FAST OPTIMAL DESIGN OF SEMICONDUCTOR DEVICES

MARTIN BURGER* AND RENE PINNAUT

Abstract. This paper presents a new approach to the design of semiconductor devices, which
leads to fast optimization methods whose numerical effort is of the same order as a single forward
simulation of the underlying model, the stationary drift-diffusion system. The design goal we inves-
tigate is to increase the outflow current on a contact for fixed applied voltage, the natural design
variable is the doping profile.

By reinterpreting the doping profile as a state variable and the electrostatic potential as the new
design variable, we obtain a simpler optimization problem, whose Karush-Kuhn-Tucker conditions
partially decouple. This property allows to construct efficient iterative optimization algorithms,
which avoid to solve the fully coupled drift-diffusion system, but only need solves of the continuity
equations and their adjoints. The efficiency and success of the new approach is demonstrated in
several numerical examples.
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1. Introduction. Optimal design and characterization of semiconductor devices
is a field of growing interest in the recent years, in the engineering (cf. e.g. [5, 6,
13, 14, 18, 20, 21, 22]) as well as in the applied mathematics community (cf. e.g.
[2,3,7,8,9,10, 11]). A major objective in the optimal design of devices is to improve
the current flow over some contact by modifying the device doping profile, which
enters as a source term in the mathematical model for semiconductor devices used,
the so-called drift-diffusion system.

The stationary drift-diffusion system in physical variables consists of nonlinear
elliptic equations for the electrostatic potential V', the electron density n, and the
hole density p:

div(e;VV) =¢qg(n—p—-C) in Q,
div(D,Vn — p,nVV) =0 in ,
div(DpVp + pppVV) =0 in Q,

where €, denotes the semiconductor permittivity, ¢ the elementary charge, u,, and p,
are the electron and hole mobilities, D,, and D, are the electron and hole diffusion
coefficients, respectively. This is system is supplemented by homogeneous Neumann
boundary conditions on a part 9Qn of the boundary, modelling the insulating parts
of the boundary, and Dirichlet conditions on the remaining part, which models the
Ohmic contacts of the device:

V() = Vp(z) = U(x) + Vii(z) = U(z) + Urln (”I;L(x)) on 89p,
n(z) =np(z) = % (C(x) +4/C(z)? +4n%> on Op,
) = poa) = 3 (-0 + /O + 407 on O,
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Here n; is the intrinsic density, Ur the thermal voltage and U is the applied biasing
voltage.

Under usual conditions, the mobilities and diffusion coefficients are related by
Einstein’s relation, i.e., Dy, = pi,/,Ur. which enables the transformation into the
so-called Slotboomn variables [19] defined by

n=ne"/VTuy, p=ne"/Vry. (1.1)
The assumptions that €, and ¢ are constant allows for the choice of an appropriate
scaling yielding the system

NAV = (Yu—eVv)=C in Q (1.2)
div (pne” Vu) =0 in Q (1.3)
div (upe="' Vo) =0 in O (1.4)

where A2 = (€5 Ur)/(q Cmaz L?) is the scaled Debye length of the device (for details
see e.g. [16]). The Dirichlet boundary conditions can be written as

V=Vp=U+Vy on OQp (1.5)
u=1up on 00p (1.6
v =vp on OQp (1.7

where up and vp are the transformations of np and vp under (1.1). On the remaining
part 00y = 0N\ 0Qp, the homogeneous Neumann conditions can be formulated on
Jn and Jp, where J,, and J, are the electron and hole current densities, which are
related to the Slotboom variables by

JIn = pne’Vu, Ty, = —ppe” V' Vo. (1.8)
Hence, we have
ov
ou
i 0 on 0Ny (1.10)
ov
W 0 on 00N (1.11)

Throughout the whole paper, we shall assume that all Dirichlet boundary values Vp,
up, and vp, are bounded in H2 () N L% (), which is the basis for an existence proof
of the drift-diffusion system in (H'(Q) N L>®(Q))3 [16].

