1

The correctness of algorithms is an important issue in computer science. Automated
support for proving algorithms correct would prove an excellent tool for algorithm
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Introduction

developers. This paper addresses this issue.

Theorema (see [6]) is a system that aims at providing automated support for
mathematical activities - proving, solving, computing, theory exploration. The lan-
guage provided by the system is a version of higher order predicate logic, which

*Work supported by the Calculemus European Project and by the Austrian Science Foundation

(FWF) under project SFB F1302



should make it attractive to use for persons with some formal training in mathe-
matics. This also makes it a useful tool in the training of mathematics and computer
science students. A big part of the algorithms presented in introductory computer
science courses can be formulated in terms of lists (tuples). One such algorithm is
the merge—sort algorithm. The algorithm is specified in T’heorema, and it is proved
correct using the proving capabilities provided by the system.

Section 2 presents briefly the underlying theory of tuples, how these can be
represented in terms of sequences and the formulation of the algorithm and of its
correctness theorem in the language of T'heorema. Section 3 contains the presen-
tation of the proof rules for sequences, their implementation in the frame of the
Theorema proving mechanism, and their usage. The exploration cycle that leads
to the proof of the correctness of merge—sort is described in Section 4. The Ap-
pendix contains the definitions relevant for the proofs presented in Section 4.

In the following, special fonts and font sizes are used to reprezent Theorema
input (typewriter fonts), output of the system (proof text or other information-small
fonts). In the proof fragments presented, [...] represents a part of the proof that
is irrelevant to this presentation. The ”lazy thinking paradigm” was introduced in
a preliminary technical report by the second author. The details of the proofs and
the implementation of the proof techniques for sequences in the Theorema system,
continuing earlier work on sequence induction (see [5], [11]), were worked out by the
first author.

2 The Merge—Sort Algorithm. Specification in Theorema

2.1 The Theory of Tuples

Tuples (nested lists) are objects constructed from an arbitrary finite number of
objects in a specific order. In T heorema, tuples are represented with angle brackets.
Examples:

(1, 2, 3)

(1, (a, a ), d, (b, c)).

The question is how to represent tuples, in order to develop the theory about
them. However, independent of the representation, some notions that describe op-
erations on tuples are needed. The tuple theory must contain:

- a tuple constructor: a function that takes an arbitrary finite number of objects
into a tuple;

- is-tuple: a predicate that tests whether a given object is a tuple. This can
be used also as a "type”, referring to objects as tuples, without representing them
explicitly;

- basic tuple operations: concatenation of two tuples, prepending and appending
an element to a tuple, reversing a tuple, selectors (first element, last element) etc;

- other operations: element of tuple, the length of a tuple, deletion of an element
from a tuple, insertion of an element in a tuple;



- if there is an ordering on the elements in tuples: (upper, lower) bound of a
tuple, sorting of elements in tuples.

There are several ways to represent tuples. One way would be to see them
as indexed lists, with the elements retrieved according to their index. One other
possibility is (like in this in this presentation), is to use sequences .

2.2 Representing Tuples in Terms of Sequences

Sequence variables (see [2], [7]) are variables that can be instantiated with an arbi-
trary finite number of terms. In Theorema they are denoted by overbarred identi-
fiers, X, y ...
For example, if X is a sequence variable, then
X < (substituting the empty sequence for the sequence variable)
X ¢+ t, u, v (substituting a sequence of terms for the sequence variables)
X« t,t (substituting a sequence of terms that contains also a sequence, for
the sequence variable).
From the informal description, the following are tuples:
(%)
(a, b, T)
Tuples can expressed in terms of sequence variables in the following way:

Definition["is tuple", any[X],
is-tuple[X] & 3I(X = (7))]
X

2.3 The Merge—Sort Algorithm

The merge—sort algorithm is an operation on tuples that takes a tuple and returns
its sorted permuted version. It is of the type divide-and-conquer (see [1]), which
suggests to define the solution function, S, for any X as:

special[ X] < is — special[ X]
compose[S[left — part[X]], S[right — part[X]]] < otherwise

For the algorithm to terminate, left-part and right-part must satisfy

S[X1=

—is—special[X]=is—greater[X,left —part[X]]
—-is—special[X]=is—greater[X,right —part[X]],
where is—greater is a Noetherian partial ordering (for which Noetherian induction

is possible) on the objects X which are of interest. In the case of tuples, a possible
Noetherian ordering is the ”is-longer-tuple” relation.

