries as the
underlying objects. In a recent contribution to approximate symmetry detection for reverse
engineering, Mills at al. [4] treat models with up to about 200 vertices. There seems to be
no algorithm which would be capable of detecting symmetries and approximate symmetries
of scanned objects at hand of the data point clouds arising from the measurement system.

So far, we have considered discrete symmetries. Objects which are invariant under a
continuous group of motions, are general cylinders, surfaces of revolution and helical surfaces.
If objects exhibit such surfaces and are just given by a rather dense cloud of measurement
points, a solution to the shape detection and reconstruction problem has been found via line
geometry. One first estimates surface normals of the data points and then fits a linear line
complex to those normals [7]. This approximation problem in line space requires the solution
of a general eigenvalue problem. In case that a good fit is possible, the characteristics of the
linear complex allow us to compute the kinematic generation of the underlying shape ( i.e.,
the rotational axis for a surface of revolution, helical axis plus pitch for a helical surface, the
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translational direction in case of a cylinder surface). It is then rather simple to compute a
generating profile curve and finally the approximating surface.

We will also discuss approximation in the space of planes and its application to the recog-
nition and reconstruction of planar faces and developable surfaces in point clouds [6].

After one has solved the segmentation problem, i.e. the partition of the point cloud
into simpler regions, and one has detected geometric constraints, one still has to find a final
approximant which satisfies the detected constraints and fits the data points [2, 5]. This is a
combination of a constraint solving problem and an approximation problem.

There seems to be a wide unexplored area of applications for automatic deduction in
geometry to the present shape understanding and reconstruction problems. This problem
area also illustrates the necessity of combining symbolic and numerical computations.
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During the last few years many algorithms for automated geometry theorem proving ap-
peared and there exist some very good implementations of these algorithms. We present an
implementation of some of these algorithms in the frame of the Theorema system. Theorema
isa system that provides a uniform frame for theorem proving in all areas of mathematics,
which is programmed in Mathematica. Theorema is being developed at the RISC Institute by
the Theorema Group under the direction of Bruno Buchberger. Several examples of geometry
proof generated by our implementation are provided. Besides the implementation of known
proving methods we also present two new approaches: systematic exploration of geometric
configurations and a new method for proving nontrivial geometry theorems involving order
relations.
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An algebraic curve/surface V' can be given by a polynomial equation in two/three variables
(“implicit representation”). The parametrization problem asks for a parametric representation,
in terms of rational functions in two/three parameters. In other words, we look for a general
solution of the given algebraic equation, in terms of rational functions.

Such a general solution may not exist; so, a first step in an algorithmic solution is to decide
the existence. In the affirmative case, we say that V is unirational.

A parametrization which is birational (as a rational map from the line/plane to the
curve/surface V) is called proper. If p is a proper parametrization of V', then any parametriza-
tion of V' can be obtained by specializing from p. Thus, a proper parametrization may be also
seen as a most general solution. The variety V is called rational iff it admits a most general
solution.

Assume that we have given a parametrization; we ask the question whether we can find a
simpler parametrization for the same variety. Obviously, the answer depends on your concept
of simplicity.

“Simple” could mean that the degree of the polynomials in the numerator or denominator
of the rational functions are small. In the curve case, the degree is minimal precisely for the
proper parametrizations. More precisely, this degree is equal to the degree of the curve iff the
given parametrization is proper, and it is larger otherwise. So, simplification in this sense is
equivalent to properly parametrizing an improperly parametrized curve. This problem is also
called the Liiroth problem. Algorithmic solutions have been proposed in [10, 5].

In the surface case, there are proper parametrizations of arbitrarily large degree, for a
fixed surface. So, simplification is quite different from the Liiroth problem. If, however, the
input parametrization is already proper, we can always find the simplest parametrization by
specialization, because we have a most general parametrization.

We give here a new algorithm that produces a reparametrization with degree at most r
times the degree of the smallest possible reparametrization, where r = 5. The computational
cost is a polynomial number of field operations and solutions of univariate equations of poly-
nomial degree, where the measure for the input is the degree of the given parametrization.
For the complex case, the algorithm will also be presented in [9]. In this case, the constant
r above may be reduced to r = 2. Here, we also discuss the necessary adaptions to the case
where the ground field is not algebraically closed.

