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ABSTRACT

The concept of the implicit representation of a rationally
parametrized algebraic variety is presented. After a brief
introduction to the general theory of implicitization, vari-
ous methods for finding this representation are discussed.
From a theoretical point of view Grobner basis methods
seem to work best for finding the implicit equations. But
the actual computation of Grébner bases is often very time
consuming. For this reason classical resultant methods are
considered as an alternative. Since such methods fail in the
presence of base points, the concept of moving varieties
being free from restrictions of this kind is discussed. Key-
words: Implicitization, Interpolation, Grobner Bases, Re-
sultants, Moving Lines. *

1. INTRODUCTION

An affine algebraic variety is the set of solutions of a sys-
tem of polynomial equations. Given a set of polynomials
fi,--+, fm, the geometric aspects of finding and describ-
ing their common zeros may be summarized by the phrase
‘parametrization of varieties’. Powerful algorithms for de-
ciding existence of a rational parametrization and provid-
ing one in the affirmative case have been developed by
various research groups in recent time [30, 25].

While there is an obvious need for a concise description
of the solution set of a polynomial system, in applications
the problem often arises just the other way round. For
instance, in Computer Aided Geometric Design one often
asks for a finite set of polynomial equations, whose set of
solutions contains all image points of a given parametrized
surface in 3-space. Of course the solutions of the desired
set of polynomials should contain these image points in
a minimal way. The process of finding such a system
from a given parametrization is called ‘implicitization’.
Thus, implicitization is concerned with the problem of
finding the smallest algebraic variety that contains a given
parametrized set.

Several methods of computing the implicit form have been
developed. Among others, they make use of Grobner Bases
[14, 1], resultants [15], and interpolation techniques [24].
All these methods are related to Elimination Theory [16,
32] which, in its modern developments [19, 9] lies at the
heart of implicitization. Recently a new method, based
on syzygies, was developed and proved its power in many
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cases [12, 29, 33, 13, 2]. For any field K, A" (K) denotes
the n—dimensional affine space K". The n—dimensional
projective space is IP"(K) = (A" (K) \ 0) / ~ where z ~ y
iff y = Az for a nonzero scalar \.

2. THEORY OF IMPLICITIZATION
Consider a fixed field extension k C K. For any set
X C A*(K) its ideal is IX = {f € k[z1,...,z,] | f(X) C
0}. For any set S C Kk[z1,-..,%,], its zero set is VS =
{p € K" | f(p) = 0 Vf € S}. The sets VS are the
closed sets of the Zariski Topology on A™(K). It is easy
to see that VIX = X, so the association X + IX defines
an injection from the set of algebraic varieties in A™ (K)
into the set of radical ideals. In case K is algebraically
closed this gives a one-one correspondence® whose inverse
is given by V. We write K[X] for the k-algebra of polyno-
mial functions on X ie., K[X] = {f: X — K | 3F €
k[z1,...,zs] V2 € X : f(z) = F(z)}. For irreducible
X the ring K[X] is an integral domain. Then a tupel
v = (p1,...,pr) € K(X)" where K(X) is the quotient
field of K[X] defines a continuous map on an open subset
U C X with values in A" (K). The ideal of its image is
I(lm (P) = {G € k[yla- --7y7“] | G(Q"h---:‘/’r) = O} g
is an arbitrary subset of A" (K) then ¢ is called a rational
map X — Y if o(p) € Y Vp € U. If Y is also irreducible
then ¢ is birational if there is a rational map 9: Y — X
with ¥ o o = 1x Ap o1 = 1y (on open subsets of X and
Y). In case X equals the whole affine space A™ (K) we say
that Y =im ¢ is rationally parametrized by ¢. From con-
tinuity of ¢ one observes that Y is an irreducible variety.
If all components of ¢ are regular functions, i.e., elements
of K[X], Y is said to be polynomially parametrized by ¢.

For any ideal a C k[z1,...,25] and 1 <1 < n — 1, the Ith
elimination ideal of a is a;: = a Nk[zi41,...,2n]. Obvi-
ously a; is an ideal in k[z;41,...,2,] which conceptually
depends on an ordering of the variables 1 > --- > 5. The
following sequence of theorems indicates the significance of
the notion of elimination ideal.