The objective of the optimization, the current flow over a contact T, is given by

I= /F Jdv = /F (T + J,).dv. (1.12)

An optimal control approach to the optimization of a functional related to the
current density J or the current flow I was investigated in [10, 11], where the drift-
diffusion system (1.2)-(1.11) was interpreted as an equation constraint determining
the state (V,u,v). Consequently, a penalty term related to the control variable C' was
added to the objective in order to stabilize the system. To the penalizing problem, an
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iterative algorithm was applied, which as usual needed solutions of the drift-diffusion
system and some adjoint system in each iteration. In this paper we investigate a
completely different approach, namely we reinterpret the potential V as the design
variable and the doping profile C' as a state variable. For given V satisfying appro-
priate boundary conditions, it is easy to show that the drift-diffusion system has a
unique solution (u,v,C) and moreover, the partial differential equations (1.2)-(1.4)
have a simple triangular structure in the new state variables. Corresponding to our
interpretation of state and design variables we add a penalty term corresponding to
V to the objective functional in order to stabilize the problem. As we shall see be-
low, this yields a reasonably simple optimality system, from which a fast optimization
algorithm can be constructed.

For the sake of simplicity and shortness of presentation we assume that p, = p, =
1, but analogous reasoning is possible for general mobilities, even for energy dependent
ones. Moreover we ignore recombination-generation terms [19], noting that they could
be incorporated into our analysis with only few modifications.

The paper is organized as follows: in Section 2 we review the current state in
semiconductor design and introduce our new optimization approach. Some basic
analysis of the optimization problem under investigation (such as existence of solutions
and first-order optimality) is provided in Section 3. Section 4 is devoted to the iterative
solution of the optimal design problem, and in particular an efficient method based
on a lower diagonal approximation of the Karush-Kuhn-Tucker system is introduced.
Numerical results for some diodes and a MESFET device are presented in Section 5,
and finally we give some conclusions in Section 6.

2. Optimal Design of Semiconductor Devices. In the following we discuss
some basic problems in optimal semiconductor design and present a new approach for
optimization problems at a single applied voltage.

Although the optimal design of semiconductor devices is of major importance in
practical applications, the first systematic approaches to such optimization problems
have been carried out only in the last few years (cf. [10, 11, 18, 20, 21, 22]). Probably
one of the main reason for this late development are the computational difficulties
and the complexity of such optimization problem. Even the numerical solution of
the drift-diffusion system itself is not a simple task, and an optimization based on
the drift-diffusion model therefore becomes quite involved. In the first optimization
approaches to this problem, gradient-type methods have been used, with gradient
evaluations either by finite differencing (cf. [18, 20, 21, 22]) or by an adjoint method
(cf. [10, 11]). Both approaches resulted in a very high numerical effort due to a large
number of iterations needed. E.g., by finite differencing around 4000 direct solutions
of the drift-diffusion system were needed for the optimization of a MOSFET device,
at a rather coarse discretization of the doping profile with 62 design parameters (cf.
[18]). The adjoint approach, used in [11] for the minimization of a functional of the
form

Qs(0) = Qn(C),P(C), V() + 511C — C*I* = min, 1)

reduces the number of nonlinear solves, and adds few solves of an adjoint linear system.
This reduces the numerical effort, but causes the need for an accurate discretization
and numerical solution of the adjoint system, which is not well investigated so far.
We use a different approach, based on exchanging the interpretations of control
and state between C' and V. We interpret the potential V' as the design variable
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and interpret the Poisson equation (1.2) as a state equation for the doping profile C.
Consequently, we introduce a penalty dependent on V — V* rather than on C' — C*.
As the initial guess V* we use the one obtained from the solution of the drift-diffusion
system with doping profile C*. Since the Laplacian of V' — V* is needed for the
evaluation of C' — C*, it seems natural to use a penalty term dependent on

W= AV — V), (2.2)

i.e., we minimize the functional
Qulu,u, V, W) = Q(u, v, V) + / W (2)[? da, (2.3)

subject to (2.2) and the drift-diffusion system. In order to ensure that C' does not
change its boundary values, W must satisfy homogeneous boundary conditions on
0 p, on the remaining boundary we may use any homogeneous boundary condition.
For simplicity we will carry out our analysis for

W =0 on 01, (2.4)

in a numerical test (cf. Section 5.3) we will use the boundary condition W = 0 on
00 p and %—V: = 0 on 00y, which permits a similar analysis.

