An Automated Prover for Set Theory in
Theorema

Wolfgang Windsteiger*

RISC Institute
A-4232 Hagenberg, Austria
Wolfgang.Windsteiger@RISC.Uni-Linz.ac.at

Abstract. This paper presents some fundamental aspects of the design
and the implementation of an automated prover for set theory within the
well-known Theorema system. The method applies the “Prove-Compute-
Solve”-paradigm as its major strategy for generating proofs in a natural
style for statements involving constructs from set theory.

1 Introduction

The Set Theory prover in Theorema adapts the “Prove-Compute-Solve” (short:
PCS) prove strategy for proofs containing language constructs from set the-
ory. The PCS paradigm was invented in [3] and it has already been applied
successfully for proofs in elementary analysis in [13]. The main strategy in a
PCS-oriented prover is to structure the proof generation into phases of

— proving (P), i.e. application of logical inference rules for propositional con-
nectives and for quantifiers,

— computing (C), i.e. rewriting w.r.t. formulae in the knowledge base,

— solving (S), i.e. instantiation of existential variables.

Having the computer algebra system Mathematica in the background of Theo-
rema, we aim towards applying known solution methods from computer algebra
during the S-phase, such as the Grébner bases method for systems of algebraic
equations or Collins’ CAD method for systems of inequalities over the reals.
The current design of provers in the Theorema system requires a so-called
“user prover” to be composed from “special provers” (see [12]). A special prover
consists of a collection of inference rules, whereas the user prover guides the
strategy, through which the proof search procedure applies the inference rules.
Consequently, the set theory user prover consists of a set theory proving unit
handling set-related quantifiers in the goal or in the knowledge base, a set theory
computing unit, and a set theory solving unit. In addition to these set theory
specific components, the Set Theory prover utilizes several special provers avail-
able in the Theorema system, such as BasicND for handling basic quantifiers

* This work has been supported by the “SFB Numerical and Symbolic Scientific Com-
puting” (F013) at the University of Linz and the european union “CALCULEMUS
Project” (HPRN-CT-2000-00102).

from predicate logic using natural deduction, QR for rewriting using quantified
formulae in the knowledge base, and CDP for applying case distinction (invented
in [3]; see [13] for detailed description).

The description is structured as follows: Section 2 describes the theoreti-
cal basis upon which the set theory user prover SetTheoryPCSProver is built,
Section 3 introduces the set theory proving units STP and STKBR, Section 4 de-
scribes the set theory computing unit STC, Section 5 presents the set theory
solving unit STS, and finally we conclude with an example of a proof generated
by the SetTheoryPCSProver in Section 6.

More details on implementation and a number of case studies using the Set
Theory prover can be found in [14].

2 The Theoretical Basis for the Set Theory Prover

The use of set theory in Theorema is not tied to one particular axiomatization of

set theory. Instead, we introduce “sets” on the level of the language by providing

the braces ‘{” and ‘}’ as a flexible arity matchfix function symbol used for con-

structing finite sets and the set quantifier. Providing these language constructs,

we implicitly assume that sets such as {a}, {1,b}, {z | B}, or {T; | P} actually
€T T

exist, which is typically guaranteed by some axioms of the underlying set theory.
There are different approaches, in the Zermelo-Fraenkel axiomatization (ZF) as
described e.g. in [4] the existence of the singleton {a} follows from an axiom on
power sets and the existence of {1,b} follows from the existence of singletons
together with an axiom on unions, whereas in an axiomatization given in [11],
which also follows the spirit of ZF, the existence of {1,b} is guaranteed by an
axiom of pairing and the singleton {a} is then just defined to denote the pair
{a,a}.

Among mathematicians using set theory, however, there is a common under-
standing of the intuition behind these constructs, which is more or less inde-
pendent of the concrete axiomatization of set theory. The Theorema Set Theory
prover tries to support the formalization of mathematics using some parts of set
theory, it is not priorly targeted towards generating proofs in the formal con-
struction of set theory itself! Following this spirit, we provide definitions of the
basic constructs of set theory supported by the Theorema Set Theory prover,
which follow the ZF-style of axiomatizing set theory. Thus, the Theorema Set
Theory prover should be a useful tool for mathematicians embedding their work
in ZF set theory.