THEOREM 1 (EXTENSION THEOREM). Assume K is al-
gebraically closed, a = {f1,...,fs) C K[z1,...,2n] is an
ideal, a1 its first elimination ideal. For each 1 < ¢ < s,
write f; as a polynomial in K[za, ..., zn][z1]

fi = gi(zay ..., @n)z)t + terms of lower z1 — degree,

where N; > 0 and g; # 0. Suppose that (A2,...,\n) €
V(a1)\ V(g1,...,9s). Then IX1 € K such that
(A1, A2, ..., An) € V(a).

2This is one formulation of Hilberts Nullstellensatz.




This theorem gives a sufficient condition for extending par-
tial solutions of a polynomial system to proper solutions.
It is a key theoretical result in the area of zero dimensional
systems. In order to use it for implicitization we give an
equivalent geometric formulation.

THEOREM 2. K algebraically closed, a = {f1,...,fs) C
k[z1,...,2n], i as in Theorem 1, X = V(a). Then

V(a1) = m(X)U (V(gi,---,95) NV(a1))

where 71: A™ (K) — A" (K) is projection onto the last
n — 1 components.

THEOREM 3  (CLOSURE THEOREM). Assume K is alge-
braically closed, a C K[t1,...,tm,Z1,...,2Tn] is an ideal
and m: K™ x K" — K" the projection. Then w(V(a)) =
V(am). Moreover, when V(a) # 0, there is an affine vari-
ety Y C V(am) such that V(am)\Y C w(V(a)).

Theorems 1, 2, 3 provide the main technical tools for prov-
ing the central theoretical results on implicitization.

THEOREM 4  (POLYNOMIAL IMPLICITIZATION). Let K be
infinite and let the variety X C A" (K) be given by the poly-
nomial parametrization® p = (fi,..., fn) with fi,..., fn €
K[t1,...,tm]. Let a be the ideal a = (x1— f1,...,Zn—fn) C
K[t1,.. . tm,Z1,.-.,2Zn]. Then X = V(ap).

Rationally parametrized varieties can be treated in a sim-
ilar way. The difficulty arising from denominators in the
parametrizing functions can be captured by the invention
of an additional condition.

THEOREM 5 (RATIONAL IMPLICITIZATION).
Let X C A" (K) be parametrized by

fi f
p:(—,...,—n . (1)

g1 gn
Let g be a common multiple of g1,...,9n and a the ideal
mk[y,t1,. .., tm,T1,...,Zn] (where y is a new indetermi-

nate) defined by a = (g121 — f1,. -+, gnTn — fn,9y — 1). If
K is infinite then X = V(am+1)-

Proofs of these fundamental theorems can be found e.g. in
[14].

Every rational parametrization of an affine variety can be
extended to a parametrization of the corresponding projec-
tive variety. In many situations the implicitization prob-
lem can be treated more conveniently in projective lan-
guage.

DEFINITION 1. Let F = (Fo,...,Fn) € K[to,...,tm]3T"
a tuple of homogeneous polynomials of equal degree d, B =
V(Fo, ..., F,) the projective algebraic set of basis points.
F defines a map IP™(K)\ B — P"(K). We say that
im(F) is parametrized by F.

A base point is a point p € IP™(K) where F' cannot
be given a value in P*(K), that means, p is given by
coordinates (Ao, ..., Am), where Fo(Xo,...,Am) = -+ =
Fr(Xo,...,Am) =0 (and, of course, (Ao,...,Am) # 0).

3Note that this means that X equals the Zariski closure
of im(p).

THEOREM 6 (PROJECTIVE IMPLICITIZATION). Assume
K is infinite, and let X C IP™(K) be parametrized by the
tuple F € K[to,...,tm]}T". Then X = V(am41) where
a={(xo— Fo,...,zn — Fr) CK[to,--.,tm,To,...,2Tn] and
am+1 = aNklzo,...,Tn]

In the rest of the paper we study several methods for
practical computation of the implicit representation of an
parametrized variety.

