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Abstract

In this paper, we deal with the approximation of discrete data sets from
measurements of material characteristics, concentrating here on B — H
curves of magnetic materials. We propose an approach based on the reg-
ularizing method of smoothing splines, in combination with a discrepancy
principle for the regularization parameter choice. This allows to guarantee
monotone approximations of the B — H curve, as it is essential both for
physical reasons and for numerical purposes in nonlinear magnetic field
computations.

Keywords smoothing splines, nonlinear field computations, Maxwell’s equa-
tion, regularization

1 Introduction

Nonlinear numerical calculations are important in real life applications. Such
nonlinearities are often due to material properties. For instance, the reluctivity
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v(-) in Maxwell’s equations (see e.g. [6]), connects the magnetic induction B
with the magnetic field intensity H by

H=1(B|) B.

If hysteresis effects and anisotropies are neglected, the reluctivity is a scalar
function of the absolute value of the magnetic induction. In this paper we will
consider only this example, but wish to mention the importance of nonlinearities
as well as the applicability of the approximation approach considered here in
other physical contexts such as piezoelectricity or heat conduction.

In practice, such material relations are given by a discrete sample of mea-
sured data that is naturally contaminated with noise. Therefore an appropriate
approximation of the data points is necessary. The approximation of the re-
luctivity is an important task, since the final solution of Maxwell’s equation
depends on it.

The paper of B. Heise [5] is concerned with the interpolation of the sample
and thus special assumptions on the reluctivity are made. Especially, mono-
tonicity of the reluctivity is assumed, which does not always hold, though.
Furthermore no noise is considered in the paper. We extend the work in the
following directions:

1. approximation instead of interpolation of the data set

2. approximation of the B — H curve itself instead of the reluctivity
3. incorporation of noise

4. approximation of the B — H curve in a strictly monotone way

We base our work on the method of smoothing splines, see [9] and [1, 2] for
an overview. While [9] is concerned with a twice continuously differentiable
approximation of a given data set, we have to search our approximation in the
space of only once continuously differentiable functions in order to be able to
enforce a monotone spline approximation (see [4] for monotone spline interpo-
lation). For a stochastic approach to spline approximation of noisy data, we
refer to [10].

The method of smoothing splines was applied by the authors several times
[8, 7]. However, the intention of this paper is to focus on the approximation of
the B — H curve and the resulting properties.

The paper is organized as follows: In Section 2 we formulate the problem
and motivate it. Section 3 is concerned with the construction of the spline.
Finally we do some numerical studies in Section 4 and in Section 5 conclusions
are drawn and final remarks are given.
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Figure 1: Principle of the B — H curve approximation.

2 Problem Formulation

Maxwell’s equations in the static case read as (see e.g. [6])
VxH = 17J

’ 1

vV-B = 0, (1)

with the impressed current density J, the magnetic induction B and the mag-
netic field intensity H. Considering the isotropic case and neglecting hysteresis
effects, one can relate B and H via the reluctivity v

v(|BJ) - B[ = [H] (2)
with | - | the Euclidian norm. The reluctivity can be seen as a scalar function
v(s) : Ry — Ry

and due to relation (2) we set
v(s)-s=f""(s)

with f describing the B — H curve (see Figure 1). Consequently the more
general form of (2) reads as

B| = f(H]|) orequiv. [H|=7""(B]).

Due to the physical background, the functions v(-) and f(-) have to fulfill certain
properties, namely

() < 140 VSZO,

lim v(s) = wp,
0) = 0, (3)
(s) > 0 Vs>0, (4)

where vg is the reluctivity in air.



Remark 2.1. 1. It is worth to mention that since f is strictly monotone, so
the function v(s) - s is. This is an essential condition for the unique solv-
ability of the nonlinear operator equation arising from Mazwell’s equation

(1) [5, 11].

2. Furthermore the derivative
(F7Hs)) = (v(s)-8)' =v'(s) - s+v(s) >0

is strictly positive since the function f(-) is strictly monotone. This is
important for the application of Newton’s method to the nonlinear partial
differential equation (1).

In practice, discrete measured pairs
(Bi,H;) i=1,...,N (5)

are given (see Figure 1). The B — H values are measured for several different
impressed currents J;, i = 1,..., N, such that

B; = |B(J;)|, H;=|H(J;)| for i=1,...,N.