Note that we do not attempt to simplify the coefficient field of the parametrization, as the
authors in [1, 12, 2| do for the curve case.

Our problem is similar to the reduction of linear systems of plane curves by Cremona
transformations. This problem has been considered by the many authors, see [3, 4, 6]. The
main difference to our problem is that there, one attempts to do a reduction by quadratic
Cremona transformation, and this gives in turn a proof of the classical result that the Cremona
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transformations are generated by the quadratic ones (see [11]). Unfortunately, the classical
methods work only for linear systems with genus less than or equal to 4 (this corresponds to
the simplification of parametrizations of surfaces of sectional genus less than or equal to 4.)
Also, the reduction algorithms are quite complicated, and we think that the computational
costs would be large.

For arbitrary genus, the first result bounding the degree of the reduced form was given in
[8], formulated in the terminology of parametrizations. More precisely, theorem 4 in that paper
gives an upper bound for the smallest possible parametrization in terms of the sectional genus.
The same paper contains also techniques for finding nontrivial lower bounds for the degree
of a parametrization (nontrivial means not the bound that follows immediately by Bezout’s
theorem), which will be essential for proving the main statement in this paper. However, the
proofs in [8] are not constructive.

The main idea for the simplification algorithm in this paper is to simulate the parametriza-
tion algorithm [7]. Since we already have a parametrization available, we do not need to re-
solve the singularity of the surface, and this is the most expensive subtask in [7]. Essentially,
the resolution of the singularities can be replaced by the analysis of the base points of the
parametrization.

The author has been supported by the Austrian Science Fund (FWF) in the frame of
SFB-project F13.

References

[1] Andradas C., Recio T., Sendra R., Relatively optimal rational space curve reparametriza-
tion through canonical divisors, In Proc. ISSAC 1997 (1997), ACM Press, pp. 349-355.

[2] Andradas C., Recio T., Sendra R., Base field restriction techniques for parametric curves,
In Proc. ISSAC 1997 (1999), ACM Press.

[3] Castelnuovo G., Ricerche generali sopra sui sistemi lineari di curve piane, In Memorie
scelte, Zanichelli, 1891, pp. 137-187.

[4] Conforto F., Le superfici razionali, Zanichelli, 1939.

[5] Gutierrez J., Rubio R., Sevilla D., Unirational fields of transcendence degree one and
functional decomposition, In Proc. ISSAC 2001 (2001), ACM Press.

[6] Nagata M., Rational surfaces I + II, Mem. Coll. Sci. Kyoto 32 and 33 (1960), 351—
370+271-293.

[7] Schicho J., Rational parametrization of surfaces, J. Symb. Comp. 26, 1 (1998), 1-30.

[8] Schicho J., A degree bound for the parameterization of a rational surface, J. Pure Appl.
Alg. 145 (1999), 91-105.

[9] Schicho J., Simplification of surface parametrizations, In Proc. ISSAC 2002 (2002), ACM
Press. to appear.

[10] Sederberg T. W., Improperly parametrized rational curves, Comp. Aided Geom. Design
3 (1986), 67-75.

44



[11] Shafarevich I. R., Ed., Algebraic surfaces, Proc. Steklov Inst. Math., 1965. transl. by
AMS 1967.

[12] van Hoeij M., Rational parametrizations of algebraic curves using canonical divisors,J.
Symb. Comp. 23 (1997), 209-227.

45



Introducing More Abstract Algebraic Proofs in
Projective Geometry

Dana Scott
Carnegie Mellon University Pittsburgh, Pennsylvania, USA
Email: Dana_Scott@gs2.sp.cs.cmu.edu

Introduction

On four years (1989, 1993, 1997, 1998), the author offered a one-semester course on the topic of
algebraic curves in the classical complex projective plane. The purpose of the present lecture
is to review this experience and suggest what might be some desirable future developments.

