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Abstract
A new approach for symbolically solving linear boundary value problems is presented. Rather

than using general–purpose tools for obtaining parametrized solutions of  the underlying ODE

and fitting them against the specified boundary conditions (which may be quite expensive), the

problem is interpreted  as an  operator  inversion  problem in  a suitable Banach  space setting.

Using  the  concept  of  the  oblique  Moore–Penrose  inverse,  it  is  possible  to  transform  the

inversion problem into a system of  operator  equations that  can be attacked by virtue of  non–

commutative Gröbner bases. The resulting operator solution can be represented as an integral

operator having the classical  Green's function as its kernel. Although, at this stage of research,

we cannot  yet  give an  algorithmic  formulation  of  the method  and  its domain  of  admissible

inputs, we do believe that it has promising perspectives of automation and generalization; some

of these perspectives are discussed. 
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1. Introduction

Sophus Lie said  in  1894  what  is nowadays folklore [13,  p.  488]:  "All  branches of  physics pose

problems that  end  up  in  integrating  differential  equations,"  and  similar  things can be said  about

many  other  sciences.  A  great  deal  of  these differential  equations come in the form of  boundary

value problems, and it is this problem type that has inspired rich parts of functional  analysis, as one

can see nicely in the classic work of Hilbert–Courant [9].

It  is therefore natural  to ask about symbolic methods for  boundary value problems (BVP). But

quite in contrast  to the rich arsenal  of  numerical  algorithms for  BVP, this corner  of  mathematics

seems to be a bit neglected by the "symbolic world". Of course, there are some standard techniques

available  for  various  kinds  of  differential  equations—ordinary  and  partial,  linear  and  nonlinear

[10][23][19].  At  the first  glance,  one might  think  this is  sufficient  since one can  always solve



corresponding differential  equation and adapt the free coefficients of  the generic solution to fit  the

boundary conditions. However, we are not only asking for the solution of one individual  differential

equation generated by fixing the inhomogeneity on its right–hand side;  what  we want  is a generic

expression that can be instantiated by all  admissible right–hand sides for producing the correspond-

ing solutions (see below). Besides this, the generic solution might have no closed form whereas its

"adaption" to the given boundary conditions often does.

Therefore we propose a new approach that works on the BVP as a whole, representing both the

differential  equation and the boundary conditions by operators on suitable Banach spaces.  Such a

functional–analytic setting is of  course very familiar in abstract convergence analysis of  numerical

BVP algorithms, but interestingly it turns out to be equally useful  for searching symbolic solutions

via  non–commutative  Gröbner  bases.  The  idea  is  that   both  the  differential  and  the  boundary

operator  are built  up  from  some "atomic"  operators and  can  thus be seen  as non–commutative

polynomials  with  the  atomic  operators  as  its  indeterminates.  For  obtaining  suitable  polynomial

equations, we use the powerful concept of the oblique Moore–Penrose inverse [21].

In this paper, we consider only ordinary differential  operators and linear  BVP; see Section 4 for a

discussion of  possible extensions.  Furthermore we will  search for  solutions over  a finite interval

a, b . Now let T  be a linear differential operator of order n, so for u � Cn a, b  we have

T u � c0 u n � … � cn� 1 u' � cn u ,

where c0, …, cn  are sufficiently smooth coefficient functions (for example, c j � Cn� j a, b  for each

j � 0, …, n)  and  c0  does  not  vanish.  We  view  T  as  a  linear  operator  on  the  Banch  space

C a, b , � �  with  dense  domain  of  definition  � T � Cn a, b .  The  boundary  operators

B1, …, Bn  are defined on the same domain; for each i � 1, …, n we have

Bi u � pi,0 u n a � … � pi,n� 1 u' a � pi,n u a �

qi,0 u n b � … � qi,n� 1 u' b � qi,n u b ,

where the coefficients pi, j, qi, j  are real  numbers. Now the boundary value problem induced by T

and B1, …, Bn  is to find for each right–hand side f � C a, b  a function u � Cn a, b  such that:

(1)
T u � f

B1 u � … � Bn u � 0

This  BVP  is  actually  inhomogeneous  in  the  differential  equation  and  homogeneous  in  the

boundary conditions (semi–inhomogeneous problem). But we can always decompose a fully inhomo-

geneous problem into such a semi–inhomogeneous one and a rather trivial  BVP with homogeneous

differential  equation  and  inhomogeneous boundary  conditions (semi–homogeneous problem);  see

[24, p. 43]  for  an explanation. Furthermore, we will  assume throughout the paper that the boundary

conditions are such that they determine a unique solution u of (1) for all f � C a, b .