Hence the next more concrete version of the merge—sort algorithm for tuples is:

Algorithm["merge-sort", any[is-tuple[A]l],
A <= JAIKL1

stmg[A] := mg[stmgllsp[A]], stmg[rsp[A]]] <« otherwise

where



stmg- sort by merging, an unary function with tuples as arguments,

mg - merge, a binary function that takes two tuples and returns a new tuple,

Isp, rsp - left split and right split of a tuple. unary functions that takes
argument a tuple and returns another tuple,

|...| - an unary function that takes a tuple as argument and returns its length.

The empty tuple and the tuple with just one element are considered special tuples.
These are sorted. For the other case, the tuple is split in two parts and the algorithm
applied recursively to each of the splits, then the results are merged.

The aim is to prove that the algorithm is correct. This means that the result must
be a tuple, which is a permuted version of the input, and it is sorted:

Proposition["correctness of merge-sort", any[is-tuple[Al],
is-tuple[stmg[A]]
stmg[Al=~ A
is — sorted[stmg[A]]],
where

~ - "is-permuted-version”, binary predicate on tuples,
1s-sorted - binary predicate on tuples.

The chosen representation for tuples is suitable for the way the merge—sort
algorithm was defined (i.e. recursively). For proving the correctnes the available
sequence provers will be used. These will be presented in the next section, along
with the proof techniques for sequence.

3 Sequence Provers in Theorema

3.1 Theorema Terminology

A proof situation (K, G) is made up from a knowledge base K, and a proof goal G,
and read it "Prove G from K”. The proof goal is typically one formula, whereas
the knowledge base contains a collection of formulae.

Special provers execute individual proof steps, that reduce the proof situation
(to a simpler one). The reduction is done according to inference rules that are
implemented in the special prover.

The user provers represent the mechanism for combining several special provers.
It implements the proof strategies, that guide the reduction of the proof situation
to the final proof step, that contains True in the goal (and say that the initial goal
was proved).

Proof objects in Theorema are trees of proof situations. The nodes contain a list
of subgoals that have to be proved. There are AND nodes (all the subgoals have
to be proved for the proof to succeed) and OR nodes (it suffices that one of the
subgoals are proved for the proof to succeed). For details, see [6].



3.2 Proof Techniques for Sequences

In the following the proof rules for sequences are presented, in the form of the se-
quent notation (see [8]). The goal is a universally quantified formula, where (at least
one of ) the bounded variables are sequence variables. Every application of one of the
rules has as effect the elimination of an universal quantifier from the formula. The
proof rules for sequences only work on the goal, so the rules show the transformation
of the goal.

- arbitrary but fized (or explicit representation):

Xoarb., fixed : Pz x5
Vo
- case distinction.‘x
(OF Xg, Xparb., fixed :  Pg x5
Vo
B xo, Xoarb., fixed :  ®ge s x,
VP

Look at two cases, the base casej( when we substitute the empty sequence for the
sequence variable to be eliminated, and the general case, when the sequence variable
to be eliminated is substituted with an unempty arbitrary sequence (xq, Xg is a left
unempty sequence, Xp, X is a right unempty sequence). Other case distinction rules
can be imagined, e.g. when the sequence variable to be eliminated is sunstituted
with a sequence that has (at least) an inside unempty element ( Xg , Xo, Vo )-

- structural induction (introduced in [5], [11]):

Og Xg, Xoarb., fixed : Pz iz = Pz x5
Vo
X

Og X, Xoarb., fixed : Pz 5 = (13@_%, X0
Vo

For structural induction, there are again two cases, the base case, where the
empty sequence is substituted for the sequence variable to be eliminated, and the
induction step, where the formula is assumed true for an arbitrary sequence substi-
tuted for the sequence variable to be eliminated, in the induction hypothesis, and
it is proved for a longer (with one element) sequence. Again, this element can be
added at the beginning or at the end of the sequence, thus obtaining two proof rules.

Case distinction is in fact a special case of the structural induction, where the
induction hypothesis is not needed in the proof.