How does Theorema then handle the set quantifier, i.e. the expression {z | B, },

T

which allows one to define a set from a property B,? In the literature, this is

often addressed as the abstraction of a set from a property and it goes back

to G. Cantor, the founder of modern set theory. As explained in (nearly) every

introductory course in mathematics, the unrestricted use of abstraction soon

leads to contradictions such as the well-known Russel paradox. With R denoting

the “Russel-set” {z |z ¢ =z} it is straight-forward to derive the contradiction
T

R € R< R ¢ R. ZF set theory resolves this paradox by imposing a certain
structure on the formula 9B, in an abstraction {z|9B.}, which disallows con-
T

structions like R. Von-Neumann-Godel-Bernays’ axiomatization (NGB) of set
theory (see e.g. [1] or [9]) distinguishes between sets and classes and allows the
membership predicate only for sets. Russel’s paradox is avoided by showing that
R is not a set an therefore R € R is not a well-formed assertion. Russel himself
introduced types as a way out by allowing membership only for sets of different
type (see [10]). R € R is not allowed on the grounds that R and R are not of
different type.

Theorema as such does not force the user into one of the above mentioned
axiomatizations. The language allows unrestricted use of both the set quantifier
and the membership predicate, therefore allowing both the definition of R and
formulae such as R € R < R & R. The Set Theory prover, however, relies on ZF
and therefore refuses to apply inference rules on formulae involving constructs
such as R. It is based on the following definitions!.

Definition 1.

a€{r | Po}:e=a€5APasa (1)
a€{Te | Po}e= 3 Paha=T) (2)
0:={z w|€5x #z} (for some set s) (3)
a€f{a,...,an}:<=a=amV...Va=a, (forn>1) 4)
a€EBGU...UB, <= a€eB1V...Vae6, (forn>2) (5)
aEUG:(z» SEEIGaEs (6)
LGJG =6 | e} (™)
a€EBGIN...NG:<=a€BGA...Na€B, (forn>2) (8)
aEﬂG:(z) S‘EV’GaES (9)
N,8:=(}{6. | e} (10)

<,
61§62:<=>2’a€61:>a662 (11)
61=62:<=>2’a661©a662 (12)

We list only the most important definitions. In the concrete implementation,
the prover can handle some more like e.g. cross product or set complement, see
[14]. When using the Theorema Set Theory prover one accepts these definitions
and assumes an underlying axiomatic system such as ZF that guarantees the
existence of all sets defined above.

1 9., stands for 98 with each free occurrence of = substituted by a.

2.1 Preliminaries on Terminology

We will use the following terminology in the description of the prove modules: a
proof situation k - & is made up from a knowledge base of assumptions k and a
goal &, and it should be understood as an abbreviation for the phrase: “We have
to prove & from k”. Typically, the goal will be a single formula of the Theorema
language, hence we use gothic letters such as ® or & like in Def. 1, whereas the
knowledge base consists of a collection of formulae, called the assumptions.

Now, the task of the special provers is essentially the execution of individual
proof steps that reduce the proof situation, where the rules applied by the special
provers guiding the transformations of proof situations are called inference rules.
Thus, an inference rule turns a proof situation k F & into a proof situation
k' &' with a new goal &' and a new knowledge base k', where we call k - &
and k' + &’ the in-situation and the then-situation of the rule, respectively.
In the description of inference rules, we will denote an inference rule named 7
transforming k F & into k' - &' by

'+ &
T~ T%

(read as: “The rule Z justifies a proof step to reduce the proof of & from k to
a proof of &' from k’”). This notation is similar to notations used in logic for
describing inference rules in formal prove calculi, like for instance the sequent
calculus (e.g. [5]), the Gentzen calculus (e.g. [6]), or the calculus of natural
deduction (e.g. [8]). Certain similarities to these formalisms are desired, but we
use it purely as a symbolic description for proof steps, and we do not refer to
any meaning of the symbols in any known logic system.
An example of a well-known inference rule written in this style is

. . K l_ mz—)wo .
ArbitraryButFixed : (g (where x(is a new constant)
T

meaning that, in order to prove VY, (from «) it suffices to prove Py, (from
T

k) for a new constant zg.

3 STP and STKBR: The Set Theory Proving Units

The PCS proof strategy imposes a structure on proofs as alternating phases of
proving, computing, and solving, as already described in Sect. 1. Proving can in
this context be interpreted as eliminating theory-specific language constructs, in
particular eliminating quantifiers. The Set Theory prover is a prover that can
handle language constructs from set theory in addition to standard predicate
logic. Therefore, it re-uses the special provers available in the Theorema system
for handling propositional connectives and the V-quantifier (see [3], [13], and
[14]). Set theory specific proving is covered by the two new special provers STP

and STKBR. During the Prove-phase, we alternate steps of reducing the goal with
steps of ezpanding the knowledge base. While STP reduces set theory specific
language constructs in the proof-goal, STKBR expands them in the knowledge
base.