We are now searching for an operator G  that takes the inhomogeneity f  as input and produces

the solution u  of  (1) as output. In fact, in those cases which we consider, it is well–known that the

operator G can be written as an integral operator with the so–called Green's function g  as its kernel

[8, p. 296]:

Solving Linear Boundary Value Problems via Non–Commutative Gröbner Bases



(2)G f x �
a

b

g x,
�

f
� ���

The desired solution operator  G  is obviously a right inverse of  the given differential  operator:

T G f � f  and hence T G � 1. (For the sake of  simplicity, we will  use the symbol  1  for denoting

various identity  functions and operators.)  Of  course,  there are many  right  inverses for  T ,  but  the

boundary conditions B1 u � … � Bn u � 0 are supposed to single out the one we want. It should be

noted that this viewpoint is different from the standard one, where the boundary conditions are used

for specifying the domain of the differential operator; in this case, there is of course only one inverse.

So we want  to find a right  inverse that  is normally  not  an inverse in the strict  sense—this is

where the concept of the oblique Moore–Penrose inverse enters the stage (see Section 2 for details):

Given the operator T  on the Banach space C a, b  together with arbitrary projectors P, Q  onto its

nullspace and range closure, the oblique Moore–Penrose inverse TP,Q
†  can be determined by the four

well–known  Moore–Penrose equations,  which  can  be seen  as four  non–commutative polynomial

equations  in  the  indeterminates  T, T†, P, Q.  By  choosing  suitable  projectors  P, Q,  it  may  be

possible to enforce the boundary conditions, which has the consequence that T† � G. In general, the

projectors will  thus become polynomials in B1, …, Bn  and some extra operators describing their

particular structure. In many cases, one will be able to express some or all of the boundary operators

as well  as the differential  operator T  in terms of  these extra operators. So let  A1, …, Am  be those

boundary  and extra operators that  are needed;  we will  collectively  call  them auxiliary operators.

Substituting them in the Moore–Penrose equations, we will end up with an equation system

(3)
�

i � 1,…,4
� i G, A1, …, Am � 0 ,

where � 1, …, � 4  are some non–commutative polynomials in the indicated indeterminates.

Our  goal  is to  obtain a partial  triangularization this system,  i.e.  to  find  an equivalent  system

containing an equation of  the form G � …, where the right–hand side should not  contain G. This

means we want a term representation for the solution operator G: it should be described in terms of

some elementary operators like integration and multiplication. For giving a complete specification,

we must  therefore decide which elementary operators E1, …, Ek  we want  to allow in the solution

term for G. Depending on this choice, the task of  triangularizing the equation system may be easy,

difficult  or  even impossible. This is one of  the critical  points in our approach that  should become

algorithmic  in  the future (see Section 4  for  a brief  discussion  of  this topic):  We must  either  be

creative in finding "good" elementary operators or we need powerful structure theorems for warrant-

ing the completeness of certain basis operators.

Assuming we have established a suitable collection of elementary operators E1, …, Ek , we must

still  specify how they are related with the auxiliary operators A1, …, Am  occurring in the Moore–

Penrose  equations,  i.e.  we  need  some polynomial  equations  that  describe  their  interaction.  For

example,  if  E1  is integration and A1  is differentiation,  the obvious relation between them is the

Fundamental  Theorem  of  Calculus.  This  step  is  the  second  half  of  the  "creative"  phase  just

described; both steps should be taken together. Having found enough interaction equations

(4)
�

i � 1,…,l
� i A1, …, Am, E1, …, Ek � 0 ,

M. Rosenkranz, H. W. Engl



we can combine (3) and (4), looking at it as a well–known problem of  computer algebra: Given the

ideal  J  induced by the polynomials � 1, …, � 4, � 1, …, � l ,  try  to find a basis for  J  containing a

polynomial with leading term G; see at the end of Section 2 for an example. Having such a basis, we

can write the corresponding equation in the desired form G � � A1, …, � m, E1, …, Ek , where �  is

a  polynomial  in  the  indicated  indeterminates.  If  we  have  chosen  suitable  operators

A1, …, Am, E1, …, Ek ,  we can interpret  the solution operator G  as the usual  Green's operator and

extract from it the Green's function g.