- well founded induction:



Xo arb., fixed : (Y((X0) > (F) = Pxey)) = Prex
y
Vo
In the case of the well-founded induction, the well—founded ordering (>) is
passed as an argument by the user. Its properties (well—foundedness) have to be
established in the theory. The proof rule described above is dependent on the theory
of tuples - the ordering that appears in the formula is an ordering on tuples. For

other theories, different proof rules must be specified. The other proof rules are
general, so they can be used in any theory with sequences.

3.3 Sqns - The Sequence Special Prover

The system provides information about the sequence special prover. The following
are commands executed in Theorema:

?78qns
Sqns[goal, kb, af] represents the implementation of several proof techniques for sequences (and
tuples): arbitrary but fixed, case distinction, induction.
goal - a universally quantified formula that contains sequence variables under the quantifier
kb - the knowledge base
af - additional facts,used in the proof process

The user can influence the behaviour of the prover by specifying options for it. The
options of the sequence prover are given by:

Options[Sqns]
{SgnsW FOrdering—None,SqnsProofTechniques—{ABF,CDLeft,IndLeft}}
And details for each option:

7SqnsWF0rdering

Option of the Sqns Prover.

SqnsWFOrdering — <Order Symbol> is the well founded relation that the user wants to use
with the Well—Founded induction.The properties of the ordering have to be

in the knowledge base and the ordering has to be well founded.

Default value: None.

?SqnsProofTechniques

Option of the Sqns Prover.
SqnsProofTechniques— <list of proof techniques >.
Proof Techniques:
ABF - arbitrary but fixed for sequences
CDLeft - Case Distinction, from the left
IndLeft - Structural Sequence Induction, from the left
WFInd - Well Founded induction (user also has to provide the well—founded relation,
through the SqusWFOrdering option)
CDRight - Case Distinction, from the right
IndRight - Structural Sequence Induction, from the right
Default value: ABF, CDLeft, IndLeft



This option specifies the order in which the proof rules should be applied on the
proof situation (on the goal). As a result of this, the proof tree will be split in the
corresponding branches (OR node), and each will be pursued, until one of them will
succeed or all fail.

The sequence special prover is combined with several other special provers in the
frame of the sequence user provers.

3.4 The Sequence User Provers

There are various combinations of provers that include also the sequence basic
prover. In general a sequence user prover can be seen as improving existing provers
in Theorema by adding sequence reasoning to them. Two groups of sequence user
provers can be distinguished:

e Sequence user provers that extend predicate logic (natural deduction) provers:
?SgnsEqProver
The prover combining rewriting and proof techniques on sequences.
?SqnsPredProver
The prover combining natural deduction and proof techniques on sequences.
?SqnsProver
The prover combining natural deduction, rewriting and proof techniques on sequences.

e Sequence user provers based on the PC prover and case distinction: The PC-
style prover was developed in [3], [11]. It represents an alternative to the
predicate logic prover. The PC prover works in two stages:

- a Prove stage, where rules for propositional/predicate logic are applied to
the goal and to the non—rewrite formulae of the knowledge base, for as long
as it is possible;

- a Compute stage, where we apply one generalized rewriting (rewriting with
equality, implication and equivalence as in [3], [11]) step to one formula in the
proof situations.

Another ingredient for these provers is the case distinction special prover, that
implements proof rules for definitions by case in the language of Theorema.
?SgnsCasePC

The prover that integrates proof techniques for sequences and case distinction in a PC-style
prover (predicate logic and generalized rewriting).

?SqnsEqCasePC

The prover that integrates proof techniques for sequences, simplification and case distinction
in a PC-style prover (predicate logic and generalized rewriting).

The sequence user provers are available to the user, who will use them in the proof
call:

Prove[ <expression>, using—<KnowledgeBase>, by—<Method>, <...>]



<expression> - is a Theorema formal text ( Proposition, Theorem, Lemma )
<KnowledgeBase> - represents the knowledge under which the expression is to be
proved. It can be provided as a list of definitions, properties, or in the frame of the
Theory construct, provided in the language.

<Method> - is the name of a prover that is called.

<...> - there are several other parameters that can be provided, such as prover
options, proof display options, etc.

