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Abstract 
The SAT problem is the problem of finding a model for a formula in conjunctive normal 
form. We developed two algorithms based on hyper-unit propagation, which solve the 
SAT problem. Hyper-unit propagation is unit propagation simultaneously by literals, as 
unit clauses, of an assignment. The first method, called Unicorn-SAT algorithm, solves 
the resolution-free SAT problem in linear time. A formula is resolution-free if and 
only if there are no two clauses, which differ only in one variable. For such a restricted 
formula we can find a model in linear time by hyper-unit propagation. We obtain a sub-
model, i.e., a part of the model, by negation of a resolution-mate of a minimal clause, 
which is a clause with the smallest number of literals in the formula. We obtain a 
resolution-mate of a clause by negating one literal in it. By hyper-unit propagation by a 
sub-model we obtain a formula, which has fewer variables and clauses and remains 
resolution-free. Therefore, we can obtain a model by joining the sub-models while we 
perform hyper-unit propagation by a sub-model recursively until the formula becomes 
empty. The second method, called General-Unicorn-SAT algorithm, solves the general 
SAT problem. The algorithm is the same as Unicorn-SAT but in the general case this 
method may result in an unsatisfiable formula, i.e., the Unicorn-SAT is not complete for 
the genral SAT problem. To become complete we use backtrack. If the obtained 
intermediate formula is unsatisfiable we backtrack and we add the resolvent of the last 
chosen minimal clause and its resolution-mate, which is the negation of the sub-model 
generated from this minimal clause. This resolvent will be the minimal clause of the 
formula. If this resolvent is the empty clause then we do backtrack again. If it is not 
possible then the input problem is unsatisfiable. If we reach the empty formula then the 
union of intermediate sub-models is a model for the input problem. With this method, 
called General Unicorn-SAT, we find a model for a formula if it is satisfiable or we 
detect if it is unsatisfiable. 

                                                           
* Sponsored by Upper Austrian Government (scholarship), FWF SFB F013 (P1302) and Austro-Hungarian 
Action Foundation. 



 2

1 Introduction 
 

Propositional Satisfiability is the problem of determining, for a formula of the 
propositional calculus, if there is an assignment of truth values to its variables for which 
that formula evaluates the true. By SAT we mean the problem of propositional 
satisfiability for formulae in conjunctive normal form (CNF). 

SAT is the first, and one of the simplest, of the many problems which have been 
shown to be NP-complete [1]. It is dual of propositional theorem proving, and many 
practical NP-hard problems may be transformed efficiently to SAT. Thus, a good SAT 
algorithm would likely have considerable utility. It seems improbable that a polynomial 
time algorithm will be found for the general SAT problem but we know there are 
restricted SAT problems that are solvable in polynomial time. So a "good" SAT 
algorithm should check first the input SAT instance whether it is an instance of such a 
restricted SAT problem. In this paper we introduce the resolution-free SAT problem, 
which is solvable in polynomial time. 
The following restricted SAT problems are solvable in polynomial time: 
1. The restriction of SAT to instances where all clauses have length k is denoted by k-

SAT. Of special interest are 2-SAT and 3-SAT: 3 is the smallest value of k for which 
k-SAT is NP-complete, while 2-SAT is solvable in linear time [2, 3]. 

2. Horn-SAT is the restriction to instances where each clause has at most one unnegated 
variable. Horn SAT is solvable in linear time [4, 5], as are a number of 
generalizations such as renameable Horn SAT [6], extended Horn SAT [7] and q-
Horn SAT [8, 9]. 

3. The hierarchy of tractable satisfiability problems [10], which is based on Horn SAT 
and 2-SAT, is solvable in polynomial time. An instance on the k level of the 
hierarchy is solvable in O(nk+1) time. 

4. Nested SAT, in which there is a linear ordering on the variables and no two clauses 
overlap with respect to the interval defined by the variables they contain [11]. 

5. SAT in which no variable appears more than twice. All such problems are satisfiable 
if they contain no unit clauses [12]. 

6. r,r-SAT, where r,s-SAT is the class of problems in which every clause has exactly r 
literals and every variable has at most s occurrences. All r,r-SAT problems are 
satisfiable in polynomial time [12]. 

The resolution-free SAT problem is also a restriction of SAT to instances where 
no resolution (see definition of resolution, which is not the usual one, since we consider 
only resolution resulting in a non-tautologous resolvent) can be performed on any two 
clauses of the formula. In other words, any two clauses either overlap (they do not differ 
in any variable) or they differ in at least in two variables. This could be a real problem if 
we want to prove a theorem by resolution but we do not reach the empty clause (it means 
it does not hold) after doing all possible resolutions then we may have a resolution-free 
formula. If it is the case then the Unicorn-SAT algorithm provides a model for this 
formula in linear time, and this model contains essential information why the theorem 
does not hold. 

However we can generalize Unicorn-SAT such that it solves the general SAT 
problem. We call the generalized algorithm General Unicorn-SAT. It is complete for the 
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general SAT problem, i.e., it can decide whether an SAT instance is satisfiable or not. If 
it is satisfiable then returns a model for it. 

Intuitively Unicorn-SAT works as follows. We perform hyper-unit propagation by 
a sub-model until our formula becomes empty. We obtain the model by joining the sub-
models. To be more precise: We obtain a sub-model, i.e., a part of the model, by negation 
of a resolution-mate of a minimal clause, which is a clause with the smallest number of 
literals in the formula. We obtain a resolution-mate of a clause by negating one literal in 
it. By hyper-unit propagation by a sub-model we obtain a formula, which has fewer 
variables and clauses and remains resolution-free. Therefore, we can obtain a model by 
joining the sub-models while we perform hyper-unit propagation by a sub-model 
recursively until the formula becomes empty. 