Algebraic geometry in projective form standardly employs homogeneous polynomials. In
the plane, the zeros of a homogeneous xyz-polynomial represent an algebraic curve. The dual,
uvw-polynomials, in a dual set of variables, represent the tangential form of curves, that is to
say envelopes. The first question to be answered is how the full impact of duality—familiar
from elementary axiomatic projective geometry as the duality between points and lines—can
be extended to curves of higher degree and be put in a suitable algebraic for appropriate to
the use of symbolic computation.

In order to derive the necessary formulae it is convenient to introduce the ring of differ-
ential operators. If we consider the space of all xyz-polynomials as a space of (continuous)
infinitely differentiable multivariate functions, then we know that on such functions, f, the op-
erators of partial differentiation, 9/0x, d/0y, and 0/0z, which can be written as D[f, x], DI[f,
y], and DIf, z] in Mathematica notation, are associative and commutative (under composition
of operators). These compositions are also linear operators, and any linear combination of lin-
ear operators is again a linear operator. Moreover, composition of linear operators distributes
over all linear combinations of operators; hence, as is well known, the differential operators
generate acommutative ring of operators.

It is thus possible to define a ring homomorphism from the (free) ring of uvw-polynomials
to these operators; and this homomorphism is actually an isomorphism. In particular, if
f is an xyz-polynomial and g is a uvw-polynomial of lower degree, then we can notate
by PDIf, g] the result of letting g operate on f as a differential operator by calling up
this homomorphism. However, differentiation between xyz-polynomials and uvw-polynomials
can be made symmetric or dual in specific sense. Indeed, if f is a homogeneous xyz-
polynomial, and g is a homogeneous uvw-polynomial, then PD[f,g], an operation the author
calls polydifferentiation, may be defined as the result of allowing the polynomial of lower
degree to operate on the polynomial of higher degree as a differential operator. In other words,
the symbol u can be regarded as the operator 9/9x, or the symbol x can be regarded as the
operator d/0u, and similarly for other variables. In the case of polynomials of equal degree,
by reference to monomials, it is easy to see that in evaluating PDIf, g] it makes no difference
which is taken to be the operator and which is the operand.

The linear homogeneous xyz-polynomials, f, can be regarded as lines; while the linear
uvw-polynomials, g, can be taken as points (up to a constant, non-zero factor, as with
homogeneous coordinates). Then the equation PD[f, g] == 0 means that the point g lies
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on the line f. (In the linear case, partial differentiation works just like a dot product between
vectors.) The equation also means the line f passes through the point g, and this remark
is the basis for the explanation of the duality between points and lines. What about higher
degrees?

We need is a special case of a theorem of Euler which tell us that, if f is a homogeneous
xyz-polynomial of degree n, and if g is the linear forma u + b v 4+ ¢ w, then we have the
equation

PDIf, gn] == n! fl]a, b, |,

where fla, b, c] is shorthand for the evaluation of the polynomial as a function of xyz at
abc. Among other consequences, this theorem tells us that the equation PD[f, gn] == 0
means that the point g lies on the curve f. But there are many algebraic consequences.

For example, by a simple use of the Binomial Theorem, we can argue that if g represents
an m-tuple point of the curve f, then the polynomial P[f, gn-m] of degree m factors into the
m linear factors representing the tangents to the curve f at the point g. The trick here is
that pairing PDIf, g] is a bilinear paring between the vector spaces of n-degree homogeneous
xyz-polynomials and n-degree homogeneousuvw-polynomials that makes then dual vector
spaces. But the polynomials are not just elements of vector spaces, since they are parts of
a pair of commutative rings, and PD has many simple properties with respect to the ring
structure. A suitable axiomatization of these properties makes the ring of xyz-polynomials
fully dual to the ring of uvw-polynomials, and the formal operations—as indicated—can have
geometric interpretations.