4 Theory Exploration: Correctness of Merge—Sort

The formulation in the Theorema language of the merge—sort algorithm and its
correctness was introduced in Section 2. The underlying theory is the theory of
tuples. The methods available, the sequence provers, were described in Section 3.
The proof of the corectness result is obtained by doing a top—down exploration,
which is called ”lazy thinking paradigm”: deliberately don’t provide any knowledge
in terms of intermediate lemmata, until failing proofs of the correctness theorem
(and its subtheorems) give a natural suggestion which intermediate lemmata could
be useful for constructing a successful proof.

There are two ways to explore a given mathematical theory, see [4]. In the
bottom—up approach, at each stage a new concept is introduced, then the interac-
tions with the already defined notions are explored. These are then added to the
knowledge base and the next new concept is intoduced. This exploration method
yields a ”complete” exploration of a given theory, the degree of completeness depend-
ing on the one doing the exploration, as this process is not automated. However,
it is not very useful in this case (i.e. trying to prove a specific goal), because it
involves at every stage a ”complete” exploration, which means that a big part of
the knowledge is not useful for proving the desired result.

In the top—down approach, try to prove the desired result. Chances are that the

proof will fail, because not enough knowledge is available. Analyse the failed proof
attempt, derive and prove conjectures needed to complete the proof. This approach
is used to prove the correctness of the merge—sort algorithm.
It should be noted that in practice a combination of the two approaches is more fea-
sible. For the purpose of this presentation, some knowledge about tuples is assumed
(for example from a bottom—up exploration of the theory, which is not presented
here).

4.1 Top—Down exploration: Correctness of Merge—Sort

The aim is to prove:

Proposition["correctness of merge-sort", any[is-tuple[Al],
is-tuple[stmg[A]]
stmg[A]l~ A
is — sorted[stmg[A]]]



First attempt: try to prove under minimal knowledge (i.e. the notions occuring in
the formulation of the theorem). The knowledge base is:

Theory["correctness of merge-sort:KB-1",
Algorithm["sort by merging"]
Algorithm["merge"]
Definition["is-permuted-version"]
Definition["is sorted"]]

The proof call:

Prove [Proposition["correctness of merge—sort"],
using—Theory["correctness of merge—sort:KB-1"],
by—SqnsEqCasePC]

The proof will fail. Here is the failed proof attempt (fragments of a proof gener-
ated by Theorema):

Prove:

(Proposition (correctness of merge—sort)) Vl [A](is—tuple[stmg[A]]/\stmg[A]/‘\is—sorted[stmg[A]])
is—tuple

under the assumptions: [list of assumptions]
We try to prove (Proposition (correctness of merge—sort)) by making A arbitrary but fixed.
We show
(1) is — tuple[stmg[(A¢)]] A stmg[(Ag)] ~ (Ag) A is — sorted[stmg[(A)]] -

As there are several methods which can be applied, we have different choices to proceed with
the proof.
Alternative proof 1: failed
Not all the conjunctive parts of (1)can be proved.

Proof of (1.1) is — tuple[stmg[(Ag)]] : [ details of the proof attempt]

Proof of (1.2) stmg[(Ag)] ~ (Ao) : [details of the proof attempt]
Proof of (1.3) is — sorted[stmg[(Ao)]] [details of the proof attempt]

O

The proof rule applied was ”arbitrary but fixed”. From analysing the failing proof
attempt, we see that the proof could be completed if the following results were
known:

Proposition["closure of merge—sort", any[is—tuple[Al],
is—tuple[stmg[A]]]
Proposition["sorted by merge is permuted version", any[is—tuple[A]l],
stmg[A]~A]
Proposition["sorted by merge is sorted", any[is—tuple[A]],
is—sorted[stmg[A]]]
At this stage, try to prove each of the propositions. Because of space considerations,

only the exploration cycle that leads to the proof of the first proposition will be
presented.