Of particular importance are functionals (), which depend only on the values the
outflow current density on some contact T, i.e.,

Qu,v,V) = R(Jwlr) = R ((e"% eV g“)|r> (2.5)

In [11], the functional under investigation was

R(Jvlr) = —II(J Tl (2.6)

m\»—t

(ry’

corresponding to the objective of finding an outflow current density J.v close to a
desired density J*.v. Since in most practical applications, one is rather interested in
the total current flow on a contact, we rather consider the functional

/Jdl/—]*

(for some desired current flow I*) as the motivation for the analysis in this paper and
also use it for our numerical tests. We also note that for one-dimensional diodes, which
have been investigated in [11] and will also be used for some of our numerical tests,
the above two functionals are equivalent, since the geometry of a contact corresponds
to a boundary point of an interval.

R(J.v|r) = (2.7)

3. Analysis of the Optimization Problem. In the following we provide some
analysis of the optimization problem

e(u,v,V,IW) = i , 3.1
Q (u v ) (napy‘fv}/lV%/r)le,Dad ( )

with the admissible domain
Dod = {(u,0, V,W) € Hl(Q)2 X (H1 (Q)NL>®(Q)) x L2(Q)
satisfying (1.3)-(1.11), (2.2) }.

We shall investigate the existence of minima as well as a derivation of the Karush-
Kuhn-Tucker conditions, which allows to deduce further regularity of minimizers.
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3.1. Existence of a Minimum. We start our analysis with a basic result on
the existence of minima, for which we need two fundamental properties, namely the
weak lower semicontinuity of the objective functional and the weak closedness of
the admissible domain. Weak lower semicontinuity of (). is obviously obtained in
H'(Q)3 x L?(), the weak closedness of D,q is obtained if A(V — V*) remains in
L?(Q). This leads us to the following result:

THEOREM 3.1 (Existence). Let € > 0. Then there exists a minimum

(@,v,V,W) € H'(Q)? x (H'(2) N L>®(Q)) x L*(N). (3.2)
of (3.1).

Proof. Suppose (u*,v*, V¥ WFk),cn is a minimizing sequence, then we imme-
diately may conclude that W* is bounded in L2(Q) and thus, by standard elliptic
regularity, V¥ — V* is uniformly bounded in H?(f2) < C(f2). Since the a-priori guess
V* is in L>®(2), we obtain uniform boundedness of V* in L>°(Q). Standard energy
arguments for the elliptic equations (1.3) and (1.4) consequently yield the bounded-
ness of u¥ and v* in H'(Q) N L*(Q). Thus, we may extract a weakly converging
subsequence (ug, ,Vk,, Vi, » Wi, ) k,en € HH(Q)2 x HY(Q) x L?(2), which also preserves
the L bound (and such that A(Vj, — V*) converges weakly in L?(Q)). The weak
closedness of the admissible domain and the weak lower semicontinuity of the objec-
tive functional imply that the weak limit of this subsequence is a minimizer of (3.1).
a

A direct consequence of the representation

C=C*-XNW+n-—n*—p+p*

is the existence of a doping profile C' € L?(f2) such that (u,v,V) is a solution of the
corresponding drift-diffusion system.
COROLLARY 3.2. Let € > 0. Then there exists a minimum

(@, o, V,W) € H'(Q)? x (HY(Q) N L™(Q)) x L*(Q). (3.3)
of (3.1), and a doping profile C € L?(Q) such that (@,,V) is a weak solution of the

drift-diffusion system (1.2)—(1.11) with C = C.
3.2. First-Order Optimality. In order to derive the first-order optimality con-
ditions, we define the Lagrangian given by

Lu,v, V,W; p1, p2, p3) = Qe(u,v, V, W) +/ (eVVu.V,ul — e*VVvV/,Lg) dz
Q
+/ (V(V = V*).Vus + Wpus) dz. (3.4)
Q

One observes that the only nonlinear terms in the equation constraints (1.3) -
(1.11), (2.2) are of the form e¥ Vu and e~V Vu, and these are continuously Fréchet-
differentiable in D,q since V € H'(Q) N L>®(Q) and (u,v) € H'(Q)2. Hence, with
little effort we obtain the following result:

PROPOSITION 3.3. The Lagrangian L is continuously Fréchet-differentiable on
Dad X .H1 (Q)3 .