Mathematica well implements commutative algebra (and many algebraic algorithms) and
of course it implements partial differentiation. It does not directly implement a algebra of
differential operators, however. The author—with the help of graduate-student assistants—
was able to do that by defining the function DegP for computing the degree of homogeneous
polynomials, and by transcribing the axiomatic characterization of PD into rewrite rules
between the two kinds of polynomials using Mathematica rule sets. Additionally some ideas of
exterior algebra had to be represented (on linear forms) and some polynomial invariants using
determinants had to be used. Otherwise, polynomial simplification, factorization, and root
finding (all built into Mathematica) were the only other constructs needed. One big advantage
discovered by using symbolic computation in this way was that formulae for the solution of
geometric problems could be developed and then used in numerical computation (for example,
in creating graphical illustrations). The improvement in Mathematica’s ImplicitPlot routine
made good pictures of (real parts of) curves possible.

Looking to the future

The author found this approach to classical, plane projective geometry most satisfactory, as
the symbolic polynomial algebra really gives a middle way between synthetic and analytic
geometry. Several difficult problems remain to be investigated, nevertheless:

(1) How to extend this approach to fields of characteristic p? (2) How to make good use of
symbolic computation with algebraic numbers? (3) How to refine the methods to apply to the real
projective plane? (4) How to move tohigher dimensions beyond plane geometry? (5) How to
make use of modern methods of symbolic computation in ideal theory? (6) How to connect with
other methods of automated theorem proving?

As regards that last point, Mathematica—Dby doing algebraic transformations and symbolic
rewriting—does actually prove theorems; however, these proofs are not fully automatic, as the
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user of the system has to issue the commands to be carried out. The user also has to supply the
interpretation of the results, often resulting in a non-automated search for significant output.
Nor does the system formulate conclusions by itself.

Still, the experience in this course development was encouraging in that the algebra gen-
erated could not be carried out with any pleasure by hand, and the use of the computer
definitely helped the author to think. But, more developments are needed before courseware
can be written that fully uses theorem proving.
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CAD systems still remain modeling tools instead of being design ones. Thus, conceptual
design is mainly done on the paper; once spatial structure of an object is conceived, the de-
signer should again model it with a CAD system and hence loses his time. Therefore, the
problem of design really aided by computer is receiving increased attention. The major trend
is to improve human-computer interface of CAD systems by automating certain geometric
constructions: The designer defines an object by describing its properties and the system in-
fers an appropriate 3D form. The common way to describe properties of an object is to use
3D geometric constraints, which represent elements composing the object and their relations:
incidence, parallelism, orthogonality, distances and so on.

Most geometric constraint solvers use expensive numerical, symbolic or problem decompo-
sition approaches. These solvers work usually in a 3D Euclidean space and hence should treat
many complex particular cases of parallelism and orthogonality. However, there exist tools
that allow to improve significantly “intelligence” and efficiency of geometric constraint solvers
— that are, geometric algebras. We present a new method to resolve formally systems of 3D
projective, affine and orthogonality constraints as well as detect rapidly logical and numerical
contradictions. The method is based on uniform representation of constraints, control of their
structural and numerical consistency and their formal resolution with the Grassmann-Cayley
geometric algebra.

We represent any 3D object with only low-level elements (points, lines and planes) and con-
straints (collinearity, coplanarity, parallelism and orthogonality). On the other hand, elemen-
tary objects can be grouped in primitives of any complexity. Due to usage of the Grassmann-
Cayley algebra and projective geometry we can represent elementary objects and constraints
in a very simple and homogeneous form. Indeed, points, lines and planes are projective sub-
spaces of 3D projective space. The Grassmann-Cayley algebra provides operators that allow
to construct unions, intersections and dual subspaces of such subspaces. We enhance this al-
gebra with the new orthinf operator, which constructs for any projective subspace a subspace
of its orthogonal directions and hence allows to perform certain metric constructions. Thus,
we can decompose projective, affine and orthogonality constraints into sets of projectively in-
variant incidence relations and hence represent any scene as a constraint graph, which vertices
represent 3D elementary objects while edges represent inferred incidences.

