Focus Windows:
A New Technique for Proof Presentation*

Florina Piroi and Bruno Buchberger

Research Institute For Symbolic Computation,
4232 Hagenberg, Austria
{fpiroi,buchberg}@risc.uni-linz.ac.at

Abstract. Whether they are hand written or generated by an auto-
mated prover, long proofs may be difficult to understand and follow.
The main reason for this is that at some point in the proof formulae
that occur lines, paragraphs or even pages before, are used. The proof
presentation method proposed here tries to overcome this by showing, in
each proof step, exactly the formulae that are relevant for the particular
proof step. We describe the implementation of this method in the frame
of the Theorema system.

1 Introduction

Proofs in mathematical publications are linear texts. We view them as sequences
of proof steps, i.e. at each step a new formula is derived from formulae appearing
in earlier steps, by some proof technique. In long proofs, the used formulae may
occur a couple of lines, paragraphs, or even pages distant from the place where
they are used. These formulae are usually referred by labels and the reader has
to jump back and forth between the referenced formulae and the proof step in
which they are needed. This is unpleasant and makes understanding proofs quite
difficult even if the proofs are nicely structured and well presented.

Most automated theorem provers do not put emphasis on producing proofs
that are easy to read and understand. (A telling illustration of this is given in
[7].) Even those which provide tools for studying proofs (as, for example, the
Omega system [5]) have the problem described above.

From the outset, in Theorema [2] we tried to emphasize on attractive proof
presentation. Theorema proofs are designed to resemble proofs generated by
humans, i.e. they contain formulae and explanatory text in english. In addi-
tion, Theorema provides various tools that help the reader in browsing proofs:
references to formulae are realized as hyper-links that display the referenced
formula in a small auxiliary window; nested brackets at the right-hand margin
make contracting entire sub—proofs to just one line possible; various color codes
distinguish the (temporary) proof goals from the (temporary) knowledge base

* partially supported by the RISC PhD scholarship program of the government of
Upper Austria and by the FWF (Austrian Science Foundation) SFB project P1302



formulae; etc. Still, reading and understanding long linear proofs is difficult even
for proofs generated by the typical Theorema provers.

Focus windows provide means to overcome this difficulty. The idea of focus
windows as a technique for proof presentation was introduced in [1] and is as
follows: Starting from the root of a proof object, in each proof step, one analyzes
which formulae are used and which ones are produced. Then, a window contain-
ing exactly these formulae for the proof step that is being analyzed is composed.
The window also contains buttons for moving to, and analyzing the next proof
step in the proof. For proof steps that branch into two or more sub—proofs the
subsequent windows are displayed in contracted form the user being allowed to
decide which one to open next.

In the following we give some comments on the Focus Windows from the
user’s point of view. In Section 3, we briefly describe the implementation of the
Focus Windows technique in Theorema and then present the final conclusions.

2 Using Focus Windows

In this section we try to shortly present the Focus Windows from the user’s side.
A typical call for starting a Theorema prover to work on a proof problem
looks like this:

Prove[Lemma[’Lm"], using — KnowledgeBase, by — SomeProver,
ProverOptions — {options for the Prover}, showBy — SomeDisplayer];

The user of Theorema can control both the work of SomeProver by setting the
ProverOptions and the way the proof is presented by setting the showBy option.
By default, Theorema will present the proof in a new Mathematica notebook as
a linear proof text. By setting showBy — Focus Windows the Focus Windows
display method will be invoked. (For a complete description of the options of
the Prove command and other details about Theorema see [8], [6]).

As mentioned before, the Focus Windows method presents proofs in a step—
wise manner. Each step of the proof will be shown to the user in two phases: the
attention phase and the transformation phase with the corresponding Attention
Window (the formulae inferred at the inspected proof step are not yet shown to
the user) and the Transformation Window. Each of these windows has

e a "goal area” in which the current goals are shown,

e an "assumptions area” in which the "relevant” assumptions are shown,

e a " proof tree area” in which the proof tree is displayed in a schematic form,

e an area that presents all the assumptions that are available (the ”all as-
sumptions area”),

e and a "navigation area” that allows the user to step forward or backward
in the proof, in the order suggested by the prover that generated it.

As a concrete example, the goal area of the Transformation Window in the
picture below contains the formulae (2.1) and (3). The latter is the formula that
was inferred in the presented proof step, therefore its 'New Goal’ heading. The
assumptions area contains the definitions of the functions ’class’ and ’factor—set’
and the predicate ’'is—all-nonempty’. If new assumptions would have been derived



in this proof step, the corresponding formulae would have been shown under the
heading 'New Assumptions’. The area containing all the assumptions that are
currently available is shown in a closed cell, following the basic philosophy of the
Focus Windows technique, that the user will normally not want to see all the
assumptions that are available in the proof at that point. If the user is interested
to see the contents of it (s)he has to double—click on the respective cell bracket.
(The organization of notebooks using cells is a standard Mathematica feature,
see [9]).

B3 Transformation Window e =100 x|
Tres representation 17
® ® & 1% & & 0 9 & 9 0

* & @
* o &0 9 0 0O
Old goal,
(2.1) dis-all-nonempty[factor-set [Ry]]
Mew goal
3 v pe{{a |aexXhia, X)ERQ} XEX}:)p:f; {}]
B -3
x p—
Assumptions
(Definition (class)) Rv (class[R, e {a | aeXAla, %) ER})
X 2
(Definition (factor set)) ;f (factor—set[R] S {class[R, x] | xe X}J
x

(Definition (is all non empty)) ‘;‘(is—all—nonempty[?] e ¥ (peEP=ps {})]
»

All assumptions ]]
Next | Previous | Done H
175% = 4| | ay

The simplified proof representation in the proof tree area, at the top of the
above focus window, is not only a graphical representation but it also has some
functionality. The nodes of the simplified tree representation are in one—to—one
correspondence with the proof steps of the proof object, the current one being
high-lighted (O). Clicking any of these nodes will cause the window to shift its
focus to the proof step linked to the clicked node. Thus, the user is allowed to
read the proof in the order (s)he prefers.