Each solution of the optimization problem is a saddle point of the Lagrangian,
i.e., a solution of

inf sup ﬁ(U7U7V7W§M1;N2>N3)- (35)
(w0, ViW) (u1,02,13)
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For such saddle-points we can derive the Karush-Kuhn-Tucker conditions by comput-
ing the variations of the Lagrangian £ with respect to all primal and dual variables,
which all must vanish. The variations with respect to the dual variables just yield the
equality constraints, while from the variation with respect to the primal variables we
deduce that

o
0= QQE(U,U, V; W)ﬁ - / (CVVTA}V,LQ) dz (37)
ov Q
0= %Qe(u,v,% W)V +/ (V (eVVu.Vu +e V' VoVu,) + VV.V/@) dz (3.8)
Q
0= / W (eW — us)da, (3.9)
Q

holds for all variations (i, 9, V, W) € H'(Q)3 x L2(Q).

One observes that the so-called adjoint equations (3.6)-(3.8) have a simple trian-
gular structure with respect to the Lagrangian variables. Thus, the problem of prov-
ing existence and uniqueness of Lagrangian variables (p1, p2, u3) € Hg p(Q)? solving
(3.6)-(3.8) for given primal variables (u,v,V), simplifies to analyzing subsequently
three different variational problems, which turn out to be coercive in Hg ,(€2). This
yields another advantage of our approach with respect to the direct optimal control
approach, where analyzing the adjoint problem is a difficult task, which is possible
only close to thermal equilibrium (cf. [11]).

THEOREM 3.4. Let (u,v,V,W) € Dyq be given, then there exists a unique solution
(11, po, p3) € H(}’D(Q)3 of the variational problem (3.6)-(3.8).

Proof. The variational problem (3.6) is of the form

A(/l’37ﬁ) = <F7 ﬁ)7 Vie H&,D(Q)J

with a continuous linear functional F on Hj () and a coercive, continuous bilinear
form

Au,v) = / e"Vu.Vv dr on H; p(9)°.
Q

Thus, existence and uniqueness of p; follows from the Lax-Milgram Theorem. Since
we can apply analogous reasoning to (3.7), we also obtain the existence and uniqueness
of pe. Since py and po are determined by (3.6), (3.7), we may consider them as a
given right-hand side in (3.8). The latter is now a scalar problem for pg, whose well-
posedness can again be shown by a straight-forward application of the Lax-Milgram
Theorem. Note, that L?(Q) — H~1(Q). O

Our subsequent analysis will be carried out for the important case of @) being the
outflow current functional (2.5). In this case, the derivative of the functional Q is
given by

Q' (u,v,V)(a,9,V) = R'(Jv|p) (e %— *Vg”+( Vg +e V%)V), (3.10)

and noticing that V € H;j (§2), we observe that the last term on the right-hand side
vanishes. In the partlcular case of (2.7) the derivative simplifies to

Q' (u,v,V)(a, :(/JdV—I*>/(e ZZ e V%)ds. (3.11)
r



Due to the simple form of (3.9) it seems obvious to eliminate the Lagrangian
variable pu3 = €W and to rewrite (3.8) as

0= / (V (e V.V + eV VoVins) +eVV.YW ) do. (3.12)
Q

This advices the interpretation of W as the design variable and (3.12) as the optimal-
ity condition corresponding to the minimization of the functional @) subject to the
equality constraints (1.3), (1.4) for the state variables (u,v, V).

If we choose the Lagrangian variables p;, i = 1,2 such that p; = 0 only on 0Qp\T'
and p; = py = n on I' for some real constant 7, then we can derive a simple form of
the optimality system. With this choice, the Lagrangian becomes

E(U,'U,V,W;/J/l,/JQ,[L3) = Qé(quJVJ W) +/ (evvu'vlu'l - eivvvvﬂz) dz
Q

+/ (V(V=V*).Vus + Wus) dx—n/ J.dv, (3.13)
Q r

and the optimality with respect to u yields

(/ Jdv—T*— n) / (ev%) ds +/ (eVVﬁ.Vﬂl) dz = 0. (3.14)
r r ov Q

With the choice n = ;. J.dv — I'*, this reduces to the weak form corresponding to the
elliptic partial differential equation

div ("Vu) =0  in(Q, (3.15)

subject to the boundary conditions

1 — / Jdv+I*=0 onT (3.16)
r
w =0 on 00p \T (3.17)
0
% =0  ondQy. (3.18)

Analogous reasoning yields the equation
div (e7VVu2) =0  in @, (3.19)

subject to the same boundary conditions as for u1, determining the Lagrangian vari-
able po. Finally, we determine the optimality condition with respect to W can be
rewritten as the equation

eAW =eVVu.Vu +e VVoVu,  in Q, (3.20)

subject to homogeneous Dirichlet conditions on 9Qp and homogeneous Neumann
conditions on 9.