Simplicity of the representation allows to ensure efficiently structural consistency of con-
straints. Indeed, geometry of incidences implies only five logical contradictions, such as a pair
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of distinct lines incident to the same pair of points. The idea is to prevent creation of contra-
dictory configurations. To achieve it, we use geometry laws about incidences and orthinfs that
allow efficient realization as interrelated graph update procedures, which infer automatically
new constraints that are consequences of the created ones and applied laws. If such a proce-
dure infers a contradiction, the created constraint is not consistent with already established
ones. Thus, we create only saturated constraint graphs that contain all the consequences of all
the imposed constraints. It allows to improve significantly efficiency of resolution. Further-
more, graph update procedures may be used as a rapid automated geometry theorem prover.

We use a generic geometric constraint solver: It first constructs a formal coordinate-free
solution, which consists of expressions of the Grassmann-Cayley algebra that determine each
of the low-level elements composing a 3D object so that constraints imposed on the element
would be satisfied. Then, it computes a numerical solution from the obtained formal one and
particular constraint values — for instance, given spatial coordinates of certain points of the
3D object. Such an approach improves efficiency because it allows to solve entire classes of
constraint problems and to recompute rapidly numerical solutions once numerical constraint
values are changed. Due to constructive nature of the Grassmann-Cayley algebra, we build a
formal solution of a constraint problem by very efficient propagation of known data. Because
we use saturated constraint graphs, multiple local solutions are possible. To choose the best
one, we establish the operation priorities that ensure minimal computation cost and maximal
accuracy of the whole solution. Remaining alternative local solutions are used to ensure nu-
merical consistency and to recover from precision errors. Furthermore, we can reject many
degenerate solutions without any computations.

We determine automatically whether a constraint problem is under- or over-constrained.
In the first case, the user is demanded to specify new constraints, or the resolution is stopped.
In the second case, consistency of the obtained solution is checked during numerical evaluation.

We compute a numerical solution from the formal one by expressing operations of the
Grassmann-Cayley algebra as exterior and matrix products. We perform all the computations
in doubles, and only if a problem occurs, we use exact arithmetics as backup. It allows to com-
pute efficiently and reliably. We ensure numerical consistency of the solution by computing,
if necessary, alternative local solutions obtained in the formal resolution phase. Separation
of structural and numerical consistency simplifies detection of logical contradictions in con-
straints as well as numerical contradictions in their parameters.

We tested successfully our method for constrained geometric constructions in 3D space as

well as for rapid reconstruction of 3D scenes from their perspective views and constraints that
describe their spatial structure.
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In this paper we consider the Grobner bases of Grassman algebra and its application to
the algebraic geometry. Geometrical statements of constructive type should be given in the
coordinate-free form.
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In computer aided geometric design, a geometric object is often a combination of several
patches. These patches may actually come from a smaller subset of source patches using
affine transformations such as rotation, scale and shear. As the result, some algebraic or even
transcendental constants such as sin(7/3) and cos(w/5) may appear on the equations, which
makes the implicitization much harder.

Usually, parametric forms such as Bezier patches or NURBS are used for designing the objects.
But implicit forms are also needed in several occasion such as for finding the intersection of
the patches or for finding whether or not a point is on a patch. There are several methods for
implicitization such as resultants, Grébner bases and moving curves/surfaces.

The method of Grobner bases has the important advantage that they can solve the implic-
itization problem in full generality. However, Grobner bases are known to be very slow in
implicitizing bicubic patches.

This paper investigate the use of new theoretical results in the method of Grébner bases over
the last five years to improve the efficiency of algorithms for implicitization.

The main result of this paper is that we can dramatically improve the efficiency of impliciti-
zation algorithms using the deterministic Grobner walk conversion. The main ideas are that:
first, since the parametric equations of a patch is already or very close to a Grdébner basis
with respect to any elimination order for the parameters, one can convert a Grobner basis by
partitioning the computation of the basis into several smaller computations following a path
in the Grobner fan of the ideal generated by the system of equations. The method works
with ideals of zero-dimension as well as positive dimension. Typically, the target point of the
walking path lies on the intersection of very many cones, which ends up with initial forms
of a considerable number of terms and therefore huge intermediate polynomial systems. The
deterministic method in [Tra00] to vary the target point can ensure the generality of the posi-
tion, i.e. we always have just a few terms in the initial forms. Second, if a patch is an image of
a known patch under an affine transformation, then one can use the structure of the Grébner
bases to convert from the basis of the known patch rather than computing the Grébner bases
from scratch. This approach, initiated in [Hon97] will speed up the computation, especially
when the image patch has algebraic or transcendental constants.