The General Unicorn-SAT algorithm uses the same method as Unicorn-SAT, but 
since it works on a general SAT problem it may run into unsuccessful branches. In this 
case it does a backtrack- and a resolution step. To be more precise, the General Unicorn-
SAT algorithm assumes that it works on a resolution-free SAT problem. If it turns out 
that it is not resolution-free, i.e., resolution can take place, then it makes a resolution step, 
which simplifies the problem. By this trick we lose efficiency but the algorithm becomes 
complete. 

 
This paper contains description of two algorithms. The first one is described by Section 3 
- 6. The second is the generalization of the first one. It is described by Section 7 - 10. In 
Section 2 we give common definitions. 
In Section 6 we introduce the Unicorn-SAT algorithm and we show it is correct and 
solves the resolution-free SAT problem in linear time. In Section 3 we show important 
properties of negation of a resolution-mate. In Section 4 we show important properties of 
hyper-unit propagation. In Section 5 we prove lemmas that are needed to prove that the 
Unicorn-SAT is correct. In Section 6 we show an example how the algorithm works. 
In Section 9 we introduce the General Unicorn-SAT algorithm and we show it is correct 
and solves the general SAT problem in non-polynomial time. In Section 7 we give 
definitions for notions used in General Unicorn-SAT. In Section 8 we prove theorems 
that are needed to prove that the General Unicorn-SAT is complete. In Section 10 we 
show some examples how the algorithm works. Section 11 is the conclusion. 
Appendix A contains the recursive version of the General Unicorn-SAT algorithm. 
 

2 Definitions 
 

Let V be a set of Boolean variables. The negation of a variable v is denoted by v . Given 
a set U, we denote U  = {u  | u ∈ U}. Literals are the members of the set W = V ∪ V . 
Positive literals are the members of the set V. Negative literals are their negations. If w 

denotes a negative literal v , then w  denotes the positive literal v. A clause is a finite set 
of literals that does not contain simultaneously any literal together with its negation. The 
empty clause, denoted by ∅, is interpreted as False. A formula (formula in CNF) is a 
finite set of clauses. The empty formula, denoted by ∅, is interpreted as True. The length 
of a clause C is its cardinality, denoted by |C|. If |C| is k we say that C is a k-clause. 
Special cases are unit clauses which are 1-clauses, and clear clauses which are n-clauses 
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where n = |V|. The length of a formula S is sum of length of its clauses, denoted by |S|. 
Clauses of a formula with minimal length are called minimal clauses of this formula. If 
we say that a literal v occurs in a clause or in a formula, we mean that this clause or this 
formula contains the literal v. However, if we say that a variable v occurs in a clause or 
in a formula, we mean that this clause or this formula contains the literal v, or it contains 

the literal v . We denote by V{S} the set of variables occurring in the formula S, and by 
|V{S}| number of variables occurring in S. We say that two clauses differ in some 
variables if these variables occur in both clauses but as different literals. The clause C 
subsumes the clause B if and only if every literal in C occur in B. For example {v} 
subsumes {v, w}. We say that two clauses overlap if and only if they differ in no variable 
(they overlap because there is at least one clause they subsume commonly). We say that 
resolution can be performed on two clauses if they differ only in one variable. Note that 
this is not the usual notion of resolution because we allow resolution only if it results in a 
non-tautologous resolvent. For example resolution cannot be performed on {v, w} and 

{ v , w } but can on {v, w} and { v , z}. If resolution can be performed on two clauses, say 
A and B, then the resolvent, denoted by Res(A,B), of this two clauses is the union of 
them excluded the variable they differ in. A formula is resolution-free if and only if no 
resolution can be performed on any two clauses of the formula. An assignment is a finite 
subset of W that does not contain any literal together with its negation. Informally 
speaking, if an assignment I contains a literal v, it means that v has the value True in I. 
Note that both, a clause and an assignment, are finite set of literals. We obtain a 
resolution-mate of a clause by negating one literal of it. Negation of resolution-mate, also 
called lucky-negation, of a clause C, denoted by L(C), is the negation of a resolution-
mate of C. By definition L(∅) = ∅. A sub-model is a negation of resolution-mate of a 
minimal clause. Note that we may use L(C) also as an assignment and a clause. 
Now we define the crucial notion of hyper-unit propagation. 
Definition 2.1 (Hyper-Unit Propagation) 
S[I] (read: “hyper-unit propagation by assignment I on formula S”) :=  

{C \ I  | C ∈ S ∧ C ∩ I = ∅}, 
where S is a formula and I is an assignment. 

C[I] (read: “hyper-unit propagation by assignment I on clause C”) :=  
C \ I , if C ∩ I = ∅, undefined otherwise, 
where C is a clause and I is an assignment. 

Note that sometimes we use sub-model propagation as a synonym of hyper-unit 
propagation. 
Informally S[I] means for the formula S and the sub-model I = {v1,…,vn}, we  
• remove from S all clauses containing the literals vi, and 

• we delete all occurrences of the literals v i from the other clauses, i = 1..n. 
With other words hyper-unit propagation on S by I is equivalent to unit propagation [13] 
on S by each literal of I considering each literal as a unit clause. An assignment M is a 
model for a formula S if S[M] is the empty formula. A formula is satisfiable if there 
exists a model assignment for it. 
 

3 Properties of Negation of Resolution-Mate 
 



 5

In this section let C be a non-empty clause. 
Lemma 3.1 (Trivial Properties of Negation of Resolution-Mate) 
L(C) is a clause, is an assignment, contains exactly one literal occurring in C, contains the 
negation of all other literals occurring in C, contains all variables of C. 