3.3. Regularity. In the following we use the Karush-Kuhn-Tucker system de-
rived above, which has to be fulfilled by any solution of the optimal design problem,
to prove additional regularity of minimizers. First of all, since W satisfies the Pois-
son equation (3.20) with right-hand side in L'(Q) — H1(Q) and subject to the
homogeneous boundary conditions (2.4), we may conclude that W € H* ().
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For the primal variables u and v, which satisfy the homogeneous elliptic equations
(1.3) and (1.4), respectively, we can apply a standard maximum principle as in [16],
which implies u € L*(Q) and v € L*(). Analogous reasoning can be applied to the
dual variables 1 and pe, which solve the same elliptic equations as v and v, and whose
Dirichlet boundary data are uniformly bounded, too (since p; is piecewise constant
on 9Qp). Hence, we may conclude that u; € L>®(2), i = 1,2. As a consequence of
this type of regularity, we obtain that

V(C = C*) = =X2VW + ¥ (uVV + Vu) + e~V (vVV = Vo)
— e WYV + Vur) —e”V (0*VV* — Vu*)  (3.21)
is bounded in L?(f2), since all the gradient terms on the right-hand side are in L?(12)
and the zero-order terms are in L>(€2). Thus, we have deduced the following type of

regularity for minimizers: L
THEOREM 3.5. Let (w,7,V,W) € D,q be a minimizer of (3.1). Then,

u e L>®(Q), v e L), W e H'(Q). (3.22)

The Lagrangian variables i; € H'(Q) associated to (1.3) and (1.4) satisfy
m e L), e l™Q) (3.23)
Moreover, if C* € H'(Q), then the associated doping profile C (via (1.2)) satisfies

C e HY(D).

We finally give an interpretation of the optimality system with respect to the local
regularity of the doping profile. If the initial doping profile C* has a discontinuity
(occurring typically at a p-n junction), then the according solution V* is locally not
C? across the junction, but (via standard regularity) on every open set not containing
the junction. Since for a solution of the optimality system, V — V* satisfies a Poisson
equation with homogeneous boundary data and a right-hand side W that we may
expect to be smooth (W solves a Poisson equation itself), the solution V' — V* should
have higher regularity even across the discontinuity of the doping profile. Hence, the
only source of lower regularity is contained in V* and thus, its location must be the
same for V = (V = V*) + V*.

4. A Fast Optimization Method. In the following we discuss a simple op-
timization method, which allows the design of semiconductor devices by solving de-
coupled elliptic partial differential equations only. For simplicity we consider the case
of (2.5), (2.7) in the following, but an analogous approach is possible for different
objective functionals, too.

We start by discussing the Lagrange-Newton iteration for the primal variables
(uk,v* VF W) and the dual variables (u¥, u%), given by

AVE = AV* + W (4.1)
div (e 7' Vuk) = —div (V"7 (VE = Vi) Ve ) (4.2)
div (V"7 Wok) = div (e V" 1(vk Vi 1)Vur 1) (4.3)
div (V"7 Vpk) = —div (VT (VF = Vo) Vi) (4.4)
div (e V7 Vuk) = div (e VT (VE = Vi) Vi) (4.5)

—eWk = —eV* ! ((V’“Vuk_1 + Vuk). Vbt 4 Vuk_l.V/,tf)

+e VT ((-VEVORT 4+ Vok). Vbt 4 VRt Lupb) | (4.6)
8



subject to the boundary conditions (1.5)-(1.11) As for the solution of the drift-diffusion
system, the full Lagrange-Newton method yields a sequence of systems of partial
differential equations, which is in general non-elliptic due to the strong influence of
first-order terms. As for the drift-diffusion system, we may expect the numerical
solution of this system to be a difficult task, in particular for large applied voltages.
Moreover, the advantage of our optimization approach, namely the partial decoupling
into scalar elliptic partial differential equations, is lost by using this Newton-type
approach.