Our experiments show the superlative performance of our improved Grobner walk method in
comparison with the traditional ones. The average performance is 5 x 10? to 103 times faster
than the direct computation of the reduced Grébner basis with respect to pure lexicographic
term order (using the Buchberger algorithm and the sugar cube strategy).
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We refer to the proceedings of the first three International Workshops on Automated
Deduction in Geometry (published as LNAI 1360, 1669, and 2061 by Springer-Verlag in 1997,
1999, and 2001 respectively) and the Bibliography on Geometric Reasoning (http://calfor.
lip6.fr/\~{}wang/GRBib) for the current state-of-the-art on automated theorem proving in
geometry. The construction of theorem provers has been a common practice along with the
development of effective algorithms on the subject. The GEO - THER environment described
in this paper is the outcome of the author’s practice for more than a decade. An early version
of it was ready for demonstration in 1991, and in 1996 was published a short description
of the enhanced version GEO - THER 1.0. The current version GEO - THER 1.1 provides an
environment for handling and proving theorems in elementary (and differential) geometry
automatically.

In this environment, geometric theorems are represented by means of predicate specifica-
tions. The following is a typical example of predicate specification:

Simson := Theorem(
[arbitrary(A,B,C), oncircle(A,B,C,D), perpfoot(D,P,A,B,P),
perpfoot(D,Q,A,C,Q), perpfoot(D,R,B,C,R)],
collinear(P,Q,R), [x5, x6, x7, x8, x9] );

which will be used throughout the paper for illustration. In general, a geometric theorem
specified in GEO - THER has the following form

T := Theorem(H,C,X)

where Theorem is a predicate specially reserved, T is the name, H the hypothesis and C the
conclusion of the theorem, and the optional X is a list of dependent variables.

In order to perform translation, drawing and proving, coordinates have to be assigned to
points, so that geometric problems may be solved by using algebraic techniques. In GEO -
THER the assignment of coordinates can be done either manually or automatically. The user
may also transform the geometric relations (for the hypothesis and conclusion) into algebraic
equations manually and provide the set of hypothesis-polynomials to H and the conclusion-
polynomial or the set of conclusion-polynomials to C.

We list some of GEO - THER’s capabilities as follows.

e Automatic translation of the predicate specification T of a geometric theorem into an
English or Chinese statement, into an algebraic specification, or into a logic formula.
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e Proving T automatically using one of the five provers implemented on the basis of some
sophisticated elimination algorithms using characteristic sets, triangular zero decompo-
sitions, and Grébner bases.

e Drawing geometric diagrams automatically from T; the drawn diagrams may be modified
and animated by mouse click and dragging.

Automated generation of an HTML file (with Java applet) or a PostScript file, docu-
menting the last manipulations and machine proof of T.

e Automated interpretation of the geometric meanings of the produced algebraic nonde-
generacy conditions (with respect to T), in most cases.

e Searching for and loading the specification of a theorem from the built-in library to
the GEO - THER session, automated GEO - THER demonstration, mouse-driving GEO -
THER interface, and online help.

The majority of GEO - THER code has been written as Maple programs, and one can use
GEO - THER as a standard Maple package. Some of the GEO - THER functions need external
programs written in Java (and previously in C) and interact with the operating system. This
concerns in particular the functions for automatic generation of diagrams and documents and
the graphic interface, which might not work properly under certain operating systems and
Java installations. GEO - THER has been included as an application module in the author’s
Epsilon library which will be made available publicly in later 2002. The reader will find more
information about GEO - THER from http://calfor.lip6.fr/“wang/GEOTHER.