4.2 Top Down Exploration Cycle: Closure of Merge—Sort

Try to prove the closure of merge—sort under a minimal knowledge base:

Theory["closure of merge-sort:KB 1",
Algorithm["sort by merging"]
Algorithm["merge"]
Proposition["is tuple tuple"]]

The prove call:

Prove[Proposition["closure of merge—sort"],
using—Theory["closure of merge—sort:KB 1"],built-in—Built-in["Numbers"],
by—SqnsEqCasePC, ProofOptions—SqnsProofTechniques—"IndLeft"]

The proof is not successful. Analyse the failing point in the proof:
Prove:
(Proposition (closure of merge—sort)) vV  is — tuple[stmg[A]] ,
is—tuple[A]

under the assumptions:
We try to prove (Proposition (closure of merge—sort)) by applying several proof methods for
sequences.
Alternative proof 1: failed
We try to prove (Proposition (closure of merge—sort)) by making A arbitrary but fixed.
We show
(1) s — tuplelstmg[(Ao)]] -

As there are several methods which can be applied, we have different choices to proceed with
the proof.
Alternative proof 3: failed
We try to prove (1) by case distinction using (Algorithm (sort by merging)). However, the proof
fails in at least one of the cases.
Case 1:
(@) A<l .

Hence, we have to prove
(3) 1is — tuple[(Ag)] .

As there are several methods which can be applied, we have different choices to proceed with
the proof.
Alternative proof 1: proved

Formula (3) is proved because it is an instance of (Proposition (is tuple tuple)).
Case 2:

(4 (Ao £1.

Hence, we have to prove o o
(6) is — tuple[merged[stmg[lsp[(Ag)]], stmg[rsp[{Ao)]]]] -

As there are several methods which can be applied, we have different choices to proceed with
the proof.

[ proof fails]

The point where the proof is stuck can be surpassed if the following holds:

Proposition['"closure of merge, with splits", any[is—tuple[Al],
is—tuple[merged[1lsp[A]l, rsp[A]]]]



This is a closure property, and it represents the interaction of the closure prop-
erties of the merge algorithm. Closure is a basic property in the theory of tuples. So
a bottom—up exploration of the theory will contain the closure properties of splits
and merge, as described above. With this additional knowledge, the proof of the
proposition is proved easily (details will be skipped).

However, trying to prove the closure of merge—sort with using arbitrary but
fixed, case distinction or structural induction fails, even with this additional knowl-
edge. Now try to prove it using well—founded induction. As describes in Section
3, the user has to provide the well—founded ordering to the prover. The user has to
make sure that the ordering provided is well-founded. The natural well—ordering
for tuples is ”is—longer—tuple”, and the its properties are proved in a bottom—up
exploration of the theory.

The knowledge base under which the proof is attempted:

Theory["closure of merge-sort:KB 3",
Algorithm["sort by merging"]
Algorithm["merge"]
Definition["is-permuted-version"]
Proposition["is tuple tuple"]
Definition["length of tuples"]
Proposition["numbers"]
Theory["well-founded relations on tuples"]]

The proof call:

Prove[Proposition[” closure of merge—sort”],
using—Theory[” closure of merge—sort:KB 3”],
built—in—Built—in[”Numbers”] , by—SqusEqCasePC,
ProverOptions— {SqnsProofTechniques—{"W FInd’}, SqnsW FOrdering—" =" }]

The proof attempt:
Prove:
(Proposition (closure of merge—sort)) vV  is — tuple[stmg[A]] ,
is—tuple[A]

under the assumptions:
We try to prove (Proposition (closure of merge—sort)) by well—founded induction on A .
Well—founded induction:
Well-Founded Induction Hypothesis:
(1) Y ({(Ag) > x1 = is — tuple[stmg[x1]])

is—tuple[x1]

We have to show:

(2) s — tuplelstmg[(Ao)]] -

As there are several methods which can be applied, we have different choices to proceed with
the proof.
Alternative proof 3: failed
We try to prove (2) by case distinction using (Algorithm (sort by merging)). However, the proof
fails in at least one of the cases.
Case 1:
(3) A<l .



Hence, we have to prove
(4) is — tuple[(Ag)] -

As there are several methods which can be applied, we have different choices to proceed with
the proof.
Alternative proof 1: proved
Formula (4) is proved because it is an instance of (Proposition (is tuple tuple)).
Case 2:

(5) [(Ag)l £1.

Hence, we have to prove L .
(7) is — tuple[merged[stmg[lsp[(Ao)]], stmg[rsp[(Ao)]]]] -

As there are several methods which can be applied, we have different choices to proceed with
the proof.
[failed branches]

O

Formula (7) is an instance of Proposition["closure of merge, with splits"],
if is—tuplel[stmg[lsp[(Ao) 111, is—tuplelstmglrsp[{Ay) 111. But this can be
obtained by modus ponens from the well—founded induction hypothesis, knowing
that splits are shorter than the tuple. This information we take from the bottom—up

exploration of the theory. The proof goes through (details will be skipped).