Therefore it seems favourable to use a different iterative method for the solution
of the optimality system. Using a lower triangular approximation of the optimality
system, we first solve equation (2.2) with given W for the potential V, and subse-
quently the continuity equations (1.3), (1.4) with given potential V for u and v. With
given potential and given u and v, we solve the adjoint equations (3.15), (3.19) to
obtain the Lagrangian variables y; and ps. Finally, we can perform a gradient step
with respect to the design variable W using the optimality equation (3.20). Due to
the simple structure of this equation, it seems reasonable to discretize the Laplace
term in an implicit way and thus, to solve

—eW +7W = 7W* —e"Vu.Vu, + e~V VoV, (4.7)

for an appropriately chosen damping parameter 7, where W* is the old value of W.
All together, we can write this iteration as

AVE = AV 4 Wk (4.8)

div (ev’c Vur) =0 (4.9)
div (e V*Wok) =0 (4.10)
div (erV,u'f) =0 (4.11)
div (e vV 'Vuk) =0 (4.12)
—eWk 4Tk = skl V" Vuk Vb + eV VorVuk, (4.13)

subject to the above boundary conditions. The only coupling in the boundary condi-
tions occurs in the condition u; = fr J*.dv, but also there we can use the previously
computed values for u* and v* to obtain J*. The corresponding value of the doping
profile can be computed independently by

Ck—C* = - X2WF +n* —n* —pF +p*, (4.14)

E_ vV vk ok

k
where n* = eV u* and pF = e~V vk,

5. Numerical Examples. In the following we report numerical results for three
different examples, two bipolar diodes and a unipolar MESFET device. For all the
numerical experiments we use the physical parameters for silicon as given in Table
5.1, with a standard forward-bias scaling of the variables (cf. [16]). The objective
functional is given by (2.5), (2.7). All the numerical examples have been implemented
within the software system MATLAB.

5.1. PN-Diode. Our first example is a pn-diode, with the domain 2 scaled to
the unit interval (0,1). The pn-diode is characterized by a doping profile which has
exactly one positive and one negative region; we choose one of the simplest possibilities
for the (scaled) initial doping profile, namely a function jumping almost abruptly from
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Parameter | Physical Meaning Numerical Value
q elementary charge 1.6'107 1 As
n; intrinsic density 10% ¢m—3
€s permittivity constant 10712 As V—1g1
o low field mobility 1.5'10% cm2V—1s7!
Ur thermal voltage at 7' = 300K | 0.0259 V

TABLE 5.1

Physical parameters for silicon.

Doping Profile Doping Profile

— Optimized
— - Initial

F1G. 5.1. Initial (dash-dotted) and optimized (solid) doping profile in Ezample 5.1, for e = 102
(left) and € = 10~2 (right).

the value 1 to —1 at the junction. This initial profile is shown as the dash-dotted
function in Figure 5.1. The Debye length in this experiment is given by A2 = 103
and the value of the applied voltage is U = 10U = 0.259. The optimization objective
is to increase the current flow (i.e., the current flow density, which is constant in the
domain since J, = 0) by 50%, and consequently we chose

I = 1.5-/ Jo.dv, (5.1)
T

where I' = {0} and Jp is the current flow density obtained with the initial doping.

For the numerical solution of the drift-diffusion system and the linear elliptic equa-
tions arising during the iterative solution of the optimization problem in this example
(as well as the following one) we use an exponentially fitted scheme of Scharfetter-
Gummel type (cf. [4]), the fineness of the uniform spatial grid is given by h = 1072
For the discretization of all variables involved (C,V, W, n,p, u1, u2) we use piecewise
linear finite elements, the drift-diffusion system with given initial doping profile is
solved using Newton’s method and voltage continuation to obtain the initial value of
the potential (cf. [17]).