At this point the reader should realize that in this paper clause and assignment are 
defined by the same definition. Thus, we can use L(C) either as a clause or an 
assignment. 
Lemma 3.2 
Resolution can be performed on C and L( C ). 
Proof: 
From Lemma 3.1 we know that C and L(C) differ in every variable of C except in one. So 

C and L( C ) differ only in this literal. 

Hence, resolution can be performed on C and L( C ).     ❏ 
Lemma 3.3 (The Lucky Property) 
Let S be a resolution-free formula that does not contain the empty clause. Let C be an 

element of S. Then L( C ) is not element of S. 
Proof: 
If L( C ) would be an element of S then S would be non resolution-free since we know 

from Lemma 3.2 that resolution can be performed on C and L( C ). 

Hence, L( C ) is not element of S.       ❏ 
Negation of resolution-mate has a "lucky" property namely it provides a clause 

outside the resolution-free formula. 
Example 3.4 
Let C := { a ,b , c }. Since C has 3 literals it has 3 possible resolution-mate D, E and F: 

1. D:={ a , b , c }, Res(C,D) = { b , c }; 

2. E:={ a ,b , c }, Res(C,E) = { a , c }; 

3. F:={ a ,b , c }, Res(C,F) = { a , b }. 
Since C has 3 resolution-mate L(C) has 3 possible value: either { a ,b , c }, which is 

negation of D, or { a ,b , c }, which is negation of E, or { a ,b , c }, which is negation of F. 
 

4 Properties of Hyper-Unit Propagation 
 
In this section we will see that formula remains the same for certain properties after 
hyper-unit propagation by the negation of a resolution-mate of a minimal clause of the 
formula. 
Lemma 4.1 (Hyper-Unit Propagation Preserves � � S if) 
Let S be a resolution-free formula that does not contain the empty clause. Let C be a 
minimal clause of S. Then S[L(C)] does not contain the empty clause. 
Proof: 
It is suffices to show that there is no such a clause in S such that hyper-unit propagation 

by L(C) deletes every literal from it, i.e., L( C ) is not element of S. (We do not need 
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consider clauses which are subset of L( C ) since C is a minimal clause from S). We know 

from Lemma 3.3 that L( C ) is not element of S. 
Hence, S[L(C)] does not contain the empty clause.     ❏ 

We see that negation of a resolution-mate allows to simplify (perform hyper-unit 
propagation) the formula without the danger that the formula becomes unsatisfiable (it 
will not contain the empty clause). 
Lemma 4.2 (Hyper-Unit Propagation Preserves Resolution-Free-ness) 
Let S be a resolution-free formula and let I be an assignment. Then S[I] is resolution-free. 
Proof: 
Let B’ and C’ be elements of S[I]. Then we know, by definition of hyper-unit propagation, 
that B’ = B[I] and C’ = C[I] for some elements B and C of S. It can be shown that B and 
I  overlap and C and I  overlap, i.e., B and C differ in no variable among variables of I. 
From this and from the definition of hyper-unit propagation we can obtain that B[I] and 
C[I] differ in the same variables like B and C, i.e., no resolution can be performed on B[I] 
and C[I]. Hence, S[I] is resolution-free.      ❏ 

Now we see that a resolution-free formula that does not contain the empty clause 
has the same properties after hyper-unit propagation by negation of a resolution-mate of 
some minimal clause of the formula. 
Lemma 4.3 
Let S be a formula, A and B be assignments such that A ∩ B = ∅. Let C = A ∪ B. Then 
S[C] = S[A][B]. 
Proof: 
Since A and B have no common variable A ∪ B is an assignment. Hence, S[A ∪ B] is 
defined and, by definition of hyper-unit propagation and union, S[A ∪ B] = S[A][B]. 
Hence, S[C] = S[A][B].         ❏ 

This lemma allows us to join the sub-models to obtain the final model. It is stated 
by the following corollary. 
Corollary 4.3.1 
Let X be a formula, I be an assignment. Let S be a formula such that X[I] = S. Let B be 
an element of S. Then X[I ∪ B] = S[B]. 
Proof: 
It is an easy consequence of Lemma 4.3 but we give a proof for it. I and B have no 
common variable since B is element of S = X[I]. Therefore X[I ∪ B] = X[I][B]. Hence, 
X[I ∪ B] = S[B].         ❏ 
Lemma 4.4 (Hyper-Unit Propagation Simplifies the Problem) 
Let S be a non-empty clause that does not contain the empty clause. Let B be an element 
of S. Then |S[L(B)]| < |S| and |V{S[L(B)]}| < |V{S}|. 
Proof: 
S and L(B) have at least one common variable. 
Hence, |S[L(B)]| < |S| and |V{S[L(B)]}| < |V{S}|.     ❏ 
 

5 The Unicorn-SAT Algorithm 
 
Now we introduce the Unicorn-SAT algorithm and we show that it solves the resolution-
free SAT problem in linear time. 
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Let RfS(S) be the predicate which is true if S is resolution-free formula, false 
otherwise. Let MinC(S) be the set of minimal clauses of S. Let M(S, I) be the predicate 
which is true if I is a model for S, false otherwise. 

We use "{}" to mark formulae that are true at the respective points of algorithm, 
in order to prove the correctness of the algorithm in the Hoare calculus. 