3. INTERPOLATION

Finding the implicit representation of a parametrized va-
riety means finding the coefficients of a finite set of poly-
nomials. So, if we know bounds for the degrees of the de-
sired polynomials, we may evaluate the given parametriz-
ing functions in some finite set of interpolation nodes,
thereby obtaining a linear system L. A nontrivial solution
of L yields an answer to the implicitization problem. The
following result for curves can be found in [28]:

PROPOSITION 1. Let (’;;((8, Z;Eg) with GCD(u1,v1) =

GCD(u2,v2) = 1 be a proper parametrization of an irre-
ducible plane curve defined by f(x,y) =0. Then

deg, (f(2,y)) = max{deg(uz), deg(v2)} and

deg, (f(z,y)) = max{deg(u1), deg(v1)}.

A similar result holds for surfaces. The determination
of such degree bounds is simple but the brute force ap-
proach often fails due to the huge size of the linear system.
There has been progress in recent time as to development
of methods that take advantage of the special type of such
a linear system [24].

4. GROBNER BASES

The last theorems [4 and 5], describe the variety im(p) with
the aid of elimination ideals which therefore are of central
interest. The theory of Grdbner bases yields a powerful
tool for treating such ideals. The details can be found in

[6].
THEOREM 7 (ELIMINATION). Consider an ideal
a Q k[tl,...,tm,wl,...,mn]

and let G be a Grobner basis of a with respect to an elimi-
nation order t; >> x;. Then GNk[z1,...,,] is a Grébner
basis* of a Nk[z1,...,T4s]-

The acronym t; >> z; means that any monomial in-
volving one of t1,...,tm is greater than all monomials in
k[z1,..., 2]

ExXAMPLE 1. Consider the variety X parametrized by the
tuple

F = (52 —t? —u? 2su,2st, 82 + 2 + uz) € k[s,t,u];l.
Applying Theorem 6 we construct the ideal
a={x—(s"=t>—u’),y—2su,z —2st,w— (s> +1° +u”)).

4with respect to the induced order on monomials in
k[z1,...,Zx]



A Grébner basis of a with respect to pure lexicographic
order s>t>u>z>y>2>w s
2 + 22 + 92 — w?, 26222 + 297 + 2 — 2w,
—y2 +2u’z + 2u2w, ty — zu, —wy + 2yu2 + zy + 2tzu,
2tux + 2tuw — 2y, —w + 2% + 2u° + T, 82 —xt —tw,
sy —ur — uw,tz — sw + st + yu, —y + 2su, —z + 2st,
25 —z — w.

By Theorem 7 the Grébner basis of the elimination ideal
anklz,y, z,w] is {z® + 2> + y® — w?}. Therefore X is the
unit sphere in 3-space.

Taking into account the existence of algorithms for com-
puting the reduced Grébner basis out of any ideal basis
[7], the problem of finding the implicit representation of
varieties given by rational parametrizations is completely
solved. It is well known, however, that computing Grébner
bases for the ideals under consideration is a costly task
which often stifles in its intermediate expression swell. This
is the reason why different methods, though with their own
disadvantages, are considered.

5. RESULTANTS

Consider positive degrees do, . . ., d, representing linear spaces

of homogeneous polynomials in k[zo, . . ., ,]. For each pair
of indices 4, where 0 < ¢4 < n and o € N**! with
|| = ds we introduce a variable y; o constructing the poly-
nomial ring Z[y; o]. If Q € Z[y; o] and F; = Zlal=di Ci,ax®
are homogeneous polynomials in k[zo, . .., zy] of degree d;
(0 < ¢ < n) then Q(Fo,..., F,) is the result of replacing
in € the variable y; o by the scalar ¢; .

THEOREM 8. Let K be algebraically closed and fix posi-
tive integers do, - ..,dn. Then there is a unique polynomial
Res € Z[yi,a] with the following properties:

1. If Fy, ..., F, € K[zo,...,zs] are homogeneous of de-
grees do, - ..,dn then V(Fo,..., Fy) # 0 if and only
if Res(Fo, ..., Fn) =0.

2. Res(:c‘é"7 cain)y =1,

3. Res is irreducible in K[y o].

Various methods for computing such a resultant can be
found e.g. in [19, 15, 5]. The following consequence of
Theorem 8 expresses the application of resultants to the
implicitization problem.