Thus, the reluctivity is given in discrete points, i.e.,

3 Smoothing Splines

For the following section we denote by C"([a,b]) and P"([a,b]) the space of n
times continuously differentiable functions and the set of polynomials of degree
less or equal n on the interval [a, b], respectively.

3.1 General

Let a set of discrete data points (5) be given and let the exact value corre-
sponding to H; (i.e., the one obtained without noise in the measurement) be
denoted by B;, and the noise level by 6. Note that in the present application,
the noise level is given by the (known) accuracy of the measurement equipment.
In accordance with the given properties (3), (4) of f we assume:

0:H1§Hi<f_I,-+1<ooand

Al. _ >
0=B1=B1<B;j<Bj;1 <>

}forallizQ,...,N—l

A2. |B;-B;j|<éforalli=1,...,N

Now we apply the method of smoothing splines to a set (5) with the assumptions
Al1.,A2.. We have to minimize

/ " (£"(s))? ds — min (6)

Hy fev



under the constraint

N

> (7f i B’“)Z < (c-6)” (")

w
k=1 k

with wy € R some relative weights, ¢ € RT and § € ]R(T the given noise level.
Using a Lagrange multiplier A € R (or equivalently, Tikhonov regularization
with the regularization parameter § = 1/ chosen according to the discrepancy
principle, see e.g. [3] pp. 121) we arrive at the objective function

N

2
J(F) =X |:Z (M) —I—q—(c~5)2

w
k=1 k

+ / C((e)2ds (8)

Hy

that has to be minimized over the function space V. The variable ¢ is a slack
variable, which is equal to zero, unless the data points can not be approximated
by a straight line (see [9] for details). For further discussion we set ¢ = 0. It is
shown in [9] that the minimizer f* fulfills

frevand  flg,m € PP(Hy, Heal), k=1,...,N-1 (9

if V = C%([H;, Hy]) and for instance f"(H;) = f"(Hy) = 0 is chosen. Espe-
cially this means that the minimizer can be represented by a polynomial on
each subinterval, i.e.

4
fe(s) =D fik-Cinl(s) Hy<s<Hgn k=1,...,N—1 (10)
j=1

where {Cj,k}?:l is a basis of P3([Hy, Hg+1]). The coefficients fj; € R are
unknown and to be determined.

Remark 3.1. In [}] it is shown that if assumptions Al., A2. are fulfilled with
§ = 0, then there exists a monotone (interpolating) cubic Cl-spline. Thus a
monotone function in V = C1([Hy, Hy]) that is feasible in the sense of (7) is
guaranteed. However this result is in general not valid for V = C%([Hy, Hy])
and therefore f* might not be monotone even if assumption Al. is fulfilled.
Motivated by (9) on one hand and the monotonicity requirement on the other
hand, we consequently concentrate on the approzimation by C'-splines for fur-
ther discussion.

3.2 Realization

In order to construct a C!-spline we do not enforce continuity of the second
derivative at the nodes Hy, k = 2,..., N —1. Appropriate boundary conditions
are imposed so that the solution of the minimization problem for (8) is unique,
i.e., we set

f(HY) = fi, f(Hn)=fn, [f(H)=f1, [(HN)= N, (11)



with given flafNaf{?f_;V: €.g.,
By — By
= _B == B ! = —_—
fl 1 fN N, fl H2 — Hl )
where By > By, By > By_1 is assumed.
The basis functions (; ; are transformations to the interval [Hy, Hy11], k =

, _ Bn—Bn-1
IN=F—F—
Hy —Hy-1

1,...,N — 1 of the Hermite polynomials of degree 3 on the unit interval
G(s) = (1—-s)2@2s+1)
G(s) = s*(3—2s)
G(s) = s(1—s)?
G(s) = —(1-9)s?,
and read as
Gi(s) = G((s — Hg)/(He1 — Hy))
Gur(s) = Ca((s — Hg)/(Hr+1 — Hy))
G(s) = Cs((s — Hy)/(Hgt1 — Hy)) - (Hg1 — Hy)
Car(s) = Ca((s — Hy)/(Hgt1 — Hy)) - (Hgp1 — Hy)
Hermite polynomials fulfill the conditions
¢(0) = 1, ¢(0)=0 fori=23,4
(1) = 1, ¢1)=0 fori=1,34
3(0) = 1, ({(0)=0 fori=1,2,4
Gy = 1, ¢(1)=0 fori=1,2,3.