 
Algorithm 5.1 (Unicorn-SAT): 
Unicorn-SAT(X, Z) 
input: formula X that is resolution-free and does not 
contain the empty clause, 
output: clause Z, a model of X. 
START 
{∅∉X ∧ RfS(X)} precondition 

{∅∉X ∧ RfS(X) ∧ X[∅]=X} by a trivial 
property of hyper-
unit propagation 

(S,I):=(X,∅);  

{∅∉S ∧ RfS(S) ∧ X[I]=S} by assignment axiom 

{∅∉S ∧ RfS(S) ∧ X[I]=S} loop invariant 

while (S≠∅) do // main loop 

 {∅∉S ∧ RfS(S) ∧ X[I]=S ∧ S≠∅} by while rule 

 {∅∉S ∧ RfS(S) ∧ X[I]=S}  

 let B ∈ MinC(S);  

 {∅∉S ∧ RfS(S) ∧ X[I]=S ∧ B∈MinC(S)} by assignment axiom 

 {∅∉S[L(B)] ∧ RfS(S[L(B)]) ∧ 
X[I∪L(B)]=S[L(B)]} 

by Lemmas 4.1 - 4.3 

 S:=S[L(B)];  

 {∅∉S ∧ RfS(S) ∧ X[I∪L(B)]=S} by assignment axiom 

 {∅∉S ∧ RfS(S) ∧ X[I∪L(B)]=S}  

 I:=I∪L(B);  

 {∅∉S ∧ RfS(S) ∧ X[I]=S} by assignment axiom 

 {∅∉S ∧ RfS(S) ∧ X[I]=S}  

od  

{∅∉S ∧ RfS(S) ∧ X[I]=S ∧ S=∅} by while rule 

{X[I]=∅}  

Z:=I;  

{X[Z]=∅} by assignment axiom 

{M(X,Z)} postcondition 

HALT. 
Now we see that from the precondition (the formula is resolution-free and does 

not contain the empty clause) the postcondition follows (the computed assignment is a 
model for the formula) if we follow the steps of the algorithm. The only question is 
whether the algorithm stops always or sometime runs for forever. We know from Lemma 
4.4 that it stops always. 
Theorem 5.2 (Correctness of Unicorn-SAT) 
Let S be a resolution-free formula that does not contain the empty clause. Then after 
execution of Unicorn-SAT(S, I), I is a model for S. 
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Proof: 
From Algorithm 5.1 and from Lemma 4.4 we can obtain that Unicorn-SAT stops for 
every resolution-free formula that does not contain the empty clause and gives back a 
model for it.           ❏ 

Now we can prove that Unicorn-SAT is a linear time algorithm. 
Theorem 5.3 (Complexity of Unicorn-SAT) 
Let S be a resolution-free formula that does not contain the empty clause. Let n be the 
number of variables occurring in S and m the number of clauses in S. Then the time 
complexity of Unicorn-SAT(S, I) is O(nm), i.e., it is linear in length of S. 
Proof:  
The most expensive computation in an iteration is the hyper-unit propagation. Let us 
assume we need k iterations of the main loop to find a model for S. Since we eliminate at 
least 1 variable in each iteration we know that k ≤ n. From definition of hyper-unit 
propagation we know that at the ith iteration the number of variables of S decreases by ti, 
where ti is the number of variable of the sub-model at this iteration. Therefore, ∑

= ki
it

..1

 = n. 

Hence, the k hyper-unit propagation can be simulated by n unit propagation. Unit 
propagation is an O(m) time method [10, 14]. Hence, time complexity of Unicorn-SAT(S, 
I) is O(nm).           ❏ 
 

6 Example for Unicorn-SAT 
 
We show how the Unicorn-SAT algorithm works for an example. In this example we use 
the convention that we obtain L(C) by negating all literals of C except the first one 
according to some variable ordering. We assume that variables are sorted by alphabetic 
order. 
Example 6.1 
Let X := {{ a ,b , c },{b , c , d , e },{ a ,b , c , d },{ c , d , e }}. X is resolution-free formula 
and does not contain the empty clause, so Unicorn-SAT can be applied to it. Step of 
Unicorn-SAT and values of variables: 
After initialization (S, I) = ({{ a , b , c },{ b , c , d , e },{ a ,b , c , d },{ c , d , e }}, ∅). 

After first iteration (S, I, B) = ({{ d , e },{ d , e }}, { a , b , c }, { a ,b , c }). 
After second iteration (S, I, B) = (∅, { a ,b , c , d , e }, { d , e }). 

The model Z for X is { a ,b , c , d , e }. 
 

7 Definitions for General Unicorn-SAT 
 
We need some more definition to be able to generalize the Unicorn-SAT algorithm. 
Definition 7.1 (Set of All n-Clauses) 
CC (read: “set of all n-clauses”) := {C | C is a clause ∧ |C| = n}, where n is the number of 
propositional variables. 

Note that n is a constant, the number of the propositional variables, i.e., an n-
clause contains a literal for each propositional variable.  
Definition 7.2 (Subsumed) 
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A ⊇∈ S (read: “S subsumes A” or “A is subsumed by S”) :⇔ ∃B B ∈ S ∧ B ⊆ A, where 
S is a formula and A is a clause. 

Note that in Section 2 we defined notion of subsume for clauses. This definition is 
for formulae and clauses.  

The notation ⊇∈ comes from the following idea. The right-hand side of the 
definition can be reformulated as ∃B A ⊇ B ∧ B ∈ S. If we see this as a string and delete 
the "not interesting" parts we get A ⊇∈ S.  
Definition 7.3 (Set of n-Clauses of a Formula) 
{{S}} (read: “the set of n-clauses of S”) := {C | C ∈ CC ∧ C ⊇∈ S}, where S is a 
formula. 

