FOUNTAINS, HISTOGRAMS, AND ¢g-IDENTITIES
PETER PAULE! AND HELMUT PRODINGER#

ABSTRACT. We solve the recursion S,, = S,,_1 — ¢"S,,_,, both, explicitly, and in the

limit for n — 0o, proving in this way a formula due to Merlini and Sprugnoli. It is
also discussed how computer algebra could be applied.

1. GENERALIZED SCHUR POLYNOMIALS

In the paper [5], a short and direct proof of the following fact would be required [4]:
For fixed p > 1, define polynomials as follows:

En: nfl_annfp: nZP, E0:: pflzla

i
D,=D,_1—q¢"Dy_p, n>p, Dizl—qu,iz(),...,p—l.
j=1

Then

_ ke ()
By = lim E, =) K Ak Y

— lim D. — (—1)kg7C)
D= lim Du=) = A= g

k>0

We will not only achieve that but actually derive ezplicit expressions for these poly-
nomials!

Let us study the generic recursion
Sn = Sn—l + tqn—psn_p’

with unspecified initial values Sy, ..., S,—1. For p = 2, these polynomials were studied
by Andrews (and others) in the context of Schur polynomials, see [2].
We will use standard notation from g-calculus, see [1]:

@a= (= -o0).. (-2, [} = S

It will be convenient to define m =0forn<O0or k> n.

Now we will proceed as in [1] and consider noncommutative variables x, 1, such that
xn = qnz; all other variables commute.
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Lemma 1.

k

(:1: + xpn)" _ Z [”} qp(g)—pnk+p(k7§1)xk+p(nfk)77nfk_
k=0

Proof. We write
:U—i-xp g ankxk+p” k)pn—k.

and (x + x”n)n+1 = (a; + mpn) (ac + x”n) resp. as (a: + a:pn) = (x + xpn) (x + x”n)n,
compare coefficients, and get the recursions

_ k+p(n—k
an—l—l,k — a'n,k—l + an,kq d )7

_ n+1—k n—=k
i1k = Qg1 + ap pg?™ P,

From this we derive, taking differences,

1— qn—|—1—k

Ank = qu

The result follows from iteration by noting that a, o = ¢” (3). O
Of course we also have

n
(z + taPn)" = Z [Z} g (3)—pmktp (3" phtp(nk)n—kn—k
k=0
Now we derive the generating function for
-3 s
n>0

the following procedure is inspired by [2]. Note that we can alternatively view 1 as an
operator, defined by nf(z) = f(gx). Cigler worked also much with this technique [3].
We find

Z Spa’ = Z Sp_1x" + Z tq" PSSy _pa" =z Z Spa™ + ta? Z nSpx”

n>p n>p n>p n>p—1 n>0
or
- Z Spa™ =xF(z) —x Z Spx™ + tePnF(z),
n<p n<p—1
and
F(x Szt — Sa:“’l)
( ) l—x—txpn(; Z;p:l

Now we can apply our lemma and write

F(z) =Y (o + ta¥n) (ZM _y S)

n>0 <p i<p—1
— Z Z pnk—|—p(k+1) k+p(n— k)tn k n k ( Z S, zt— Z S. $Z+1>
n>0 k=0 [ :| i<p i<p—1

_ ZZ[ :| pnk—|—p(k+1) k+p(n— ktn k(Zqu n— lc Z Sq(z—l—l (n— Ic) i+1

n>0 k=0 1<p i<p—1

)
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— ZZ[ :| " k+pktk(z 1(]Zkﬂfz Z Si(](i+1)k$i+1>

n>0 k=0 1<p i<p—1
n+k . .
— Z [ i :| Pk Lk ( Z 2qzkxz Z Siq(H_l)kCL'H_l)
k,n>0 i<p i<p—1
_ Z q pktk (Z Siq ik i Z Siq(i+1)k$i+1) .
k>0 T)k+1 i<p—1

From this we find an explicit formula for S, (the quantity S ; has to be interpreted
as 0):

D SO 3 e VA

0<i<p k>0
Now we specialize this to our instance. Here, t = —¢”, and thus
n—(p—10k—1| ,r+1y,
Sp = Z (Si — 5171)2 [ ( 2 ) ]q”( 2 )"”k(—l)k.
0<i<p k>0
Therefore

—(p—1 .
&:Zr 4 ﬂﬂme
k>0
From this, the limit of F,, is immediate. For D,, we eventually get the following form
—p—-1)(k—-1
k>0

from which the formula for D, is immediate. To prove it, we need a simple lemma
whose proof is just a routine calculation.

Lemma 2.

[miqfwﬂzgm—ya—m where mn=—{flﬂ¢HMHv O

Now we can plug into the general formula above and compute

D,=E, — iz [n - (p _k 1)k - 7’:| qp(k;1)+i(k+l)(_1)k

i=1 k>0
p—1 ;
k+1 n—(p—l)k—l] i(k+1
— B, -3 (-1 Z[ g+
k>0 1=1 k
_E, Z k+1 qk+1 ’n,—(p—l)k _qp(k-l—l) n—(p—l)(k-i-l)
k>0 k+1 hrl
: —(p—1)k
—1- —1’6?(’“3)“1[" (p }
];0( g2 )g PRE

which is the announced formula after a simple change of variable. Note that in the
penultimate step the telescoping property of the lemma has been used.
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2. COMPUTER ALGEBRA PROOFS

The polynomial families (E,) and (D,,) give rise to the following study with respect
to possible computer proofs. Let us take as input our sum representations of F, and
D,:

B - ) [n - (];f_ 1)/1 2D 1)
D kz;; [n y —kl)(k - 1)] Ao 1 (1)

Then, if p is chosen as a specific positive integer, Riese’s package qZeil [6] returns the
recurrences S, = Sp_1 — ¢"Sn—p (n > p) together with a certificate function Cert for
independent verification. Despite the fact that for general “generic” integer parameter
p there is no algorithm available, a general pattern can be easily guessed from running
the algorithm for p =1, p = 2, and p = 3, say.

For example, let F'(n, k) be the kth summand in our sum representation (1) of E,,,
then the recurrence for E,, can be refined to the following statement.

Theorem 1. Forn > p and 6y f(n, k) = f(n, k) — f(n,k — 1), we have
F(n,k) — F(n—1,k)+ ¢"F(n — p, k) = 0xCert(n, k)F(n, k), (2)

where
(g,
(qn—(p—l)(k-l-l))p

Cert(n, k) = q"

Proof. After dividing both sides of (2) by F(n, k) the proof reduces to checking
equality of rational functions. Namely, note that

F(n—1,k) 1—gnrk

F(n,k) 1 —qn—(@-Dk’

Fln,k=1) ¢ (¢ "),
F(n,k) —  1—gk(qm-Dk+1) )
and

=gq "Cert(n, k). O
Analogously, there is a refined version of the recurrence for D,. The certificate in

this case is

(" 7%),

Cert(n, k) =4q m

Summarizing, with the sum representation for F,, and D,, in hand, the corresponding
recurrences follow immediately by summing both sides of the computer recurrences (2)
over all £k > 0.
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