3.1 Inference Rules used in STP

Set theory specific goal reduction is implemented as a special prover named STP.
As most of the special provers in Theorema, STP implements individual inference
rules as individual function definitions for one Mathematica function STP, which
differ in the patterns specifying the proof situation. The choice, which inference
rule to apply next, depends mainly on the pattern of the proof situation given
in the inference rule, a few inference rules are influenced in addition by global
variables used by STP, some strategies depend on the proof progress stored in
STP’s local proof context, which is the third parameter in a call to STP in addition
to the proof-goal and the knowledge base.

Mainly, the inference rules are grouped into rules for membership, rules for
inclusion, and rules for set equality. The rules for membership contain at least
one inference rule for each “kind of set” introduced in Def. 1, in some cases we
provide tailored rules in order to offer special treatment for special cases. We
show some of the membership rules as they are used in STP.

K }_ t G] /\ ‘;Bz_”
MembershipAbstraction : ¢ ¢ ¢ {z | Bzt
TES

We give an impression of what the result of this inference rule is in a concrete

example. If, during a concrete proof, the proof search procedure arrives at a proof

situation, where we need to prove a € {z | z < 10} w.r.t. some knowledge base
TES

KB, then the special prover STP would be called in the following format:
STP[elf["1",a € {z | x < 10}, ofinfo[]], sasml[KB], af]
TES

where eolf[...] represents the proof-goal labelled “1”, easml[K B] is the current
knowledge base, and “af” are the additional facts containing among others STP’s
local proof context. Note, that this is not how the user needs to call the prover,
the actual call of the special prover is based on internal data structures, which
are built-up automatically during the proof search. It is the task of the Theorema
User Language (see [14]) to serve as an interface between the user and the internal
data structures as they show up above. The result of this call is the new proof
situation

{"AndNode",

{"MembershipAbstraction", .usedFormulae["1"],
.generatedFormulae[.1f["1’" ,And[Element[a,s],a<10], .finfo[1]1]1},

{{"ProofSituation", .1f["1’",And[Element[a,s],a<10],.finfo[]],
.asml[kb]l, af}}, {}, {}, "pending"}

The proof search procedure will insert this node into the Theorema proof object.
The node contains enough information in order to later simplify a successful
proof (object) and to generate the natural language text from it. Note, however,
that it does not contain the natural language text representation itself! When
later generating the proof presentation from a proof object, this step of the proof
would read as follows:

In order to prove (1) we have to show:

(1) aesAna<10.

The correctness of the inference rule “MembershipAbstraction” follows im-
mediately from the definition of set abstraction. Some of the inference rules,
however, condense several inference steps into one compact rule to be applied.
In these cases, we provide correctness proofs for the respective rules?. An exam-
ple of such a rule is the elimination of the union-quantifier in the goal.

Kk xéﬁ(te S, NE,)
MembershipUnionOf : (¢ ¢ Lg S,
recs
<z

MembershipUnionOf reduces the proof of t € |J &, to prove 25 (te G, NE,).
TES T

Cy
Proof. Assume é (te &, NE,), thus t € G, A €, for some constant zg € s.
res
With z := &, we can infer from this t € 2 A €;) A 2 = &4, hence

El(méstez/\(‘lm/\z=6m) . (13)

Separating the quantifiers in (13) gives El(t € zZA zés (€ Az = &,)), which,
by (2), is equivalent to ;I(t €zNz€ {6, | €.}). By (6) this is equivalent to
TES
te U{6, | ¢}, thuste LeJ S, by (7). O
T res

€s
[

Set inclusion reduces, by definition, to membership and set equality reduces
to membership. In addition to these reductions, we implemented several inference
rules for special cases that reduce the search depth for the proof search, e.g.

proved
ConjunctionSubset : - ;7 Aze6A..}C6
x

Kk _“me—>$0 .
EqualsEmptySet : - (%2 [B} =0 where g is some new constant,
T

% Ideally, the Theorema Predicate Logic Prover should be capable of producing these
proofs when having Def. 1 in its knowledge base. Unfortunately, however, some of the
definitions, notably (1), and some inference rules “live” on the language expression
level and they refer to variable substitution, free variables and the like. In its current
status, the Theorema language cannot express these things on the object level!

and some extensions so that the prover can also deal with cardinality and func-
tion properties such as bijectivity. For details see [14].