Note that {{ {∅} }} = CC.  
Definition 7.4 (Formula Equivalence) 
S ≡ T (read: “S and T are equivalent” or “S and T subsumes the same set of n-clauses” or 
“S and T have the same set of models”) 

:⇔ {{S}} = {{T}}, where S and T are formulae. 
The formula S ≡ {∅} means that S is unsatisfiable. It is so because S equivalent 

to a formula which contains the empty clause.  
 

8 Properties of Formula Equivalence 
 
In this section we will see properties of notion defined in Section 7. The main theorem in 
this section is the Expansion Rule, which state that if S[C] is unsatisfiable then we can 
"expand" the formula by adding the negation of the clause C to the formula. We can do 
this because the (original) formula and the “expanded” one have the same set of models. 
In this section we will use notations more heavily. 
Lemma 8.1 (Trivial Properties) 

(a) ∅ ∈ S ⇒ S ≡ {∅}, 
(b) {∅} ≡ CC, 
(c) {∅}[B] ≡ {∅}, 
(d) S ≡ T ⇔ T ≡ S, 
where S and T are formulae and B is an assignment. 

Proof: 
We do not give proofs for these trivial properties. 

These properties are trivial. Point (a) states that if a formula contains the empty 
clause then it is unsatisfiable. Point (b) states that an unsatisfiable formula subsumes 
every n-clause. Point (c) states that hyper-unit propagation preserves unsatisfiability. 
Point (d) states that formula equivalence is commutative.  
Theorem 8.2 (Clear Clause Rule or n-Clause Rule) 

(a) C  ⊇∈ S ⇔ S[C] ≡ {∅}, 

(b) ¬( C  ⊇∈ S) ⇔ S[C] = ∅, 
where S is a formula and C ∈ CC. 

Proof: 
Assume C ∈ CC. 

(a) We show C  ⊇∈ S ⇔ S[C] ≡ {∅}. 
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(⇒) Assume C  ⊇∈ S we show S[C] ≡ {∅}. From C  ⊇∈ S we know that there exists a 

B ∈ S such that B ⊆ C . From this and from C ∈ CC, by definition of hyper-unit 

propagation, we obtain that ∅ ∈ S[C]. Hence, C  ⊇∈ S ⇒ S[C] ≡ {∅}. 

(⇐) Assume S[C] ≡ {∅} we show C  ⊇∈ S. From S[C] ≡ {∅} we know that C ∈ 
{{S[C]}}. From this we know that there exist a B ∈ S such that B ∩ C = ∅. Since C ∈ 

CC, B ⊆ C . From B ∈ S and B ⊆ C  we obtain C  ⊇∈ S. Hence, C  ⊇∈ S ⇐ S[C] ≡ 
{∅}. 

Hence, C  ⊇∈ S ⇔ S[C] ≡ {∅}. 

(b) We show ¬( C  ⊇∈ S) ⇔ S[C] = ∅. 

(⇒) Assume ¬( C  ⊇∈ S) we show S[C] = ∅. To show this it suffices to show that for all 
B ∈ S we have B ∩ C ≠ ∅. Let B ∈ S arbitrary but fixed. We show that B ∩ C ≠ ∅. 

From the assumption ¬( C  ⊇∈ S) we know that ¬(B ⊆ C ). From this, since C ∈ CC, we 

know that B ⊆ C. Therefore, B ∩ C ≠ ∅. Hence, ¬( C  ⊇∈ S) ⇒ S[C] = ∅. 

(⇐) Assume S[C] = ∅ we show ¬( C  ⊇∈ S). Let B ∈ S arbitrary but fixed. Now it 

suffices to show that ¬(B ⊆ C ). From the assumption S[C] = ∅ we know that B ∩ C ≠ 

∅. Now we can use the same argument as in the previous case. Hence, ¬( C  ⊇∈ S) ⇐ 
S[C] = ∅. 

Hence, ¬( C  ⊇∈ S) ⇔ S[C] = ∅.       ❏ 
Clear Clause Rule (we prefer this name) states that an n-clause, say C, is a model 

for a formula, say S, if its negation, C , is not subsumed by the formula, S. It is clear that 

if the negation of the n-clause, C , is not subsumed by the formula, S, then hyper-unit 
propagation by it, S[C], results in a formula which does not contain the empty clause, i.e., 
may be satisfiable. Since C is n-clause and S[C] does not contain the empty clause, S[C] 
is empty, i.e., C is a model for S.  

This lemma is a preliminary result, which will help us to proof the Expansion 
Rule.  
Theorem 8.3 (Hyper-Unit Propagation Preserves Equivalence) 
S ≡ T ⇒ S[C] ≡ T[C], where S and T are formula. 
Proof: 
Assume {{S}} = {{T}} we show {{S[C]}} = {{T[C]}}. 
(⊆) Let A be an arbitrary but fixed n-clause. Then we assume A ∈{{S[C]}} and show A 
∈{{T[C]}}. To show this, by definition of subsumed, we have to find a clause E such 
that E ∈ T[C] and a subset of A. From A ∈{{S[C]}} we know that there is a clause B ∈ 

S such that B ∩ C = ∅ and B \ C  is a subset of A. Then we know that A \ C ∪ C  is an 
n-clause and a superset of B. Then from the assumption {{S}} ⊆ {{T}} we know that 

there exists a clause D ∈ T such that D is a subset of A \ C ∪ C . From this we know that 

D ∩ C = ∅. Therefore, D \ C  ∈ T[C] and D \ C  is a subset of A. Hence, D \ C  is a 
suitable choice for E. Hence, {{S[C]}} ⊆ {{T[C]}}. 
(⊇) Analogously. 
Hence, S[C] ≡ T[C].          ❏ 
Lemma 8.4  
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S[A] ≡ {∅} ∧ A ⊆ C ⇒ S[C] ≡ {∅}, where S is a formula and A and C are assignments. 
Proof: 
Let B = C \ A. Then A ∩ B = ∅ and C = A ∪ B. From this, by Lemma 4.3, we know that 
S[C] = S[A][B]. Since S[A] is unsatisfiable, by Lemma 8.1.c, S[A][B] is unsatisfiable. 
Hence, S[A] ≡ {∅} ⇒ A ⊆ C ∧ S[C] ≡ {∅}.      ❏ 
Theorem 8.5 (Expansion Rule) 
S[C] ≡ {∅} ⇔ (S ∪ { C }) ≡ S, where S is a formula and C is an assignment. 
Proof: 
(⇒) If S[C] is unsatisfiable then, by Lemma 8.4 and Theorem 8.2, S subsumes all n-

clauses being superset of C . Therefore S ∪ { C } and S have the same set of models. 