THEOREM 9. Let K be algebraically closed, and fo, ..., fn €
K[z1,...,zn] be of positive degrees do, . ..,dn. Write

fi="fia; +-+fio (057<n)

as sum of its homogeneous components, and let
F; € K[zo,z1,...,2n] be the homogenization of f;. If the
system of equations

fodo =" = fnd, =0

has only the trivial solution, then, for a given tupel
(Yo, --.,yn) € K" the equations

Il

Yo Jo(w1, ... zn)

Un = falr,e.erzn) @)

have a common solution (s1,...,8,) € K" if and only if

Res(Fo — 5oz, ..., Fp — yozi®) = 0.

Roughly speaking, the implicit representation of a para-
metrized variety is given by the resultant of a family of
homogeneous polynomials. The problem is that the resul-
tant vanishes identically when the given parametrization
has base points. In this case sparse resultants or pertur-
bation techniques can be used for implicitization [22]. An-
other way is given by the following concept.

6. MOVING VARIETIES

Again consider an affine variety X C A" (K) given in
parametrized form
x= (8.2
fo fo

where f, € K[t1,...,tn]. A moving variety of type d and
multi-degree (o1,...,0m) is a polynomial

om

i e YT T AR St (3)

i1=0  im=0|a|=d

where a = (o, ..., 0n) € N**! and 2% = 23° - .- 2%". For
each fixed value of ¢1,...,tm (3) is the implicit represen-
tation of a variety in IP"(K). The moving variety is said
to follow X if

Om

o1
Z Z Z Aqu...imfatill ---tﬁg” =0 (4)

i1=0 im =0 |a|=d

(f* = fo(tr,---ytm)* - fu(ts, ..., tm)*"). Moving vari-
eties following X can be computed by solving a linear sys-
tem. In case n = 2, if (3) is linear in xo,x1,x2, it is called
a moving line, when n = 3 and (3) is linear in xo,...,z3
it is called a moving plane etc.

Classical Implicitization of Curves

In its simplest instances the method of moving varieties
presents itself as a generalization of the classical resultant
method. For example, consider the case n = 2,m =1, i.e.,
we deal with a parametrized curve

c: 2= (t) (5)

w®) T w()
where we may assume that GCD(z(¢),y(t), w(t)) = 1. This
means that the parametrization (5) has no base points.
Invoking the classical implicitization method, we construct
auxiliary polynomials

f=aw(t) —x(t), g=yw(t)—y(t) (6)

The implicit representation of (5) is then given by the re-
sultant

Rest(fag) =0.

The standard tools for computing the resultant are the
Sylvester matrix Syl(f, g) and the Bezout matrix Bez(f, g).

Given two degree n polynomials

n n
o=t $=Y
=0 =0



the Sylvester resultant is the determinant of the 2nx2n
matrix

Uuo Vo
ui v1 Uo Vo
ui V1
Syl(fag) = Un—1 VUn-1 ug Vo
Un Un  Un—1 Un—1 - w1 V1
Un Un

Upn  Un
where void space is occupied by 0. Syl(p, ) is of order=
2n, sparse, with repetitive entries and easy to compute.
In the special case of polynomials (6) are the entries of
Syl(f, g) linear expressions in z and y.

To construct the Bezout resultant of ¢, 1 we consider the
polynomials
on(t) = Unt® + Un_1t" - Uk
P (t) Unt® +vp_ 1t b U
peii(t) = p(t)e(t) — oep(t)(t) (k=0,...,n—1).
From

et) = @O F Fun_koat" T 4wt +uo
Pt) = ¢k(t)tn_k F U1t vt 4o
it follows that pi1,...,pn are polynomials of degree n — 1

in ¢. The Bezout resultant of ¢, is the determinant of
the n x n matrix

Bez(p,¢) = Coef fpi(t),...,pn(t)].
Bez(p, 1) has more complicated entries but order = n.
In order to use the Bezout approach for implicitization of

curve (5) we write the polynomials of the given rational
parametrization with equal formal degree:

z(t) = ant"+---+ait +ao
y(t) = but" + -+ +bit +bo
w(t) = dnpt" +--+ +dit + do.