3.2 The Structure of STKBR

The special prover STKBR (for Set Theory Knowledge Base Rewriting) uses a
level saturation technique (see also [7]), to infer new knowledge from the knowl-
edge base by unfolding definitions of set theoretic language constructs. It differs
drastically from most of the other special provers in the Theorema system in
that it does not implement inference rules as separate definitions for one Math-
ematica function. This “classic” implementation scheme for Theorema special
provers, which introduces one definition per proof situation, is not suitable for
an efficient implementation of a level saturation mechanism, because inferring
new formulae one at the time would result in a massive growth of the required
search depth for the proof search. The STKBR function, instead, is implemented
as just one definition, which produces all possible new formulae during only one
application. This has the advantage, that several inference rules can be applied
in parallel during one STKBR-step instead of adding only one new formula at the
time to the knowledge base.

As a consequence, the STKBR function does not specify the syntactic pattern
of the proof situation in its parameters but it is considered to be applicable to
the current proof situation as soon as new formulae occur in the knowledge base
compared to STKBR’s previous run. This check is done with the help of an entry
in the local proof context that stores the labels of all assumptions that have
already been treated in the preceding saturation level. In case new formulae
have been added to the assumptions, the saturation of the current knowledge
level happens in two phases:

— In afirst phase, new formulae are, if desired, simplified by computation using
built-in semantic knowledge available in the Theorema language semantics,
see also STC in Sect. 4. In case this type of simplification is not desired, this
phase can be skipped through a user option in the call of the prover.

— In a second phase, new knowledge is inferred from the simplified new for-
mulae using inference rules for set theory. These inference rules are again
grouped into two groups,

o Group One containing rules for inferring new knowledge from one known
formula and
o Group Two containing rules for inferring new knowledge from two known
formulae.
Matching rules from Group One are applied to the simplified new formulae,
matching rules from Group Two are applied to all new pairs of formulae
that can be formed using additionally the simplified new formulae®.

3 Up to now, no inference rules have been implemented that depend on three formulae.
As soon as such inference rules are needed, we will provide a Group Three of inference
rules, which will be applied to all possible triples of formulae.

All formulae generated during these two phases are adjoined to the knowledge
base for the new proof situation. The augmented knowledge base is considered
to contain all knowledge, that can be made available at that point, thus, we call
it a saturated knowledge level. The schematized flow of STKBR level saturation
mechanism is shown in Fig. 1, where the boxed names are the names of the
respective functions in the actual implementation.

3 Formulae already handled

Knowledge Base: NewFormulae | i e brevious saturation rn

Simpli fiedAssumptions

NewknowledgeFromone | [NewPairs |

Newknovl edgeFronTvo

Saturated Knowledge Level

Fig. 1. Schematic flow of the STKBR level saturation

Phase one is accomplished by calling the function ‘Simplified Assumptions’
with two arguments ‘kb’ and ‘handled’, where ‘kb’ is the entire knowledge base
and ‘handled’ is the list of labels of assumptions that have already been used
in the previous saturation phase. Each formula from the knowledge base, whose
label is not among the handled labels, is sent through the function ‘Evaluate-
FromProve’, which computes a simplified version of the formula w.r.t. semantic
knowledge from the Theorema language. ‘EvaluateFromProve’ is the function
used also in the STC module for goal simplification by computation, see Sect. 4.
Note, that ‘EvaluateFromProve’ is based on the function ‘EvaluateStandard’,
which is the basic evaluation function for computations using Theorema se-
mantics, which is used also by Compute, the top-level user function to initiate
computations. This guarantees utmost coherence between all computations hap-
pening in the Theorema system, be it on the user level by calling Compute, be
it on the prover level by doing simplifications on the goal or on the knowledge
base.

Phase two is covered in the implementation by the function ‘Augmented-
KnowledgeBase’, which receives two arguments: the simplified knowledge base
‘kb’ resulting from phase one and ‘handled’ as above. Group One of inference

rules is applied componentwise to all new assumptions, Group Two of inference
rules is applied to all new pairs that can be formed using the new assumptions
and the results are added to the knowledge base.