(⇐) If S ∪ { C } and S have the same set of models then, by Lemma 8.3, (S ∪ {C })[C] 

and S[C] have the same set of models. We know that (S ∪ {C })[C], by definition of 
hyper-unit propagation, is unsatisfiable. Therefor, S[C] is unsatisfiable. 
Hence, S[C] ≡ {∅} ⇔ (S ∪ { C }) ≡ S.      ❏ 

Expansion Rule is our main statement. It states that if an assignment, say C, 
makes a formula, say S, unsatisfiable then we can “expand” the formula by its negation, 
C . We can do so because the resulting formula, S ∪ {C }, is equivalent to the original 
one, S. It is so because the negation of every n-clause subsumed by the assignment is 
subsumed by the original formula, see Clear Clause Rule. Thus, intuitively speaking, if 

we add C  to S then we add no new "information" to it.  
Now we should find a clever way how to use this rule. We will show that a clever 

way is to do hyper-unit propagation by a negation of a resolution-mate, because if the 
hyper-unit propagation results in an unsatisfiable formula then we can expand our 
original formula by a resolution-mate, i.e., a resolution can take place. Of course there 
may be other, even better, ways of using Expansion Rule.  
Lemma 8.6 
C ∈ S ∧ L( C ) ∈ S ⇒ (S ∪ {Res(C, L( C ))}) ≡ S, where S is a formula. 
Proof: 
It is a basic property of resolution. Lemma 3.2 makes sure that resolution can be 

performed on C and L( C ).         ❏ 
Lemma 8.7 (The Crucial Step in General-Unicorn-SAT) 
C ∈ S ∧ S[L(C)] ≡ {∅} ⇒ (S ∪ {Res(C, L( C ))}) ≡ S, where S is a formula. 
Proof: 
It is an easy consequence of Theorem 8.5 and Lemma 8.6.     ❏ 

Intuitively General Unicorn-SAT is the following algorithm. We do recursively 
hyper-unit propagation by a sub-model (the negation of a resolution-mate of a minimal 
clause) until either we reach the empty formula or a formula, which contains the empty 
clause. In the first case we are done we found a model, which the union of intermediate 
sub-models. In the second case we have to backtrack. It is the point where all the pre-
request of the crucial step is met. The empty set is not in S (otherwise backtrack would 
take place on this level), C is a (minimal) clause from S and the empty clause is in 
S[L(C)] (we just do backtrack because of this fact). Now we know that we can expand S 

by L( C ) and do resolution (this is the crucial step) because on C and L( C ) we can 
always perform resolution. Now the resolvent will be the minimal clause of the formula 
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because C was minimal. If the resolvent is empty we do backtrack, otherwise we do 
hyper-unit propagation by the sub-model generated from the new minimal clause.  
 

9 The General Unicorn SAT Algorithm 
 
Now we introduce the General Unicorn-SAT algorithm and we show that it solves 
general SAT problem in non-polynomial time. 

Let MinC(S) be the set of minimal clauses of S. Let M(S, I) be the predicate 
which is true if I is a model for S, false otherwise. 

We use "{}" to mark formulae that are true at the respective points of algorithm, 
in order to prove the correctness of the algorithm in the Hoare calculus. 
In Hoare calculus formulae we will use the following invariants and an auxiliary formula. 
Aux(i) :⇔ Si≠∅ ∧ Bi∈MinC(Si). 
Inv1(i) :⇔ i≥0 ∧ S≠∅ ∧ S0=S ∧ B0=∅ ∧ S0≠∅ ∧  
            for all 0≤j≤i (Sj+1≡S[L(B0)∪...∪L(Bj)]) ∧  
            for all 1≤j≤i (Aux(j) ∧ Bj≠∅). 
Inv2(i) :⇔ Inv1(i) ∧ Aux(i+1). 
 
Algorithm 9.1 (General Unicorn-SAT): 
General-Unicorn-SAT(S, M) 
input: formula S that is not empty, 
output: clause M, a model of S if exists, ∅ otherwise. 
START  

{S≠∅} precondition 

{S≠∅}  

i:=0, B0:=∅, S0:=S, S1:=S;  

{S≠∅ ∧ i=0 ∧ B0=0 ∧ S0=S ∧ S1=S} by assignment axiom 

{Inv1(i)} 1. loop invariant 

while (Si+1 ≠ ∅) do  

 {Inv1(i) ∧ Si+1≠∅} by while rule 

 {Inv1(i) ∧ Si+1≠∅}  

 i:=i+1, let Bi ∈ MinC(Si);  

 {i>0 ∧ Inv1(i-1) ∧ Aux(i)} by assignment axiom 

 {i>0 ∧ Inv2(i-1)} 2. loop invariant 

 while (Bi = ∅) do  

  {i>0 ∧ Inv2(i-1) ∧ Bi=∅} by while rule 

  {i>0 ∧ Inv2(i-1) ∧ Bi=∅}  

  i:=i-1;  