The auxiliary polynomials (6) are then

f(t) = (zdn — an)t™ + - + (xd1 — a1)t + (xdo — ao)

9(t) = (ydn — b )t"™ + - - - + (yd1 — b1)t + (ydo — bo).
To build Bez(f, g) we generate the polynomials

@) = (2dn—a)t* + -+ (2dn-k — an-s)

ge(t) = (ydn —ba)t" + -+ (ydu—t — bu-s)

pre1 = gr(t)f(t) — fu(t)g(t) =

= ge(@)(zw(t) — x(t)) — fu(t)(yw(t) —y(?))

where k£ = 0,...,n — 1. The polynomials p1(¢),...,pn(t)
are of degree n — 1 in ¢, their coefficients are linear in
z,y. Moreover they vanish along the curve C. They are

certain moving lines following the curve. Thus they
can be written as

pl(t) = L;—l(way)tn_l +—|—Li($,y)t+L(1)($,y)

with Lg (z,y) linear in z,y. The determinant

det(L{ (z,y)) = Bez(f(t),9(t))

is the implicit representation of C. Thus we can say that
implizitization of curve (5) by means of the classical Be-
zout Resultant amounts to using n certain moving lines of
degree n — 1.

Moving Lines

In order to generalize the classical method to using more
arbitrary moving varieties we first provide an overview over
all moving lines of arbitrary degree following curve C.

The general moving line of degree d is
(Aoz + Boy + Cow) + - - - + (Agz + Bay + Cqw)t*  (7)

where Ay,...,Cy are constants. If (7) shall follow the
curve (5) then

d
> (Ajz(t) + Biy(t) + Ciw(t)) ¥ = 0. (8)

i=0

The left hand side of expression (8) is a polynomial in ¢ of
degree n + d so we get a linear system

Coeff[z(t),y(t), w(t), z(t)t,. .. ,w(t)td](Ao, AU Cd)T =0

which is of order n + d + 1 x 3d + 3. Hence there are at
least

3d+3—(n+d+1)=2d+2—-n (9)
linearly independent solutions. Therefore, by setting d =

n — 1, we obtain at least n linearly independent solutions

pl(t) = L(l)(way)++Lvlz—l(xay)tn_l

pa(t) = Lg(z,y)+- + Ln_y(z, )"
Consider the n x n matrix

Coeftlp1 (t), - - -, pu(t)] = (L (2, 9))-

Its determinant is a polynomial in &, y of degree < n which
obviously vanishes on C. Thus it is a good candidate for the
implicit polynomial of C. If it works, we call this method
implicitization by moving lines.

THEOREM 10. The method of moving lines works, if the
parametrized curve (5) has no basepoints.

A proof can be found in [29].

In case the degree of the parametrization of curve C is even,
n = 2m, there is the following variant of this method:
For arbitrary d there are at least 2(d + 1 — m) linearly
independent solutions. Specializing d = m we get > 2
independent moving lines p, ¢ following the curve.

THEOREM 11. When there are no moving lines of degree
< m that follow the curve then det(Syl(p,q)) = 0 is the
implicit equation® of curve (5).

®note that the matrix Syl(p,q) is a Sylvester matrix with
the order of the Bezout matrix. Thus the method takes
advantage of both matrix approaches.



The proof consists in showing that

L. det(Syl(p,q)) # 0;
2. deg det(Syl(p,q)) < 2m;

3. det(Syl(p, q)) vanishes on the curve (5).

The existence of a moving line of degree m — 1 following
the curve is equivalent to the vanishing of the 3m x 3m
determinant

|Coeff[m(t), y(t),w(t),... ,x(t)tm_l, y(t)tm_l, w(t)tm_1]|_

This is a polynomial in the coefficients of z(t),y(t), w(t)
and therefore almost never vanishes.

If the parametrization (5) is of odd degree, n = 2m + 1,
there is always at least one non-zero moving line of degree
m and at least 3 linarly independent moving lines of degree
m+1 that follow the curve. Therefore, there always exists
a moving line p of degree m and a moving line ¢ of degree
m+ 1, where ¢ is not a multiple of p, that follow the curve.
In a similar way to the case n = 2m we get:

THEOREM 12. When there are no moving lines of degree
< m that follow the curve then det(Syl(p,q)) = 0 is the
implicit equation® of curve (5).

EXAMPLE 2. Consider the degree 6 affine curve

x(t) = 1+202+2t°, yt)=2+1°
w(t) = 14t+2° +26° +* +1¢°.

Equation (7) gives

(A;z(t) + Bijy(t) + Cjw(t)) ! =0

5
i=
where the left hand side is a polynomial of degree 2n—1 =
11 in t. This gives 12 linear equations in 18 wunknowns,
hence there are at least 6 linearly independent solutions.
The determinant of the matriz R(z,y) = L; ;(z,y) of co-
efficients of a set of such solutions gives the implicit equa-
tion.