Consequently, by setting
ka = fg,k_l = Zk f3,k = f4,k_1 = Ak Vk = 2, .. ,N -1
we enforce f € C*([Hy, Hy]) and introduce two variables z, A\ per subinterval

[Hi, Hiy1] instead of fjr, j =1,...,4.
By using the first order necessary conditions for a minimum, i.e.,

oJ oJ

— =0 —=0 Vk=2,...,N—-1 12

azk 7 aAk ’ 7 ( )
with the functional J(f) defined in (10) we arrive at 2N —4 necessary conditions
for the coefficients. The resulting linear system

Ti=g
has the following structure
L(1) D(2) U(2) 0 0 0

0 L(2) DB) UB) 0 . .

T = 0 0 L(3) D(4) U(4) 0 0 € RANx2N-1
0 0 .. 0 LN-2 DWN-1) UN-1)

g - (2'B2:0’2'B3a0a"'a2'BN—1a0)T€R2N74a

u = (f17f]l_7z2’A27"'7ZN—17)\N—]_,fN,f]IV)TERzN



with D(-), L(-), U(-) € R?2*2. After the incorporation of the boundary condi-
tions, i.e.,
g = g+ Tul + Tur
(f].’f{?o)o?' e 7O)T
Up = (ana >0afN7f],V)T

Uy

the reduced linear system Tu = g, T € RZV-4X2N—4 " with g, u € RN~ is
symmetric and positive definite (see [9]). The local matrices are given by:

Hy 41 9
Du(k) = 2-6- {',k(s) {',k(s) +C§’,k(5) é,,k(s)ds"“ —
Hy, Wi,
Hy g
Dis(k) = Doy (k) = 2-6- i 1k(8)C3x(8) + (2 (5)Ca i (5) ds
k
Hy 4y
Das(k) = 2-6- i 31(8)3k(8) + (4 (8)Ca ke (s) ds
k
Hy
Unk) = 20+ [ 7 st ds
s
Unk) = 20 [ culo)ctu(o)ds
Hﬁ

k41
Un(k) = 2.6 / §£’7k(s)§§'7k(s)ds
H
ﬁk+1
Up(k) = 2-60- 11(8)C3k(s) ds
Hk ) )
and L(k) = U(k)T.
For determining the regularization parameter 6 a posteriori we use a dis-
crepancy principle, see [3] pp. 121. Thus we are searching for the largest 6 such

that the residual v

3 (f(Hk) - Bk>2

k=1 Wk

is of the order of magnitude of the measurement noise, i.e., inequality (7) holds
with e.g. ¢ = 2. In addition, the B — H curve has to be strictly monotone. This
property is easy to check, because f is monotone iff the spline is monotone on
every subinterval. This leads to conditions on the coefficients f; ;. Consequently
the task is to find a monotone approximation which fulfills the discrepancy
principle for a given data noise level.

Remark 3.2. 1. We could think of a C%-spline enforcing the monotonicity
by enlarging the discrepancy parameter. But this would result in a loss
of accuracy. Numerical studies have shown, that most of the examples
yield either non-monotone C2-, or monotone Cl-approzrimations. Achiev-
ing both goals, i.e. monotonicity and twice differentiability, seems to be
hardly possible when using real life data. This corresponds also to the
theoretical gap mentioned in Remark 3.1.



2. The noise level is given in terms of the points (B;, Hy)N .. If we would
deduce an estimate for the data moise in terms of the (V,’,B,’)éil, this
would, due to the strong variation in scale of both function and derivative
values of the curve under consideration, lead to a locally too pessimistic
noise estimate and hence to a bad curve approximation.

3. The relative weights are chosen as wy = 1, for k = 1,...,N in our
applications.

4. In addition to Remark 2.1 it is easy to show that for the proposed approz-
imation the estimates

[V ()] <e1 <00, (v(s)-s) =v'(s) - s+v(s) <co< oo

hold.