  {i≥0 ∧ Inv2(i) ∧ Bi+1=∅} by assignment axiom 

  {i≥0 ∧ Inv2(i) ∧ Bi+1=∅}  

  if i=0 then  

   {i=0 ∧ Inv2(0) ∧ B1=∅} by if then rule 

   {S≡{∅}} by Lemma 8.1.a 

   M:=∅;  

   {S≡{∅} ∧ M=∅} by assignment axiom 

   {(S[M]=∅) ∨ (S≡{∅} ∧ M=∅)} postcondition 
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   HALT.  
  fi  

  {i>0 ∧ Inv2(i)} by if else rule and by logical 
consequence rule 

  {i>0 ∧ Inv2(i-1) ∧ Bi≠∅} by logical consequence rule 

  Bi:=Res(Bi,L( B i)); 
  Si:=Si ∪ Bi; 

 

  {i>0 ∧ Inv2(i-1)} by assignment axiom and by 
Lemma 8.7 

  {i>0 ∧ Inv2(i-1)}  

 od  

 {i>0 ∧ Inv2(i-1) ∧ Bi≠∅} by while rule 

 {i>0 ∧ Inv1(i-1) ∧ Aux(i) ∧ Bi≠∅}  

 Si+1:=Si[L(Bi)];  

 {i>0 ∧ Inv1(i)} by assignment axiom and by 
Lemma 4.3 

 {i>0 ∧ Inv1(i)}  

od  

{Inv1(i) ∧ Si+1=∅} by while rule 

{Inv1(i) ∧ Si+1=∅}  

M:=L(B0)∪...∪L(Bi);  

{S[M]=∅} by assignment axiom and by 
Lemma 4.3 

{(S[M]=∅) ∨ (S≡{∅} ∧ M=∅)} postcondition 

HALT.  

Now we see that from the precondition (the formula is not empty) the 
postcondition (the computed assignment is a model for the formula if it is satisfiable, 
otherwise the empty clause) follows if we follow the steps of the algorithm. The only 
question is whether the algorithm stops always or sometime runs for forever. We know 
from Lemma 4.4 and from a basic property of resolution, namely it simplifies the 
problem, that it stops always. 
Theorem 9.2 (General Unicorn-SAT is Complete) 
Let S be a non-empty formula. Then after execution of General Unicorn-SAT(S, M), M is 
a model for S if it is satisfiable, otherwise it is the empty clause. 
Proof: 
From Algorithm 9.1, from Lemma 4.4 and from the fact that resolution simplifies the 
problem we can obtain that General Unicorn-SAT stops for every formula and gives back 
a model for it if the formula satisfiable otherwise gives back the empty clause.  ❏ 

Now we can prove that General Unicorn-SAT is a non-polynomial time 
algorithm. 
Theorem 9.3 (Complexity of General Unicorn-SAT) 
Let S be a non-empty formula. Let n be the number of variables occurring in S and m the 
number of clauses in S. Then the time complexity of General Unicorn-SAT(S, M) is 
O(m2n). 
Proof: 
The complexity of General Unicorn-SAT depends on how many literals are in the 
formula. Therefore, the worst case is if the input formula is CC. We assume that there is 
an ordering on the variables of the input formula and V = {v1, ..., vn} is the set of 
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variables. Let us consider the set CCk := {C | C is a clause ∧ every variables occur in C 
from {v1, ..., vk}}. Note that CC = CCn. We show, by induction on k, that General 
Unicorn-SAT perform 2n-1 hyper-unit propagations to determine that CC is unsatisfiable. 
For k = 1 it is straightforward, we need 1 hyper-unit propagation to show that CC1= is 
unsatisfiable. Assume that for CCi, i ≤ k, we need 2i-1 hyper-unit propagations to show 
that this is unsatisfiable. We show that for CCk+1 we need 2k+1-1 hyper-unit 
propagations to show that this is unsatisfiable. We assume that negation of a resolution-
mate of a clause always negates the first literal of the clause. Therefore, in the crucial 
step, see Lemma 3.7, the resolution deletes the first literal of the sub-model (a negation of 
a resolution-mate of a minimal clause). We have to count how many hyper-unit 
propagations are needed to delete all the literals from the sub-model. To delete the i-th 
literal, such that we assume that the 1..i-1-th literals are already deleted, General 
Unicorn-SAT has to detect that CCk+1-i is unsatisfiable which needs, by the induction 
hypothesis, 2k+1-i-1 hyper-unit propagations. Therefore, to delete every literal from the 
sub-model, which has k+1 literals, we need 
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1 ++
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=
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ik  
(1) 

hyper-unit propagations. The formula (1) equals to 2k+1-1. Hence, we need 2n-1 hyper-
unit propagations to determine that CC is unsatisfiable. 
Since we perform 2n-1 hyper-unit propagations and a hyper-unit propagation means in the 
worst case n unit propagations and since the unit propagation is an O(m) time method [2, 
4], the time complexity of General Unicorn-SAT is O(mn2n-1).    ❏ 
Example 10.3 shows how does the General Unicorn-SAT algorithm work on CC2. 

It seems a very disappointing result but we should note that we did not use any 
simplification steps like unit propagation if S contains a unit. General Unicorn-SAT is 
compatible with the most simplification strategy and we should use them to get better 
complexity results in the future.  
 