The inference rules applied by STKBR can more or less be read off Def. 1,
hence we do not list them here. The interested reader can look up [14].

Rule Locking Now consider the two inference rules

— from z € AN B we can infer z € A and x € B and
— from 2z € A and x € B we can infer x € AN B

occurring in STKBR. We call these rules inverse to each other. Unrestricted use of
inverse rules immediately results in a cycle in the proof search, which we avoid by
a mechanism of rule locking. As soon as an inference rule 7 infers a new formula
5, we lock the inverse of Z from being applied to §. Rule locking utilizes STKBR’s
local proof context to store this type of information on the prove progress.

4 STC: The Set Theory Computing Unit

The Theorema language contains semantics essentially for finite sets, namely

— sets that are constructed using the set braces ‘{’ and ‘}’ as set constructor
applied to finitely many arguments, and

— sets that are constructed using algorithmic versions of the set quantifier (see
also [2]), i.e. set quantifiers with finite and computable range specifications
(see [14]). In particular, integer ranges and set ranges for finite sets are
algorithmic ranges, which lead to finite sets when used in combination with
the set quantifier.

The Theorema semantics enables to construct finite sets as an enumeration of
the (finitely many) elements contained in the set. Set operations (such as union,
intersection, power set, etc.) on finite sets are implemented in a constructive
fashion. Proving properties (such as membership, inclusion, or set equality) of
finite sets therefore reduces to testing finitely many cases, which is implemented
in the frame of the Theorema language as well.

From the user’s point of view, computation using built-in semantics knowl-
edge is available in the Theorema system through the top-level user function
Compute. A typical computation involving finite sets is

C te[{3 is-pri
ompute[{ xw€{1’|2’3’4}1s prime[z]}]

resulting in the finite set {6,9}.

Tt is the intention of the STC special prover to integrate the knowledge avail-
able for computations seamlessly into the Theorema proving machinery. Other-
wise, all algorithmic knowledge about finite sets needed to be re-implemented in-
side the Set Theory prover, which would make it next to impossible to guarantee

identical behavior in proving and computing. In order to avoid this duplication
of code and knowledge, the STC prover simplifies the goal by sending the formula
to the same evaluation function that is also used in Compute and in STKBR.

Basically, when the STC prover applies to a proof situation, one proof step con-
sists of calling the evaluation function ‘EvaluateFromProve’ (see also Sect. 3.2)
and, in case the result differs from the original form, of adding a node to the
proof object, from which the effect and a complete trace of the computation can
be displayed. Again, the use of ‘EvaluateFromProve’ preserves coherence with
STKBR and Compute. Many details on combining computation with proving can
be found in [14].

5 STS: The Set Theory Solving Unit

The special prover STS collects inference rules for eliminating existential quan-
tifiers*. Methods used for instantiating existential goals range from matching
against formulae in the knowledge base, over unification and introduction of
solve constants until employing the Mathematica ‘Solve’ function to obtain so-
lutions of equational goals. We present only one typical inference rules from
STS.

K Dyg’y* A zés ((‘BZ‘ A y* = Sz) A my%y*

IntroSolveConstant : ~— E(Qy Ay € {gww|€5 Pt ARy)

where Q, and R, are possibly empty conjunctions of formulae and y* is a solve
constant.

A solve constant® is some constant, which we still have to assign a concrete
value. Solve constants are introduced in order to eliminate existential quanti-
fiers by substituting a constant for the quantified variable, where at the moment
of introducing the constant, its concrete value can not yet be determined. For
the proof to succeed, all solve constants that have been introduced must be
eliminated by substituting appropriate ground terms in such a manner that the
resulting formula can be proven. Of course, the strategy after introducing solve
constants must always be to isolate the solve constants, which is typically done
by solving, using methods depending on the nature of the remaining formula.
Applying this strategy reduces proving to solving over various domains, and it
offers the possibility to benefit from the great advances that have been accom-
plished in developing powerful solution methods in computer algebra.

4 In fact, it should contain only the set theory specific part of solving. Since the solving
components in the Theorema system are not yet far-advanced, we started with STS
collecting inference rules for proof situations as they appear in typical proofs in set
theory.

® What we call solve constant is often addressed as meta variable by other authors.
The technique of meta variables is well known and used also in other systems. Es-
sentially, it imitates what a human does when instantiating existential quantifiers,
in particular, in the well-known proof on limits, continuity, etc.