There are several similar geometric theorem provers implemented on the basis of algebraic
methods. As a distinct feature of it compared to other provers, GEO - THER is designed not
only for proving geometric theorems but also for handling such theorems automatically. Our
design and full implementation of new algorithms for (irreducible) triangular decomposition
make GEO - THER’s proof engine also more efficient and complete. We shall discuss some
implementation strategies and report experimental data on the performance of GEO - THER’s
algebraic provers in the paper.
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In this paper, an invariant method based on distance geometry is proposed to construct
the constraint equations for spatial constraint solving.

56



A Special Central Configuration

‘Wu Yuchun
Institute of Systems Science, CAS, Beijing
100080,China
Shi He
Institute of Systems Science, CAS, Beijing
100080,China
Email: hshi@mmrc.iss.ac.cn

In this paper, we consider the flat central configurations of bodies using the characteristic
set method. We solve a symmetry four bodies problem.
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Many geometric optimal problems and geometric inequalities can be reduced to the exis-
tence of the real roots of the following polynomial

f(@) = ana™ 4+ an 12"+ F a1z + ag

with indeterminate coefficients ay,an—1, - ,a1,a0 € Rlui,ug, -+ ,us]. Some time we need
to classify the real roots of this polynomial, that is, give an explicit condition P on coeffi-
cients for determining if the polynomial has k distinct real roots. When the coefficients are
constant numbers, this problem can be easily done using the well-known Sturm’s Theorem
and Euclidean successive polynomial division. For indeterminant coefficients, the Euclidean
successive polynomial division cannot be performed in the coefficient domain. In this case,
there are classical works on computing polynomial remainder sequences of two polynomials
through subresultant chain (see [1-4], [6] and [7]). This makes it possible to construct a Sturm
sequence via the subresultants of a polynomial and its derivative in a recursive way, and then
compute the number of real roots for the polynomial by counting the variation in signs of
the leading coefficients of the obtained Sturm sequence(see [5] for an example). This process
becomes much complicated if the subresultant chain is defective. It would be more convenient
if one could simply take the principal subresultants coefficients for counting the variation in
signs. This idea is actually feasible. Yang Lu and his cooperators have proved (see [11-12])
that Sturm’s theorem can be translated to the principal minor determinants (called "discrim-
inant sequence") of a slightly modified Sylvester resultant matrix by way of the variation in
sign of a so-called "revised sign list". This quite surprising result has been found useful in
many applications. But the original proof does not show the connection of this property with
other already-existed real 1gebra results. The goal of this paper is to provide a constructive
description to this work in the accepted context of subresultants and polynomial remainder
sequences.

Using the standard notation of matrix associated with a sequence of polynomials and
the determinant polynomial associated to a matrix, we define the modified subresults (called
negativesubresults) for polynomials

1
fi= an—Hmn+ + apz" + -+ + ao,
!

fo=f1 =+ Dap18" + nape™ '+ +ar
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and any integer k,0 < k < n with following way:

J\ll::k = max(xnikfla xnikf% xnikilfla xnikilf% T, fla f2)7
Sk = apt1detpol(My),
Spi1=f1,85 = fo.

Then we prove that for any Tarski’s remainder sequence fi, fa, -, fr—1, fr of f1, fo with
c; = deg(fi,z), ¢ =coeff(f,x,n;), (i=1,2,--,r)

the following two relations between a generalized sturm sequence and negative subresultant
chain:

85,551~ fifj,

Sy Sk A (_1)%(nj*"jﬂ)(”j*”jﬂ*l)(Cjcj+1)”j*"j+1*1fjfj+1,
hold for 1 < j < r (if fo = f{) starting from the Fundamental Theorem of p.r.s. This leads to
the following result of L. Yang, X. Hou and Z. Zeng;:

Theorem 1. Let fi be a polynomial of degree n+ 1 with determined or indetermined real coef-
ficients. Let Sy 1,55, S% _1,-++, S5 be the negative subresultant chain generated by f1, fo = f1,
il By, Ry 1.+, Ry the formal leading coefficients of negative subresultants, Vi the mod-
ified number of variation in signs of the sequence. Let N(f1) be the number of the distinctive
real roots of fi, n1 = n+1 and n, the degree of the last reqular negative subresultant. Then

N(fl) =Ny — Ny — 2V+oo-

Where the modified number of variation in signs is defined for any real number sequence
a1,02,a3, - ,Qm 1S defined by the following procedure:
Let N =0.
For i from 1 to m — 1 do
ifa,--aH_l <0, then N « N +1;
if a;41 = 0, and a;4; is the first non-zero number in a;11,- -+ , @,
then N < N 4 v(aj,aj;j — i — 1) in which

oyl 1 kLo L
Vi) = 5041) = 5 SV - 51 Dsata
and sign(-) is the sign function.