10 Example for General Unicorn-SAT 
 
Let us first recall the General Unicorn-SAT without Hoare calculus formulae in order to 
be more readable. 
Algorithm 10.1 (General Unicorn-SAT): 
START 
i:=0, B0:=∅, S0:=S, S1:=S; 
while (Si+1 ≠ ∅) do 
 i:=i+1; 
 let Bi ∈ MinC(Si); 
 while (Bi = ∅) do 
  i:=i-1; 
  if i = 0 then 
   M:=∅; 
   HALT. 
  fi 

  Bi:=Res(Bi,L( B i)); 
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  Si:=Si ∪ Bi; 
 od 
 Si+1:=Si[L(Bi)]; 
od 
M:=L(B0) ∪ ... ∪ L(Bi); 
HALT. 

The essence of the invariant is the following. The model for the formula is the 
union of intermediate sub-models, i.e., M:=L(B0) ∪ ... ∪ L(Bi), and we can generate the 
last formula by hyper-unit propagation by the model, i.e., Si+1 = S[M]. We try to focus of 
these by giving examples.  
Example 10.2 
Let S = {{a}, {b}}. It is easy to see that S is satisfiable M = {a, b} is a model for it. We 
give a table, which shows value of variables used in General Unicorn-SAT. The variables 
have these values before the second while except Si = {} which means we found a model. 
By level we mean that if we would use the recursive algorithm on which recursion level 
would this step occur. 
Let M:=L(B0) ∪ ... ∪ L(Bi), Si+1 = S[M]. 

Level I SI Bi L(Bi) M 
1 0 {{a}, {b}} {} {} {} 
1 1 {{a}, {b}} {a} {a} {a} 
Note that here we could also choose {b} for B1 since both {a} and {b} are minimal 
clauses. Note also that a negation of a resolution-mate of a unit clause is the unit clause 
itself. 
2 2 {{b}} {b} {b} {a, b} 
3 3 {}    
M is a model for S. 
Example 10.3 

For denoting literal negation we will use the notation ~v instead of the notation v  in this 
example. 
Let S = {{a, b}, {a, ~b}, {~a, b}, {~a, ~b}}. It is easy to see that S is unsatisfiable, 
actually S = CC. For more instruction see Example 10.2. 
Let M:=L(B0) ∪ ... ∪ L(Bi), Si+1 = S[M]. 
Level I SI Bi L(Bi) M 

1 0 {{a, b}, 
 {a, ~b}, 
 {~a, b}, 
 {~a, ~b}} 

{} {} {} 

1 1 {{a, b}, 
 {a, ~b}, 
 {~a, b}, 
 {~a, ~b}} 

{a, b} {a, ~b} {a, ~b} 

Note that here we could choose any clause from S1 since all of them are minimal clauses. 
We recall the first part of definition of negation of a resolution-mate. Negation of a 
resolution-mate of a clause C, denoted by L(C), is the negation of of a resolution-mate of 
C. In this example we use the convention that we obtain L(C) by negating all literals of C 
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except the first one (according to some variable ordering). In this example we use the 
ordering a < b. Therefore, L(B1) is {a, ~b}. 
2 2 {{}} {} {} {a, ~b} 
We recall the second part of the definition of negation of a resolution-mate. By definition 
L(∅) = ∅. Therefor L(B2) is {}. Now we fulfil the condition of the second while loop. So 
we enter it and do that many backtrack step as needed. 
Note that ∅ ∈ S2 means that, by Theorem 8.5 (expansion rule), that we can add the 
negation of L(B1), which is {~a, b}, to S1. Therefore S1 is equivalent to {{~a, b}, {a, b}, 
...}, where ... means the remaining part of S1. So we can perform resolution and we get 
the new S1. See next line. 
1 1 {{b}, 

 {a, b}, 
 {a, ~b}, 
 {~a, b}, 
 {~a, ~b}} 

{b} {b} {b} 

2 2 {{a}, 
{~a}} 

{a} {a} {a, b} 

3 3 {{}} {} {} {} 
Now we enter the second while loop and we track back three time, i becomes 0. It means 
S is unsatisfiable. 
1 0 {{a, b}, 

 {a, ~b}, 
 {~a, b}, 
 {~a, ~b}} 

{} {} {} 

Since S is unsatisfiable M is the empty clause. 
 

11 Conclusion and Future Work 
 
Resolution-free SAT problem is a new type of linear time SAT problems. On resolution-
free SAT problems we should try to build up a hierarchy of polynomial time problems 
like tractable satisfiability problems [10] which is based on Horn SAT and 2-SAT and an 
instance of the hierarchy on the k level is solvable in O(nk+1) time. 

The General Unicorn-SAT algorithm is complete for the general SAT problem 
like the Davis and Putnam method [13]. We should rigorously study which one is better 
for which set of SAT instances. For example for the resolution-free SAT problem 
General Unicorn-SAT is better since it solves it in linear time. It seems that the search 
tree of General Unicorn-SAT has less (or equal) nodes than the search tree of Davis and 
Putnam method. But General Unicorn-SAT uses more unit propagation (if we consider 
hyper-unit propagation as unit propagation after each other) than Davis and Putnam 
method. We should study rigorously the time complexity of hyper-unit propagation. 
 

Appendix A 
 
This is the recursive version of the General Unicorn-SAT algorithm. 
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General-Unicorn-SAT(X1, X2) 
input: formula X1 that does not contain the empty clause, X2 
proposed sub-model, 
output: clause Z, a model of X1[X2]. 
START 
(S, I) := (X1[X2], X2); 
if S = ∅ then return I; 
if ∅ ∈ S then return ∅; 
let B ∈ MinC(S); 
while ((C := General-Unicorn-SAT(S, L(B))) = ∅) do 

B := Res(B,L(B )); 
if B = ∅ then return ∅; 

od 
I := I ∪ C; 
Z := I; 
return Z; 
HALT. 
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