For  finding the desired basis,  we use the method of  Gröbner  bases,  introduced by the second

author  in his PhD thesis [3];  see also the journal  version [4]  and a concise treatment  in [6].  The

advantage of Gröbner bases is that they do not only lead to the desired solution but they also reveal

useful information about the ideal structure. In this paper, however, we will not address these issues.

For a modern survey of  the theory of  Gröbner bases and their applications, see [7]  and the remarks

at the end of this section. 

The idea of  using the Moore–Penrose inverse for  solving linear  BVP  is not  new. One can find a

standard treatment of this subject in [22]  and [24]. But what is new, to our knowledge, is the observa

tion that by means of non–commutative Gröbner bases one can actually fertilize the Moore–Penrose

equations for obtaining symbolic solutions. There is an interesting paper [18]  from the seventies that

describes a different Moore–Penrose method for approaching linear BVP. It is based on the concept

of adjoint operators and orthogonal  projectors (as opposed to the oblique ones used in our method),

but  it  does not  make use of  Gröbner  bases.  This approach  seems to  result  into  more complex

computations than ours, but it would be an interesting research topic to combine the two methods.

Non–commutative  Gröbner  bases  have  been  applied  to  differential  operators  for  several

decades, see for  example the survey article [24]  about Gröbner  bases  and partial  differential  equa

tions. However, most of the theory in this field is concerned with studying the structure of solutions,

without  giving explicit  methods for  constructing them (the situation becomes even worse when it

comes to BVP). Besides this, Gröbner bases have been used for  simplifying complicated operator

expressions  as  they  typically  arise  in  control  theory.  This  approach  is  described  in  the  papers

[15][16][26]  of  the San Diego group, which also served as the starting point for our investigations. We

used the software package developed by their group for the Gröbner–basis computations necessary

in our examples; see Section 2 for details.

The difference between the problem considered here and the subject of simplification addressed

by their group is of  a fundamental  nature. Applications of Gröbner bases—both in the commutative

and in the non–commutative cases—come in three main categories [6]:

� Confluent Rewriting:  A  Gröbner  basis induces a rewrite system for reducing polynomials.

Using  a suitable term ordering,  this will  sometimes lead  to  a drastically  simpler  optical

appearance, which is very important for control  theorists [26].  However, the essential  point

is that the reduced form is not only optically simpler but even canonical, due to the charac-

teristic Church–Rosser property of Gröbner basis. This means that one can decide equality:

Two polynomials are equal in the given ideal if and only if their reduced forms are identical.

� Polynomial  Equation Solving:  Using a term ordering of  the lexicographic  type,  Gröbner

bases  enjoy  the  so–called  elimination  property.  Basically  this  means  that  the  equation
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system will  be triangularized as much as possible so that  it  is easy to solve the resulting

system. The elimination property also holds in the non–commutative case; see [2].

� Syzygies: The information contained in the reductions that transform a given set of polynomi

als into a Gröbner basis can be used to determine the complete solution module of a linear

equation system over a polynomial ring.

Seen in this way, research in the San Diego group belongs to the first category whereas our research

belongs to the second. It might be worthwhile to also carry out operator–theoretic investigations in

fields pertaining to the third application category.

The rest of  the paper is structured as follows:  In Section 2 we take a well–known linear BVP as a

simple but  yet  interesting  example for  walking  through  the whole procedure outlined  above.  In

Section 3 we briefly present some more examples demonstrating different boundary conditions and

slightly  more complicated  differential  equations.  In  Section 4  we conclude with some reflections

about the methodology and the potential of automation and generalization.

2. A Detailed Computation

The following  problem seems to  be one of  the classical  examples that  are most  often  used  for

introducing the concepts of  linear  BVP [24,  p. 42].  It  can be interpreted as describing one–dimen

sional  steady heat conduction in a homogeneous rod. We will  discuss this example in some detail

for illustrating the solution strategy presented in the previous section.

Given: f � C 0, 1  ,

find: u � C2 0, 1

such that

u'' � f ,

u 0 � u 1 � 0 .

The  general  problem  described  above  is  now  given  the  simple  instantiation  a, b � 0, 1 ,

n � 2, T � D2 , B1 � L , B2 � R. Here D2  denotes the iterated differentiation operator on the Banach

space C 0, 1 , � � ; it has the subset C2 0, 1  as its dense domain of definition. The left and right

boundary operators L, R are defined in the obvious way: For each u � C 0, 1 , we have L u � u 0

and  Ru � u 1 .  As described  above,  we interpret  this as an  inversion  problem  in  the following

sense: Find a right inverse G of the operator D2  such that the boundary conditions are also fulfilled.