3 Implementation issues

The proof presentation technique explained in the section above should not be
difficult to implement in any existing automated prover, even for systems that do
not actually generate proofs automatically but restrict automation to checking
proofs generated by humans (like HOL [3], Mizar [4]). The main pre-requisite is
that the results of the provers in the system must be formal proof objects that



contain sufficient information for extracting the used and inferred formulae, in
any particular step.

We implemented the Focus Windows method in Mathematica [9], which is
also the language we chose for the implementation of Theorema. In fact, the
implementation was straightway because of two reasons:

e From the outset, the data structure of Theorema proof objects was carefully
designed in order to give easy access to the relevant formulae in each proof step.

e The front end of Mathematica provides convenient programming tools for
active objects that, basically, allow to apply the usual Mathematica program-
ming style also for programming man—machine interfaces. We use this facility
for attaching certain information to the buttons of the navigation area and of
the schematic proof tree representation, reducing drastically the time needed for
searching information in the proof tree. We give some more details below.

The user actions are taken in via the buttons 'Next’, 'Previous’ and 'Done’
in the navigation area and the schematic proof tree presentation whose nodes
are, in fact, buttons. The schematic proof tree representation is a static object in
the sense that the data attached to its node buttons does not change during the
presentation of the proof by the focus window viewer. In contrast, the buttons
'Next’ and ’Previous’ are dynamic objects, whose information is used in the
following way:

e Suppose that the focus window is presenting the Attention Window of some
node n of the proof tree. Then the data attached to the 'Previous’ button is a
link to the parent node of n. The data attached to the 'Next’ button is a link
to the node n because when pressing it we want to bring up the Transformation
Window of the same node n.

e Suppose that the focus window is presenting the Transformation Window
of some node n of the proof tree. Note that such a window may have several
branches. Then the data attached to the "Previous’ button in each of the branches
is a link to the node n because when pressing it we want to bring up the Attention
Window of the same node n. The data attached to the 'Next’ button in each of
the branches is a link to the corresponding child node of n.

4 Conclusions

The essence of the method we presented is that we show, in each proof step,
exactly the formulae that are relevant for the particular proof step and we put
these formulae into our focus.

In the context of automated theorem proving, when proofs are naturally
available as processable data objects (the ”proof objects”) this focusing opera-
tion can be described by an algorithm and can be made available for the users
of automated theorem proving systems.

Note that the Focus Windows tool is not a prove method! The Focus Windows
technique does not assert that each of the proof steps should be ”easily” verifiable
but, rather, it just gives a method to keep track of the relevant information used
in each proof step a particular prover generates.



When comparing the linear proof presentation and the focus windows proof
presentation of one and the same proof one may make the following observations:

e In short proofs, the focus windows presentation may generate presentation
overhead that will distract the reader rather than help him.

e In proofs that are more than one or two pages long, the focus windows
presentation may increase the possibility of verifying proofs drastically.

e Linear presentations are helpful for obtaining a quick overview on the over-
all flow of the proof whereas the focus windows presentation may drastically
increase the process of thoroughly understanding proofs.

e Most probably, browsing a proof in linear representation and, then, studying
the details of the proof by focus windows presentation style is the most reasonable
and efficient way of understanding proofs.

After having implemented the Focus Windows technique in Theorema, we
also made another, interesting and unexpected, experience: The tool can of
course be applied to wrong proofs. In particular it can be used to check the
proofs generated by theorem provers that are under construction and not yet
fully tested. Here we noticed that checking the proofs by the Focus Windows
technique makes it much easier to detect errors in the provers. Thus, the Focus
Window tool may also be a useful research instrument for people working in the
design and implementation of automated theorem provers.

References

1. B.Buchberger. Focus Windows Presentation: A New Approach to Pre-
senting Mathematical Proofs (in Automated Theorem Proving Systems).
Theorema  Technical Report, 2000-01-30, RISC, http://www.risc.uni—
linz.ac.at/people/buchberg/downloads.html

2. B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, W.
Windsteiger. The Theorema Project: A Progress Report. In: Symbolic Computation
and Automated Reasoning (Proceedings of CALCULEMUS 2000, Symposium on
the Integration of Symbolic Computation and Mechanized Reasoning, August 6-7,
2000, St. Andrews, Scotland, M. Kerber and M. Kohlhase eds.), A.K. Peters, Natick,
Massachusetts, pp. 98-113. ISBN 1-56881-145-4.

3. The HOL System. Developed at the University of Cambridge, directed by R. Milner.
http://www.cl.cam.ac.uk/Research/HVG/HOL/.

4. Mizar System. Developed at the University of Warsaw, directed by A. Trybulec.
http://mizar.uwb.edu.pl/system/.

5. Omega System. Developed at the University of Saarbriicken, directed by J. Siek-
mann. http://www.ags.uni-sb.de/ omega/intro.html.

6. D. Vasaru—Dupré, Automated Theorem Proving by Integrating Proving, Solving and
Computing. RISC Institute, May 2000, RISC report 00-19. PhD Thesis.

7. F. Wiedijk, The Fourteen Provers of  the World. 2001,
http://www.cs.kun.nl/ freek/notes/index.html

8. W. Windsteiger, A Set Theory Prover in Theorema: Implementation and Practical
Applications, RISC Institute, May 2001, RISC report 01-03. PhD Thesis.

9. S.Wolfram. The Mathematica Book, Wolfram Media and Cambridge University
Press, 1996.