On the other hand we have 2 linearly independent mov-
ing lines of degree 3:

p = 209z + 317y — 843w + (427 + 83y + 250w)t
+ (340y + 338w)t> + (—339z + 333y — 333w)t>
g = 303z — 303w + (343x + 181y — 402w)t

+ (3172 — 179y + 443w)t” + (—132z + 413y — 413w)t>

The determinant of Syl(p, q) is the implicit representation
of the curve. Written out this is

16554z + 6728y — 3399z — 21524zy + 18304xy>
—269022°y” — 9270zy” + 11648z>y + 2255027y
—9483z* — 46322° + 1499y* — 7055y* + 11890y° >
—3364y 2> — 50102° + 40652°y + 16078z y
—7910"y? — 127102°y” + 62192%y® — 7392° + 3852y°
+2256y° — 4472zy* — 207y% + 408y°z — 7073

Shere the Sylvester matrix is of size 2m + 1

Existence of low dimensional Moving Lines
By our previous analysis we see that there are always
moving lines of degree d following a curve of degree n if
d > 5 — 1. Let p be the lowest degree of such a moving
line. Hence p < |5]. Let p be a moving line with the
lowest degree p that follows the curve. There are always
at least 2(n— p) + 2 —n = n+2— 2y linearly independent
moving lines of degree n — p that follow the curve. Not
all of them can be multiples of p, hence there is a degree
n — pu moving line ¢ that is not a multiple of p. The two
moving lines p and ¢ have the following property:

THEOREM 13. Any degree d moving line that follows the
curve (5) can be written uniquely as Ap+ Bq, where A is a
polynomial in t with deg A < d— u, and B is a polynomial
int with deg B<d+ p—n.

Implicitizing Curves by Moving Conics
A moving conic of degree d is a polynomial

Az’ +B(t)zy+C(t)y’+ D(t)zw+ E(t)yw+ F(t)w® (10)

where A(t),..., F(t) are polynomials of degree d in ¢. Al-
ternatively (10) can be written as

Co(z,y) + Ci(z,y)t + - + Ca(z, y)t?

with homogeneous polynomials Cj(c,y) of degree 2. The
moving conic (10) follows the curve (5) if

A()2* () + Bz (t)y(t) + C()y° (1) + D)z (yw(t)
+E()y(t)w(t) + F(t)w’(t) = 0.

Geometrically this means that the conic corresponding to
the parameter value ¢o passes through the point on curve
(5) corresponding to to. In complete analogy to the case
of moving lines we may proceed to study the situation of
moving conics. We sketch the development for a rationally
parametrized curve of even degree.

Assume the degree of (5) is 2n. Searching for moving con-
ics of degree n — 1 following the curve leads to a system of
5n homogeneous linear equations in 6n unknowns, there-
fore to at least n linearly independent solutions ci,. .., cn.
Constructing the matrix of coefficients, which now consists
of quadratic polynomials, and computing its determinant
should output the implicit representation of the curve. Un-
fortunately, in this case, this method of moving conics does
not always yield the implicit representation of the curve,
even if we have eliminated all base points. Here is the
result for this case:

THEOREM 14. The method of moving conics generates the
implicit equation for a rational curve of degree 2n with no
base points if and only if there is no moving line of de-
gree n — 1 that follows the curve. Moreover, when there
is a moving line of degree n — 1 following the curve, any
determinant generated by the method of moving conics is
identically zero.

The proof is given in [29].

Implicitizing Surfaces by Moving Planes
For rational surfaces, moving lines and moving conics gen-
eralize to moving planes and moving quadrics.



A moving plane of bidegree (o1,02) is a polynomial of the
form
g1 02 L
ZZ(Aijfv“‘Bijy‘*‘Cijz‘l‘Dijw) s't. (11)
i=0 j=0
For each fixed value of s, ¢ this gives the implicit represen-
tation of a plane in IP*(K).