We construct G as a Moore–Penrose inverse.

From the theory [12, p. 567]  it is clear that we must fix appropriate projectors P  and Q  onto the

nullspace  and  range–closure  of  D2 ,  respectively.  The  latter  will  always  be  the  identity

1 : C 0, 1 � C 0, 1  for the type of problems considered here; as a consequence, G  is bounded and

defined on all of C 0, 1 . The other projector P maps C 0, 1  onto the nullspace
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N � � D2 � x ��� x ��� � , � ��� ,

so  choosing  P  amounts  to  specifying  for  each  u � C 0, 1  real  numbers  � , �  such  that

Pu x � � x � �  for all  x � 0, 1 . We use this freedom to ensure the boundary conditions, which

leads to

P � 1 � X L � X R ,

where X  is defined as the operator induced by multiplication with the independent variable. 

Substituting  this together  with  Q  into  the general  equations in  [12,  p.  567],  we arrive at  the

following concrete Moore–Penrose equations:

(5)

D2 G D2 � D2

G D2 G � G

G D2 � 1 � 1 � X L � X R

D2 G � 1

We can see that they form indeed a system of polynomial  equations, having the desired Green's

operator  G  and  the  auxiliary  operators  (named  A1, …, Am  in  the  introduction)  D, X, L, R  as

indeterminates. The only thing missing now are the elementary operators (named E1, …, Ek  in the

introduction) that we want to allow in the solution term, together with suitable relations describing

their interaction with the auxiliary operators.

Now we come to the "creative" step of our approach (see Section 4 for a brief discussion on the

potential of automation). It is clear that the operators D, X, L, R will not be sufficient for expressing

the solution term for the Green's operator G. Since we would like to have an integral  representation

for  G,  having  the  corresponding  Green's  function  g  as  its  kernel,  we  must  obviously  take  the

antiderivative operator A as one elementary operator. It is defined in the obvious way as

A u x �
0

x

u
� � �

for all  u � C 0, 1  and x � 0, 1 . What other elementary operators might be needed? In view of the

duality in the boundary operators L, R, we may have the idea of adding the operator B adjoint to the

antiderivative operator  A. Whereas the operator A integrates from the left boundary, the operator B

integrates to the right boundary, so it is defined as

B u x �
x

1

u
� � �

again for  all  u � C 0, 1  and x � 0, 1 .  Having A  and B  as elementary  operators along with the

auxiliary operators D, X, L, R, it  turns out  that we can express the solution G  in the desired way.

The following interaction equations are sufficient for describing their relations:

(6)

D X � X D � 1

D A � 1

A D � 1 � L

D B ��� 1
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B D � R � 1

R X � R

L X � 0

At  this point,  we have assembled the complete polynomial  equation system,  consisting of  the

polynomials  � 1, …, � 4  in  the  concrete  Moore–Penrose  equations  (5)  and  the  polynomials

� 1, …, � 7  of  the interaction equations (6). Our goal  is to solve this system for G, i.e. we want to

find the elimination ideal  with respect to G. For this we will  use the following multigraded lexico-

graphic term ordering:

D � R � L � X � A � B � G

For computing the desired elimination ideal, we use the system NCAlgebra [14], a Mathematica

package for  doing non–commutative computer algebra, written by J. William Helton (Mathematics

Department  of  the University  of  California, San Diego, California)  and Robert  L. Miller  (General

Atomic Corporation, La  Jolla, California). It includes support for non–commutative Gröbner bases,

also described in the papers [15][16][26]. Typically, we must content ourselves with a partial  basis, but

this is sufficient  for  us as long as G  is isolated.  For  the current  problem NCAlgebra  returns the

following answer:

final � NCMakeGB initial, 2 ColumnForm

� 1 � D ��� A
� 1 � L � A ��� D

1 � D ��� B

1 � R � B ��� D

1 � D ��� X � X ��� D
� R � R ��� X

L ��� X

L ��� A
� A � B � R ��� A
� A � X � D ��� X ��� A

…

G � A ��� X � X ��� B � X ��� A ��� X � X ��� B ��� X
� R � L ��� R
� R � D ��� X ��� R
� A � B � B ��� A � B ��� X � X ��� A