3.3 Extrapolation

Finally a physical extrapolation of f(s) for s — oo is proposed. Since we know
that lim,_, o, (s) = vy we extrapolate the function v(s) rather than f(s). Thus
we make the ansatz

v(is)=wry+pB-e* Vs>By.

By using the conditions

? =v(By) = w+p-e P (13)
N
Bu/BUHN) “ AN _ gy = —q.p.coB (14)

2
By
and in order to enforce C!-continuity, we set the coefficients a and 3 to

Hy — By/B'(Hy)
HnBy —wB2,
B = (Hnx/Bn — 1) e*Bv . (16)

a =

For possible other extrapolation approaches, see e.g. [5].

3.4 Convergence

In the situation of exact data (§ = 0), results from spline interpolation (cf.,
e.g. [2]) yield convergence as the size h = max;<y<ny_1|Hg41 — Hy| tends to
zero. We are here interested in the situation of noisy data, and of fixed nodes
Hy, k =1,...,N, though, and in the question whether the result fg of the
smoothing spline technique with the discrepancy principle tends to the searched
for exact curve as the noise level § goes to zero. For this purpose we evoke the
theory of regularization in Hilbert scales (cf., e.g., Section 8.5 in [3]). For using
the smoothing spline reconstruction in Newton’s method for computing the
magnetic field from Maxwell’s equations, we need to have closeness not only



of the function values but also of the derivatives. Therefore, we choose the
W1 norm for describing convergence. To be able to work in the Hilbert space
setting of Section 8.5 in [3] we use as the solution space X = H?([B;, By])
with some a > 2, which is contained in W*°([By, By]), and as the data space
Y = L?([B1, By]), since we have a bound on the data noise in the given values
(cf. assumption A4.). Here f1 denotes the “exact curve”, i.e., the curve through
the exact values B; with minimal H%norm. From Theorem 8.25 in [3] we can
conclude that if this fT is in H2t%([By, By]) for some 0 < u < a + 4, then

178 — fH|a = O(8at%) .

4 Numerical Studies

In the following we show three typical data sets from real life measurements.
The described technique is implemented in a C++ code bhcurve. The code is
able to deal with different extrapolation techniques. Moreover different bound-
ary conditions can be implemented. The parameter of the discrepancy principle
is chosen automatically. Furthermore the monotonicity of f(-) is checked.

The CPU time for one B — H curve approximation is in the range of a
second on a standard PC, inclusively all checks.

First we consider a data sample (Sample 1) where the resulting reluctivity
v(+) became monotone. The noise level is § = 2-10"2 and N = 17 sample
points are given. In Figure 2 the approximation of the B — H curve is shown
up to H = 1.3+ 105. In Figure 3 the extrapolation of the reluctivity is shown.
By construction the global function is C! and lim,_,o = v9. Additionally the
function v(s) - s is plotted; here the strict monotonicity can be seen. According
to the data set Sample 1 the first derivative of the approximation is shown in
Figure 5. Obviously the reluctivity is only C!, but it is acceptable for our appli-
cations (e.g. if Newton’s method is applied). Furthermore the B — H-curve of
Sample 1 with a too small regularization parameter 8 is shown in Figure 7. It
can be seen that this approximation is not monotone. By choosing € correctly,
we get a monotone approximation, see Figure 6 for comparison.

The next example (Sample 2) is related to a data set which results in a
non-monotone v/(-) approximation, see Figure 9. The noise level is § = 1072.
Note, such data sets are typical for many magnetic materials but could not be
handled by [5] since the set {v;}1¥; is not monotone. In Figure 8 the given data
points and the approximation of the B — H-curve can be seen .

The last data set (Sample 3) with § = 102 is another example of a
(physically correct) non-monotone v, see Figure 11. As displayed in Figure 10,
the B — H data set is approximated by a strictly monotone f(s).

5 Conclusions and Further Remarks

In this paper we proposed a method for approximation of given discrete data
points. For the special case of the magnetic reluctivity we presented a method



of monotone approximations.

The method is very efficient and applicable to almost every given data set.

Also the first derivative of v(-) is acceptable.
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Figure 5: First derivative of the approximation of Sample 1.
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Figure 10: B — H-curve of Sample 3.
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