Assume given a rational surface

_ (st _ y(st) _ 2(st)
T w(s,t)’ T w(s,t)’ = w(s,t) (12)

where

m n
z(s,t) = Z Zaijsitj,

i=0 j=0 i=0 j=0
m n m n

2(s,t) = E E cijs't?, w(s,t) = E dijs't!
i=0 j=0 i=0 j=0

are polynomials of bidegree (m,n). The moving plane (11)
is said to follow surface (12) if
>3 (Aijz(s,t) + Bijy(s,t) + Cijz(s, t) + Dijw(s,t)) s't’ =0.
i=0j5=0

J (13)
Equation (13) amounts to (o1 + m+ 1)(o2 +n + 1) homo-
geneous linear equations in 4(o1 + 1)(o2 + 1) unknowns.

Choosing, specifically, 01 = 2m — 1, 02 = n — 1 we get
6mn equations in 8mn variables. Hence there are at least
2mn linearly independent solutions p1, ..., Pomn :

2m—1

3
3
L

(Aljz + Bijy + Cijz + Diw) s't!

s
Il
o
~.
I
<)

M
3
I
-
3
I
-

(Af"x + B™y + CJ™" 2z + D" w) st

i

I
o
<.

I
1<)

Each of these solutions is a moving plane that follows sur-
face (12). The determinant of the 2mn x 2mn coefficient
matrix

1 1 1 1 1 1
ApoT + Booy + Cooz + Dogw -+ - Agpy g 1@+ -+ Doy g g

Atz)gmz Foeeee + Dgg”"w T Aﬁﬁiﬁ’lm_lw +ot Dg::”—an—ﬂ”
vanishes whenever (z,y, z,w) lies on the surface. Hence if
this determinant does not vanish identically, then it is the
implicit representation of (12) [2mn is the generic degree
of surface (12)].

As in the case of curves the auxiliary polynomials
mw(szt) - $(S,t), yw(szt) - y(sat)a Zw(sat) - Z(Sat)

are moving planes of bidegree (m,n) that follow the sur-
face. So the standard resultant technique for impliciti-
zation uses 3 moving planes of bidegree (m,n) following
the surface. Using the Sylvester resultant generates 6mn
moving planes of bidegree (3m — 1,2n — 1), whereas the
Dixon resultant generates 2mn moving planes of bidegree
(m—1,2n—1).

Efficient Implicitization of Surfaces by Mov-

ing Planes

The last method i.e. construction of an 2mn x 2mn im-
plicitization matrix does not give anything essentially new,
since such a matrix can be found more directly by com-
puting the Dixon resultant of the auxiliary polynomials.
As in the curve case there is a new method which consists
in construction of an implicitization matrix that has the
style of the Sylvester resultant and the order of the Dixon
resultant. The following considerations go back to work
from M. Zhang, R. Goldman and E. Chion [33].

Consider moving planes of bidegree (m — 1,n)
m—1 n o
Z Z(Aij:c-l—Bijy-i—Cijz-l—Dijw) s'tl. (14)
i=0 j=0
If (14) shall follow the surface (12) we get a linear system
of 2m(2n+ 1) equations with 4m(n+ 1) unknowns. Hence
there are at least 4m(n+1) —2m(2n+1) = 2m lin. indep.
solutions:

m—1 n
P = Z (A,IJCL' + B,lj + C,ljz + D,IJ’UJ) st
i—=0 j—=0
m—1 n o
Dom = (A?jm:c + By + C"z + D" w) s't)
i=0 j—=0

Let M be the matrix of coefficients of this linear system,
where the rows are indexed by
1

2n—1 2n—1 m—1
t t

m—1t2n—1
Y )-8 .

ey )8yt 8

M is square of order 2mn, its entries repeat and it is sparse.
Moreover det M = ( for surface points, and, because the
entries are linear in x,y deg M < 2mn. If surface (12) has
no excess base points, the irreducible implicit representa-
tion of (12) is of degree 2mn. Therefore, if det M # 0, it is
the implicit representation of surface (12). The condition
det M # 0 is true in almost all cases.

THEOREM 15. The method of moving planes computes the
implicit equation of a generic rational surface (12) from a
determinant in the style of Sylvester with the size of Dizon.

Using the method of moving quadrics for a tensor prod-
uct surface of bidegree (m,n) produces a determinant of
order mn whereas usual resultant methods end up in de-
terminants of order 2mn. In the presence of base points,
the resultant either vanishes identically, or becomes very
complicated, while the moving quadrics method often sim-
plifies.
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