…

The system has produced  42  polynomials,  most  of  which  are left  out  above as they  are not

interesting for  our  present  purposes;  e.g.  some of  them express integration rules for  polynomials

such  as 2 x2 � 3 x.  The only  important  thing  is  that  there is  only  one polynomial  involving  the

solution operator  G, and in this polynomial, G  does indeed occur isolated. Writing the result in the

usual format, we arrive at:

G � X A X � A X � X B X � X B
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It is straightforward to rewrite this polynomial  into the traditional  formulation of  the corresponding

Green's function:

g x,
�

�
x � 1

�
if 0 �

�
� x � 1

x
�
� 1 if 0 � x �

�
� 1

3. Other Examples

Passing on to other  examples, let  us first  remark that  we can use various other  types of boundary

conditions without making essential  changes in the computation just presented. For example, using

the mixed conditions u' 0 � u 1 � 0 will lead to the nullspace projector

P � X L D � R � L D ,

whereas the conditions u 0 � u' 0 � 0 will lead to the nullspace projector

P � X L D � L .

Everything else remains the same, and the computation results in the correct Green's functions for

these cases.  (Specifying  the boundary  conditions u' 0 � u' 1 � 0,  however,  would  not  allow  a

unique solution for  all  right–hand sides f � C 0, 1 . In fact, one can apply the well–known Fred-

holm alternative for characterizing solvability in such cases. If we tried to apply our method to such

a case, we would end up with redundant parameters. New ideas are necessary for dealing with these

cases, but we will not address them here.)

For  a slightly  more complicated  problem,  we take Example 2  in  Kralle's book  [17,  p.  109].  The

differential  operator of this BVP has damped oscillations as its eigenfunctions [17, p. 107]. Stated in

our terminology, the problem reads as follows:

�
e2 x u x ' ' � e2 x u x� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � �� � � � � � � � � �

e2 x
� f x

u 0 � u � � 0

Here x is assumed to range over the interval 0, � . The notation T '  is an abbreviation for 
�

� � � � � � ��
x T ,

where the differential  quantifier 
�

� � � � � � ��
x operates on the term T . For obtaining an operator equation, we

introduce some auxiliary operators. For all u � C 0, � , v � C1 0, �  and x � 0, � , we define:

D v x � v x '

E u x � ex u x

F u x � e� x u x

L u x � u 0

Ru x � u �

Using these operators, the given BVP can be stated in the following operator–theoretic form:
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� F2 D E2 D � 1 u � f

L u � Ru � 0

Going through the procedure explained above, one finds for the nullspace projector

P �
e

�

� � � � � � � �
�

X F R �
1� � � � �

�
X F L � F L ,

It turns out that one does not need other operators except A  and B  as in the previous examples,

but one must add some obvious interaction equations for the new operators E  and F . Carrying out

the computation in NCAlgebra, one obtains the following result (after applying some tedious tricks

for representing the "commuting variables" e, � ):

G � F A X E � X F B E �
1� � � � �

�
X F A X E �

1� � � � �
�

X F B X E �

1� � � � �
�

� � X F A X E � 1� � � � �
�

X F B � � X E

This time, the partial  basis contains 164  polynomials,  but  there is still  only one among which

involves G, namely exactly the one corresponding to the solved equation above. Going through the

usual  translation  procedure,  one can write G  as an  integral  operator  with  the following Green's

function also given in [17, p. 110]:

g x,
�

�

1� � � �
� � � x

�
e

� � x if 0 �
�

� x � �

1� � � �
� � �

�
xe

� � x if 0 � x �
�

� �

The method presented here is not restricted to the classical setting of second–order Sturm–Liouville

theory.  For  seeing  this,  we  take  a  practically  relevant  fourth–order  problem  [17,  p.  49],  which

describes the transverse deflection u � C2 0, 1  of a homogeneous beam with distributed transversal

load f � C 0, 1 , simply supported at both ends:

u 4 � f

u 0 � u 1 � u'' 0 � u'' 1 � 0

Its operator–theoretic formulation is as follows:

D4 u � f

L u � Ru � L D2 u � RD2 u � 0

Comparing this BVP to the simple heat–conduction problem considered in the beginning,  we

observe a strong similarity. In fact, the only difference is the order of  the differential  operator and

the additional  boundary  conditions for  u'',  so  we expect  that  we can use the same auxiliary  and

elementary functions.