The numerical results have been performed for several values of €, with the result
that most changes appeared for € between 1072 and 1072, so we plot the results
for these two values in the Figures 5.1 - (note that for large values of e the penalty
does not allow enough change to the initial configuration, while for small values the
observation tends to be almost zero in our case so that the further change in the
solution is negligible). Figure 5.1 shows the optimized doping profiles (solid) in both
cases compared to the initial one (dash-dotted). The dashed line is the coordinate axis
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FiG. 5.2. Initial (dash-dotted) and optimized (solid) potential in Ezample 5.1, for ¢ = 1072
(left) and € = 10~2 (right).
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Fi1G. 5.3. Initial (dash-dotted) and optimized (solid) electron (left) and hole density (right) in
Ezample 5.1, for e = 10~3.

for z, its cut with the doping profile marks the pn-junction. One observes that the
optimized doping profiles have similar shape for both values of €, but the magnitude
of the doping in the n-region grows with decreasing e. In both cases the n-region
grows on expense of the p-region, i.e., the pn-junction moves right and the value of
C is larger than the initial one in the whole domain. Moreover, the doping profile
remains steep around the center point = 0.5, which numerically confirms the result
obtained from the analysis of the optimality system.

An analogous effect happens with the potential V', which is the actual design
variable in our approach, and with the electron and hole densities, i.e., the shape
changes strongly compared to the initial one for € = 102 and if we decrease the value
of € the resulting current flow can be forced to be closer to the desired one only by a
change in magnitude. The resulting potentials for both values compared to the initial
ones are shown in Figure 5.1. The electron and hole densities are shown in Figure 5.3
for the value of € = 1073,

Finally, we illustrate of the behaviour of objective functional, observation and of
the penalizing energy term in the left plot of Figure 5.4, and the change in the current-
voltage characteristic in the right plot (both for ¢ = 1073). Not surprisingly, the
objective functional and observation are reduced in few iterations, while the energy
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(dotted) in Ezample 5.1 (left), and current-voltage characteristic, for ¢ = 1073,
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FIG. 5.5. Initial (dash-dotted) and optimized (solid) doping profile in Ezample 5.2, for ¢ = 10~
(left) and € = 10~8 (right).

intially increases since the doping is pulled away from the initial one. In the later
stage of the iteration, the observation part remains almost constant and decrease
in the objective functional is obtained only due to (slow) decrease in the energy.
An inspection of the current-voltage plot shows that also the optimized doping profile
yields a characteristic whose absolute value increases exponentially for positive applied
voltages, but lies above the initial one for all applied voltages.

5.2. NPN-Diode. Our second numerical example is a npn-diode, with the same
parameter settings as in Example 5.1, and with the same choice of the objective. The
initial doping profile is piecewise constant function taking the values one and minus
one; it is shown as the dash-dotted function in Figure 5.5. The values of the parameter
€ that lead useful results are now between 10~% and 10~8, which is due to the lower
absolute values of the current obtained in this example. The objective value obtained
in the first case is around 0.4, while the objective is reduced almost to zero for the
the second one. The evolution of the objective functional, the observation and the
energy term is plotted in Figure 5.8, showing a similar behaviour as in Example 5.1.
For € = 108, the energy term is already negligible and the iteration is driven by the
reduction of the observation error.
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FIG. 5.6. Initial (dash-dotted) and optimized (solid) potential in Ezample 5.2, for ¢ = 10~6

(left) and € = 10~8 (right).
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Fi1G. 5.7. Initial (dash-dotted) and optimized (solid) electron density (left) and hole density

(right) in Ezample 5.2, for e = 1078,

The optimized and initial values for the doping profile are plotted in Figure 5.5

and for the potential in Figure 5.6. In this case, the change in the potential is quite
small, and the doping profile is increased slightly both in the n- and p-regions. A more
significant change happens in the electron density, shown for the case of e = 107% in
Figure 5.7. As one might expect, the electron density is changed mainly in the n-
regions, while the hole density is changed in the p-region.

Finally, we plot the negative CV-characteristics (i.es; theafspeU 1

initial and optimized device for both values of €. The shape of these current-voltage
curves remains similar for all values of €, but obviously changes in magnitude as €
tends to zero.