Return N.

In the end of the paper we give an easy-to-use method to calculate the modified number of
variation in sign and a Maple program for computing generalized Sturm sequences via negative
subresultants.
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Appendix

A Maple Program for Computing Generalized Sturm Sequences via Negative Subresultants

with(linalg):
### matrix associated to a sequence of polynomials

mat

:= proc(plist, x)

local 1, i, p, cf, M;

1 := max(op(map(degree, plist, x)));
M o= [];
for p in plist do

cf := [subs(x = 0, p)];
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for i to 1 do cf := [coeff(p, x, 1), op(cf)] od;
M := [op(M), cf]
od;
M
end

### determinant polynomial generated by a matrix
detpol := proc(M, x)
local i, j, k, 1, k1, cf, mj;

k := nops(M);

1 := nops(op(1, M));

cf := [1;

ki :=seq(i, i =1 .. k - 1);

for j from k to 1 do
mj := submatrix(M, 1 .. k, [k1, j1);
cf := [op(cf), det(mj)]

od;
mj := 0;
for i to 1 - k+ 1 domj :=mj + op(i, cE)*x~(1 - k + 1 - i)
od;
mj
end

### subresultant chain of two polynomials
sres := proc(f, g, x)
local m, n, k, i, p, sk;

m := degree(f, x);

n := degree(g, x);
sk := [];
for k from 0 to min(m, n) - 1 do
p := [0;
p := [seq(x~i*g, i =0 .. m - k - 1),
seq(x~i*f, i =0 .. n - k - 1];
p := map(collect, p, X);
sk := [detpol(mat(p, x), x), op(sk)]
od;
sk
end

### negative subresultant chain of polynomials f and g with degree(f,x)=degree(g,x)+1

s_res := proc(f, g, x)
local m, n, k, i, p, sk;
m := degree(f, x);
n := degree(g, x);
sk := [1;
for k from 0 to min(m, n) - 1 do
p := [0;
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for i from 0 to max(m, n) - k - 1 do
p := [x~ixf, x~ixg, op(p)]
od;
p := map(collect, p, X);
sk := [coeff(f, x, m)*detpol(mat(p, x), x), op(sk)]
od;
map (primpart, [f, g, op(sk)])
end

### formal leading coefficients of f and diff (f,x)
psc_ := proc(f, x)
local i, nl, sr, r;
nl := degree(f, x);
sr := s_res(f, diff(f, x), x);
print(sr);
r := [1;
for i to n1 + 1 do
r := [op(r), coeff(op(i, sr), x, nl - i + 1)]
od;
T
end

### construct generalized sturm sequence for polynomials with indeterminates coefficients
res_sturm := proc(f, x)
local nl, sn, i, j, jl, r, nj, fj, stm;
nl := degree(f, x);
sn := s_res(f, diff(f, x), x);
stm := [f, diff(f, x)];
nj := [1;
for i tonl + 1 do
if degree(op(i, sn), x) = nl - i + 1 then
nj := [op(nj), nl - i + 1]
fi
od;
r := nops(nj);
for j from 3 to r do
jl :=nl +2 - op(j -1, nj);
fj := op(j1, sn)*lcoeff(op(jl - 1, sn), x)*
lcoeff(op(j - 1, stm), x);
stm := [op(stm), fj]
od;
map (primpart, stm)
end

### an example

> res_sturm(x~5+a*x+b,x) ;
> [x~5+a*x+b, 5*x~4+a, -4*axx-5%b, (-256*%a~5-3125%b~4)*a~4]
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