This expectation is indeed fulfilled. Going through the same procedure as in the heat–conduction

example, the boundary conditions lead to the following nullspace projector:
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P �
1� � � � �
6

X3 RD2 � L D2 � 1� � � � �
2

X2 L D2 � 1� � � � �
6

X 6R � 6 L � 2 L D2 � RD2 � L

Using this operator and the interaction equations from the heat–conduction problem, we obtain a

polynomial system that can be solved for G. The partial  basis returned by NCAlgebra consists of 67

polynomials, and exactly one polynomial  among them contains the indeterminate G  for the Green's

operator. Written as an equation, this polynomial is:

G �
1� � � � �
3

X A X �
1� � � � �
6

A X3 �
1� � � � �
2

X2 A X � 1� � � � �
6

X A X3 �

1� � � � �
6

X3 A X � 1� � � � �
3

X B X �
1� � � � �
2

X B X2 �
1� � � � �
6

X3 B � 1� � � � �
6

X B X3 � 1� � � � �
6

X3 B X

As usual,  we can immediately  translate this expression to  the more traditional  formulation in

terms of a Green's function g defined thus:

g x,
�

�

1� � � �
3 x

�
� 1� � � �

6

� 3 � 1� � � �
2 x2 � � 1� � � �

6 x
� 3 � 1� � � �

6 x3 � if 0 �
�

� x � 1
1� � � �
3 x

�
� 1� � � �

2 x
� 2 � 1� � � �

6 x3 � 1� � � �
6 x

� 3 � 1� � � �
6 x3 � if 0 � x �

�
� �

This is in full  accordance with [17,  p.  71],  where the result  was obtained by  means of  the causa

fundamental solution.

4. Conclusion

We have presented a new method for  solving linear  boundary value problems by symbolic tech-

niques. It proceeds by transforming the given differential  equation and its boundary conditions into

a system of  polynomial  equations that  can  be solved  for  the desired  Green's operator  via non–

commutative Gröbner bases. Of course, one must specify those operators and properties that should

be used for representing the solution term; using the traditional framework of integral operators, one

obtains a solution in terms of  the usual  Green's function. For several  examples, we have exhibited

suitable interaction equations that  lead to a Green's formulation of  the solution.  (Incidentally,  we

have  also  found  other  representations  of  the  solution,  typically  involving  multiple  integrations.

Though outside the framework of  the traditional  Green's functions, these representations may be of

numerical interest due to their smoothness properties.)

Let  us now briefly  analyze the current  status of  algorithmization  in this method.  In a typical

application, it will proceed through the following steps:

� Derivation  of  the concrete Moore–Penrose equations:  The major  task  in  this step  is to

determine the nullspace projector P since we have seen that the range projector Q is always

the identity. Substituting P, Q  and the given differential  operator T  in the generic Moore–

Penrose equations and  renaming  the Moore–Penrose inverse T†  into  G,  we obtain  the

concrete Moore–Penrose equations.  The polynomial  for  P  will  contain various auxiliary

operators  A1, …, Am,  usually  made  up  from  parts  of  the  differential  and  boundary

operators.
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� Compilation  of  the  interaction  equations:  After  selecting  suitable  elementary  operators

E1, …, Ek ,  we have to find sufficiently  many  equations describing the relations between

the auxiliary operators A1, …, Am and the elementary operators E1, …, Ek .

� Computation  of  a  partial  Gröbner  basis:  The  concrete  Moore–Penrose  equations  are

combined with the interaction equations and supplied to a non–commutative Gröbner basis

system, using a term ordering that isolates the Green's operator G.

� Extraction of the Green's function: The Green's operator G  obtained in the previous step is

transformed into the corresponding Green's function g.

For the first step and the last two steps, our method can be viewed as an algorithm (relative to

the solvability of  the homogeneous differential  equation). For the second step, some ad–hoc inven-

tions are still  necessary for each problem instance at hand. In particular, one has to provide suitable

interaction equations for specifying the solution structure. Some experience in handling BVP should

be sufficient for finding these equalities.

Note that, after having found some basic interaction equations, the question of how and in which

order  these equations should be applied is exhaustively answered by the method of  Gröbner bases,

due to their  Church–Rosser  property.  In a manual  calculation,  one has to play  around with many

possible ways of  combining equations,  which may  or  may  not  lead to  success.  In  this sense,  an

essential portion of the usual "tricks" occurring in manual calculations is covered by our method; the

remaining tricks are assoiated with the interaction equations.