5.3. MESFET Device. As our final example, we consider the optimal design
of a metal-semiconductor field-effect transistor (MESFET) in two spatial dimensions.
We use a device geometry and an initial doping profile as in an example considered
[12], with a length of 6um and a width of 2um. The geometry and the position of
the contacts is shown in Figure 5.10. The scaled initial doping profile (by the value
C, = 10em ™2 is shown in Figure 5.11; in order to improve the visibility, we plot
the initial values and subsequently the results with different scaling of the z- and
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F1G. 5.8. Evolution of the objective functional (solid), observation (dashed) and energy (dotted)
in Ezample 5.2, for ¢ = 1076 (left) and ¢ = 10~8 (right).
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F1G. 5.9. Negative current-voltage characteristic obtained with the initial (dash-dotted) and the
optimized doping profile (solid) in Ezample 5.2, for ¢ = 10~% (left) and ¢ = 10~8 (right).

the y-axis. A MESFET can be modeled as a unipolar device, which is also reflected
by the positivity of the doping profile in the whole device region. Thus, we have
p=v = 0in Q and the equation for v as well as the adjoint equation determining
the Lagrangian variable ps = 0 can be eliminated, which reduces the computational
effort. The boundary data are specified by n = 0.5(C' + +/C? + 462), a temperature
of T'= 300° on each contact, and

e at the source: V =V}, — 0.1[V] = 0.1670[V].

e at the drain: V = V;; + 0.4[V] = 0.6670[V].

e at the gate: V =V}; =0.2385[V].
Our objective is to increase the current flow over the drain by 50%, and consequently
we chose

= / Jo.dv, (5.2)
I

where T' is the drain contact and Jy is the current flow density obtained with the
initial doping.

For the finite element discretization of the original problem we used an adaptive
solver, with a resulting mesh (shown in Figure 5.12) consisting of n; = 15434 trian-
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Fi1c. 5.10. Device geometry in Example 5.3.

Fic. 5.11. Initial value of the doping profile and the potential in Example 5.3.

gular elements. This mesh is used subsequently also for the optimization algorithm.
This strategy of using grid adaption only for the initial problem is motivated by the
above observation that steep junctions will remain at the same location during the
optimization process.

In this case, it turns out that a suitable choice of € is 1072, and here we show
the results for this value. Changes of € lead to a similar behaviour as in the previous
examples. The optimized doping profile and the optimized potential are shown in
Figure 5.14. A comparison with the initial value shows that the doping profile is
increased mainly close to the drain, while it is even slightly decreased close to the
device corner opposite to the drain. The change in the potential is less significant,
which is due to the fact that the main shape of the potential is determined by the
rather high difference in the boundary values. Changes in the doping profile (and in
the electron density n = e¥u are mainly caused by the Laplacian of V' — V*, which is
still of considerable magnitude.

An inspection of the evolution of the objective demonstrates again the efficiency
of our approach, since a minimum is obtained with only few iterations. Since in
each iteration, we only have to solve four scalar elliptic partial differential equations,
the numerical effort per iteration is similar to two Gummel-type iteration steps for
the (unipolar) drift-diffusion system. Since in general the number of iterations in a
Gummel-type method for the drift-diffusion system is of similar size than the number
of iterations needed for the optimal design problem, the overall numerical effort for
optimization is around the effort for two forward solves of the nonlinear drift-diffusion
system, which is a surprising result.

6. Conclusions. We have presented a new, fast approach to the optimal design
of semiconductor devices, which can be applied if a performance optimization of the
device at a single fixed applied voltage is desired. The numerical experiments illustrate
reasonable convergence properties of the simple algorithm we have proposed to solve
the optimal design problem, and clearly demonstrate its efficiency. In particular, we
have obtained an optimization procedure with a numerical effort of similar magnitude
as few forward solves.

We finally would also like to mention the natural limitations or possible gen-
eralizations of the approach presented in this paper. These limitations arise if the
optimization goal involves current flows for several applied voltages and consequently
several different potentials, since we can only interpret one of the potentials as the
design variable in this case. This statement applies in particular in the context of
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Fi1G. 5.12. Mesh used for the optimization in Example 5.3.
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Fi1G. 5.13. Ewolution of the objective functional (solid), observation error (dashed) and the
energy term (dash-dotted) in Ezample 5.35.

identifying unknown doping profiles, which is usually done by minimizing a least-
squares functional involving a large number of different voltages (cf. [2]). In many
typical optimal design situations however, the aim is to control at most the currents
for two-different voltages, namely for an on-state voltage and an off-state voltage (close
to equilibrium). The usual aim in such a situation is to maximize the on-state current
flow on a contact by keeping the off-state current flow below some threshold value.
In optimal design problems of this type it seems natural to eliminate the on-state
potential, since solutions of the drift-diffusion system close to equilibrium are rather
cheap. A numerical investigation of such optimal design situations shall be left to
future research.
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