The inference rule described above might appear random. It is part of STS
since it applies exactly to proof situations left after expanding membership in
a union, i.e. goals of the form t € [J{%, | PB.}. The rule eliminates the outer-

rES

most existential quantifier, but it introduces another existential quantifier. STS
contains further rules, which allow the elimination of the existential quantifier in
this particular and even in other more general situations (see [14]). In addition
to rules introducing solve constants, the STS prover, of course, also contains sev-
eral rules for instantiating solve constants as soon as they appear in an isolated
position.

6 An Example of an Automatically Generated Proof

Prove: (G) 36¢€ U {2 |]Nj >iAj<i+5} under the assumption
i€IN Jj€E

(A) Vn>nw¢§i§nAizmAiem.

In order to show (G) we have to show

(1) 336€{j® | j>iNj<i+5}AieN .
i jEN

In order to prove (1) we have to show

(2) %'?jZiAjEJN/\j§i+5/\ie]N/\36=j2 .

Since j := 6 solves the equational part of (2) it suffices to show

(3) FeNA6>iA6ENAG<5+i.

Using available computation rules we evaluate (3):

(4) Fi<6Ai>1AieN .

Formula (4), using (A), is implied by:
(5) 6>1.
Using available computation rules we evaluate (5):
(6) True .

The derivations of formulae (1) and (2) result from applying STP inference
rules for membership in a union and membership in a set abstraction, respec-
tively. Reduction of (2) to (3) is accomplished by instantiating j by a solution of
a quadratic equation done in STS. Simplifications from (3) to (4) and from (5)
to (6) were made using available semantic knowledge by STC (6 € IN and 6 > 1,
respectively) and, finally, reduction from (4) to (5) and the detection of proof
success were made by standard predicate logic inference rules.

References

[1]
[2]

[13]

[14]

P. Bernays and A. Fraenkel. Aziomatic Set Theory. Studies in Logic and the
Foundations of Mathematics. North-Holland Publishing Company, 2 edition, 1968.
B. Buchberger. Mathematics: An introduction to mathematics integrating the
pure and algorithmic aspect. volume i: A logical basis for mathematics. Lecture
notes for the mathematics course in the first and second semester at the Fach-
hochschule for Software Engineering in Hagenberg, Austria, 1996.

B. Buchberger and D. Vasaru. The Theorema PCS Prover. Jahrestagung der
DMV, Dresden, September 18-22, 2000.

H. Ebbinghaus. FEinfihrung in die Mengenlehre. Wissenschaftliche Buchge-
sellschaft Darmstadt, 2 edition, 1979. ISBN 3-534-06709-6.

H. Ebbinghaus, J. Flum, and W. Thomas. Einfihrung in die mathematische Logik.
BI Wissenschaftsverlag Mannheim/Leipzig/Wien/Ziirich, 3 edition, 1992. ISBN
3-411-15603-1.

J. Gallier. Logic for Computer Science. Foundations of Automated Theorem
Proving. Harper & Row, 1986.

B. Konev and T. Jebelean. Combining Level-Saturation Strategies and Meta-
Variables for Predicate Logic Proving in Theorema. In Proceedings of IMACS
ACA 2000, St.Petersburg, Russia, June 2000.

Z. Manna. Mathematical Theory of Computation. McGraw-Hill Book Company,
1974. ISBN 0-07-039910-7.

W. Quine. Set Theory and its Logic. Belknap Press of Harvard University Press,
Cambridge, Massachusetts, 1963.

B. Russell and A. Whitehead. Principia Mathematica. Cambridge University
Press, 1910. Reprinted 1980.

G. Takeuti and W. Zaring. Introduction to Aziomatic Set Theory. Graduate Texts
in Mathematics 1. Springer Verlag, 1971. ISBN 0-387-05302-6.

E. Tomuta. An Architecture for Combining Provers and its Applications in the
Theorema System. PhD thesis, The Research Institute for Symbolic Computation,
Johannes Kepler University, 1998. RISC report 98-14.

D. Vasaru-Dupré. Automated Theorem Proving by Integrating Proving, Solving
and Computing. PhD thesis, RISC Institute, May 2000. RISC report 00-19.

W. Windsteiger. A Set Theory Prover in Theorema: Implementation and Practical
Applications®. PhD thesis, RISC Institute, May 2001.

5 http://www.risc.uni-linz.ac.at /people/wwindste/Public/Reports/Phd Thesis