We believe that  our  method can cover  various interesting classes of  BVP,  which we plan to

explore in forthcoming papers (including some of  the generalizations discussed below). In an ideal

situation—presumably  hard  to  achieve—one  might  approach  a  systematic  search  of  elementary

operators  and  interaction  equations  in  a  manner  similar  to  the  structure  theorems  of  Liouville

theory,  which  are used  for  indefinite integration  and  ordinary  differential  equations [10,  p.  186].

Fixing certain algebraic input domains (e.g. the elementary transcendental  functions) for the coeffi-

cients of  the differential  and boundary operators,  one might  be able to isolate a suitable "Green's

domain"  �  such that the Green's function g  will  always be in � . We think that such an expectation

is realistic because it  is well–known that  one can express g  in terms of  solutions of  certain initial

value problems. (Note also that we do not claim that the solution of the BVP itself, namely G f  for

a given right–hand side f , should have any algebraically simple form.)

Having found a Green's domain � , it is probably not difficult to isolate appropriate elementary

operators along with their  interaction equations.  Some of  these operators might  be multiplication

operators induced by functions from the input domains and � , similar  to F  and G  in Section 3. It

should also be observed that most of  the interaction equations considered in this paper would come

out quite naturally when the elementary operators are introduced in systematic exploration cycles as

described in [5].

Finally, let us propose further lines of  future research. The problems considered in this paper have

some obvious generalizations. Increasing the number of  independent variables leads us to BVP for

partial  differential  equations like the well–known Dirichlet  problem for  div agradu � f .  These

equations will  typically  involve differential  operators div,  grad,  rot,  … from vector  analysis:  We
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can either regard them as operators in their own right or assemble them from the partial  differential

operators � x , � y , � z. The general  methodology presented in this paper should be applicable in both

cases;  identities like the Divergence Theorem of  Gauss will  take over the role of  the Fundamental

Theorem of Calculus.

Passing  over  to  non–linear  problems  is  a  much  bigger  challenge.  In  this  case,  compound

operators may not be expressible as polynomials anymore. For example, take the non–linear opera-

tor Q u x � u' x u x . One would like to write this operator in terms of an elementary multiplica-

tion operator M u, v x � u x v x  as Q u � M D u , u . Then we would have the product rule as

an  interaction  equation  D � M ,  namely  D M u, v � M D u , v � M u, D v .  But  this is  not  a

purely  operator–theoretic  description  anymore since we cannot  get  rid  of  u  and  v.  This means

general  rewriting is necessary  now:  we need substitution in addition to replacement  (reduction of

polynomials is replacement on equivalence classes). Maybe this could be handled by a combination

of  Gröbner  bases and the Knuth–Bendix algorithm. Actually this is a rather subtle topic, but there

are promising results recently [1][20].

Orthogonal  to these generalizations, one could also investigate weak solutions. In this paper, we

have only considered classical  solutions, but the results also make sense in a more general  Sobolev

setting. On the one hand, this simply changes domain and codomain of some operators; this does not

harm the polynomial  formulation since it abstracts from all  topological  notions. On the other hand,

the solution concept itself  must be modified by introducing suitable testing functions v  and partial

integrations. Logically this means that we have a universal quantifier over v  on top of the equations,

so we cannot take v as an indeterminate. Again, new ideas are necessary.

Apart  from these generalizations,  there is another  issue that  may  be worth investigating.  We

have already observed after  Equation (5) that  the concept  of  polynomials is not fully adequate for

capturing operator composition since it does not restrict the admissible combinations. This becomes

even more apparent when we introduce operators like div  and grad. In this case, we would like to

distinguish  vectors  from  scalars.  For  example,  the  composition  div grad  is  admissible  whereas

div div  does not  make sense.  But  the question  of  domain  adequacy  is not  of  a purely  aesthetic

nature: It would prevent a great deal  of  unnecessary S–polynomials during the search for a Gröbner

basis. We would need a notion of restricted polynomials in X1, …, Xn  such that each indeterminate

Xi  has an associated domain, dom Xi , and codomain, cod Xi , where we can build up monomials

Xi X j Xk �  only if dom Xi � cod X j  and dom X j � cod Xk , etc. Since the structure of restricted

polynomials is, by its very intention, not  closed under  multiplication, it  figures as an algebraically

rather unwieldy concept. It would be interesting to develop some alternative that combines practical

needs and algebraic elegance.
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