In a similar way, the proofs of Proposition["sorted by merge is permuted version"]
and Proposition["sorted by merge is sorted"] are obtained in a few exploration
cycles (details will be skipped). This completes the proof of the corectness of the
merge—sort algorithm.

5 Conclusions and future work

Although the example chosen here is quite simple, it demonstrates to be a good
testbed for the development of the sequence provers in Theorema. It illustrates
the capabilities of the system, notably the language and the proofs in natural style,
generated automatically. The problem is not new (it was addressed for instance
in [9], [10]), but the formulation in a theory with sequences makes use of powerful
sequence reasoning mechanisms, such as sequence unification ([7]) (needed in the
case of well—founded induction, in order to use the induction hypothesis).

To complete the proof, a series of exploration rounds were carried out. The
natural style of the proofs make it easy for the user to derive new conjectures from
the failed attempts. Moreover, as shown in [4], this process can be automated, by
designing a proof analyser that detects the failing points of a proof and generates new
properties, which it will attempt to prove. In this way, more complicated examples
can be addressed. This is one of the long—term goals of the T'heorema project.

On a shorter term, work is being carried out to improve the interaction between
the sequence prover and the rest of the basic provers available in the system, and to
better integrate the proving activity with solving and computing.
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A Appendix

This appendix contains the definitions and properties of notions relevant to the
proofs in the paper. They are given in the order they appear in the bottom—up
exploration of the theory:

Proposition["is tuple tuple",any[Z], is — tuple[(Z)]]
Definition["append",any[x,7|, () ~ = = (¥, )]

Proposition["append empty",any[x], () ~z = ()]

Proposition["closure of append", anyl[is—tuple[X], yl, is—tuple[X—~y]l]

Definition["prepend",any[x,y], = — (7) = (z,7)]
Proposition["prepend empty",any[x], x— () = (z)]
Proposition["Closure of prepend",any[a,is—tuple[X]], is—tuple[a—X]]

Definition["Membership",any[x,y,7],
¢ ()
(ze(yy) «(z=y)Vvze@)0)
Proposition["element with prepend",any[x,y,is—tuple[X]], (x€X)=(x€y—X)]

Definition["Deletion of the First Occurrence",anyla,x,Z],

dfola, ()] =)
(T) < r=a

dfole, ,7) | = zla, (T)] <« otherwise )
Proposition["Closure of deletion",any[a,is—tuple[X]], is—tuple[dfo[a,X]]]
Definition["is—permuted—version",anyl[x,Z, v, y],
() ~ ()
() # (v, 9)
(z,7) = (§) & (z € @) A (@) =dfolz, ()])]

Definition["length of tuples",anyl[x,Z,7],
(=0
[z =1 DT ]
Definition["Is-Longer-Than",any[x,Z,y,7],
—() > @)
(z,7) > ()
(z,7) = (v, ) © (@) > @ |
Definition["is sorted",any[Z,z,y,7],
is — sorted[()]
is — sorted[(z)]
is — sorted[(T, )]
is — sorted[(T, z,y,7)] < (A x>y ) ]
is — sorted[(y, 7))
Definition["left split", anyla, b, 7],
Lsp[()] :== ()
Lspl{a)] := (o)



Isp[{a, T, b):=a — lsp[z]] ]
Definition["right split", anyl[a, b, T|,
rspl()] :== ()
rapl(a)] == {
TSp[(a, z, b) = Tsp[f] ] ]
Proposition["closure of splits", anyl[is-tuplel[Al],
is-tuple[1lsp[A]]
is-tuple[rsp[A]] ]
Proposition["splits are shorter", any[is-tuple[A]],
A > Isp[A]
A > rspl[4] |
Algorithm["merge", any[is-tuple[A, B], a, b, T, 7|,
merged[(), A]:=A
merged[B, ()] =B
a — merged[(T), (b, §)] < a>b

merged[{(a, T), , §)] = b— merged[{a,T), (§)] < otherwise )

Proposition["closure of merge", any[is—tuple[A, B]], is—tuple[merged[A, B]]]

Proposition["merge splits yields permuted version", any[is—tuple[Al],
A~merged[1sp[A]l, rsp[Al]]



